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Abstract

Purpose – The purpose of this paper is to present a model and a supporting approach for effective
supplier selection decisions.

Design/methodology/approach – Structural equation modeling (SEM) and confirmatory factor
analysis are applied to test the evaluation principles and samples. Next, the data tested by SEM is used
for artificial neural network (ANN) by Likert and fuzzy scales to structure a classification model,
accompanying with canonical discriminate analysis (CANDISC) to diminish variables. After the
training and test of the model, multiple discriminate analysis is applied to compare the accuracy of the
classification. Last, the CANDISC variable reduction method with ANN classification model utilized in
the study is applied.

Findings – The supplier selection model designed with ANN classification model and fuzzy scales
will be more effective than with the traditional statistics analysis.

Research limitations/implications – The new paradigm for decision making includes a
combination of several effective methods and analysis.

Practical implications – This research provides an integrated model for internal auditors and
managers to classify their supplier selection decisions.

Originality/value – This paper contributes to the new approach of the decision model building
process for computer auditing and improves the classification accuracy effectively.

Keywords Computers, Auditing, Internal control, Supplier evaluation, Cybernetics

Paper type Research paper

1. Introduction
Growing competition in globalized markets is steadily narrowing gaps in the quality
and performance of different goods. Sarmah et al. (2006) suggests this phenomenon has
drawn the attention of both researchers and industry players, and prompted them to
rethink the question of how to manage enterprise operations effectively and efficiently.
Supply chain can be defined as an organized network that makes use of different
processes and activities to transmit the value of goods and services to the end
consumer, while supply chain management (SCM) is a method of designing, managing,
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and controlling supply chains, with an eye to integrating processes (Joyce, 2006;
Ahmed, 2009). The main goal of SCM is to create value by improving customer service
and lowering prices (Koskinen, 2009).

SCM tools include the intelligent supplier management tool (Choy et al., 2005;
Humphreys et al., 2002), internal and external supply chain integration (Tessarolo,
2007), management of supplier relationships (Wu and Shen, 2006), and supplier
selection (Choi and Chang, 2006). All of these can be used, together with advanced,
modern information technologies or analytical methods, to carry out management, and
it would even be possible to use information systems to integrate supplier
management, supplier selection, and purchasing strategies (Lee et al., 2001), thereby
making an enterprise’s management more effective and competitive.

From an auditor’s perspective, one of the key issues in efforts to build a supply
chain within the purchasing and payments cycle is the process of supplier selection,
but the factors affecting supplier selection are many, and supplier selection is a
complex, multifaceted process. An enterprise’s senior management is usually unable
to be directly involved in the decisions, so they must establish systematized models
and use effective decision-making tools if they are to help the decision makers make
good selections. Previous studies on supplier selection ( Jayaraman et al., 1999;
Handfield et al., 2002; Kauffman and Popkowski Leszczyc, 2005; Andrabi et al., 2006)
have employed many different quantitative decision-making methods to help ensure
an objective and effective supplier selection process, and treat the final judgment
resulting from this process as reference in the actual making of a decision.

The objective of this paper is to present a model and a supporting approach for
effective supplier selection decisions. The remainder of the paper is organized into five
sections. Section 2 reviews previous work on supplier selection and artificial neural
networks (ANNs). Section 3 lays out research methods, processes, and data sources.
Section 4 develops detailed descriptions and discusses the empirical results. Finally,
conclusions are presented in Section 5 with managerial and theoretical implications.

2. Literature review
SCM seeks to integrate internal operating activities and decision-making processes
with those of outside partners to achieve the goal of improved competitiveness (Li and
Wang, 2007). Purchasing is one of the factors that most affects the performance of
SCM, while supplier selection also has a direct impact upon the purchasing decision
aspect of SCM (Wu and Shen, 2006; Wei et al., 2009). In addition, supplier selection
has an important impact upon the inventory management and delivery performance
aspects of SCM (Basnet and Leung, 2005; Kawtummachai and Hop, 2005). Both quality
and delivery performance have the dominant impact upon SCM (Basnet et al., 2003).

There are many different supplier selection methods, and most employ traditional
statistical methods and quantitative models. However, a few employ ANNs for
classification modeling, and none of the literature in this field has yet shown in
combination with structural equation modeling (SEM). SEM can be used to rigorously
test the fitness between sample data and structural modeling. Moreover, neural
networks have worked extremely well in many different fields. For these reasons, the
present study makes use of SEM, ANNs, and multiple discriminate analysis (MDA) to
establish a method for basic analysis of supplier selection models.

K
38,9

1440



2.1 Supplier evaluation criteria
Supplier differentiation can be defined as the identification of differences between some
of the characteristics of different suppliers, such as organizational culture, production
processes, technical capability, and geographic distribution (Choi and Krause, 2006).
Despite all the perceived benefits of forging integrated business relationships, there are
still some derived risks about entering into these relationships (Iacovou et al., 1995).
These risks include specific-capital transaction, asymmetries information, and loss of
resource control (Sutton et al., 2008). Auditors may focus more on the supplier
evaluation criteria to select appropriate suppliers for improving organizational
competitiveness.

Supply chain performance can be viewed as sustained effective activity over past,
present, and future periods (Sari, 2008; Sevkli et al., 2008; Koskinen and Hilmola, 2008).
The question of what would constitute an effective and efficient supply chain
performance evaluation method is becoming an increasingly important topic in supply
chain discussions (Catt et al., 2008; Chang et al., 2007; Gulledge and Chavusholu, 2008).
Accordingly, the present study examines 14 previous studies and summarizes
evaluation criteria. The criteria that we found are shown in Table I.

As Table I shows, purchasers and firms most often put top stress on the following
three factors in selecting suppliers:

(1) quality;

(2) price; and

(3) delivery performance.

Author (year) Evaluation criteria

Dickson (1966) Quality; price; delivery; performance history; warranties and claims
policies; production facilities and capacity; technical capability; financial
position; procedural compliance; communication system; position and
reputation; desire for business; management and organization; operating
controls; repair service; attitude; impression; packaging capability; labor
relations record; geographical location; amount of past business; training
aids; and reciprocal arrangements

Cusumano and Takeishi
(1991)

Financial matters; price; quality; delivery; technical capability; and past
business relationship

Weber and Current (1993) Price; delivery dependability; and product quality
Chaudhry et al. (1993) Quality; delivery capability; and price breaks
Swift (1995) Products; usability; dependability; experience; and price
Choi and Hartley (1996) Financial matters; consistency; relationship; flexibility; technical

capability; service; reliability; and price
Jayaraman et al. (1999) Quality; nature of products; lead time; and warehousing capability
Lee et al. (2001) Costs; quality; delivery; and service
Muralidharan et al. (2001) Quality; technical capability; and delivery
Muralidharan et al. (2002) Quality policy; delivery time; price; professional and technical expertise;

financial condition; past performance; equipment; flexibility; and service
Prahinski and Benton
(2004)

Quality; delivery performance; price; ability to respond to changed needs;
and support services

Kreng and Wang (2005) Costs; quality; delivery reliability; lead time; and timeliness of delivery
Pi and Low (2005) Quality; timeliness of delivery; price; and service
Chang et al. (2007) R&D capability; costs; quality; service; and responsivity

Table I.
Supplier selection criteria
employed in 14 previous

studies
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Researchers also suggest service and flexibility as important supplier selection criteria
(Choi and Hartley, 1996; Lee et al., 2001; Muralidharan et al., 2002; Pi and Low, 2005;
Prahinski and Benton, 2004; Chang et al., 2007). Accordingly, the present study defines
the five criteria as follows:

(1) Quality. The quality of goods provided by the supplier.

(2) Price. The amount paid by the enterprise to buy goods from its suppliers.

(3) Delivery performance. How well a supplier succeeds in delivering goods
according to schedule?

(4) Service. The after-sales service and support provided by a supplier.

(5) Flexibility. The ability of a supplier to accommodate changes in the enterprise’s
production plans.

2.2 Fuzzy scale
Chen and Hwang (1992) use fuzzy arithmetic to convert linguistic terms into crisp
numbers, and put forward eight conversion scales for the reference of decision
makers. The conversion is accomplished by first providing a maximizing set and a
minimizing set:

m max ðXÞ ¼

x; 0 # x # 1

0; otherwise

8<
: ð2:1Þ

m min ðXÞ ¼

1 2 x; 0 # x # 1

0; otherwise

8<
: ð2:2Þ

If we assume that M is a fuzzy variable, then the left score for M is mL(M) while the
right score for M is mR(M), the values of which can be obtained by the following
equations:

mLðMÞ ¼ sup½mM ðXÞ ^ m min ðXÞ� ð2:3Þ

mRðMÞ ¼ sup½mM ðXÞ ^ mmax ðXÞ� ð2:4Þ

In these equations, mL(M) and mR (M) are both the only positive whole crisp numbers
within the [0, 1] range. By solving for the left and right scores for M, we can obtain the
total score for M as follows:

mTðMÞ ¼
½mRðMÞ þ 1 2 mLðMÞ�

2
ð2:5Þ

mT is the fuzzy number after conversion. If we use a post-conversion five-grade scale,
the corresponding fuzzy memberships would be 0.091, 0.283, 0.5, 0.717, and 0.909,
respectively.
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2.3 Supplier classification methods and evaluation models
Weber et al. (1991) classified three main methods for quantification of supplier
selections – linear weighted models, quantitative approaches, and statistical
probability methods. Linear weighted models were used the most, while statistical
probability models were used the least.

Researchers have used statistical probability theory to establish a selection model.
Hinkle et al. (1969) was the only one among the earlier studies to use cluster analysis to
evaluate supplier classifications, while Soukup (1987) used probability theory to modify
the linear weighted method in order to improve the measurement of criteria weightings.
More than one type of statistical probability model has been used for supplier
classification. The present study uses MDA and ANNs to examine the accuracy of these
two research tools.

2.3.1 MDA and canonical discriminant functions. MDA is used for statistical
analysis of classification response variables versus analytical explanatory variables.
Where the subject groups to which all data objects belong are already known, MDA is
used to obtain the function that will most correctly identify the classification of these
data objects.

Discriminant functions can be used to analyze for different sample data. When each
group of data is normal and the covariance matrices are identical, the linear discriminant
function rule can be used. When each group of data is normal but the covariance
matrices are not identical, then a posteriori discriminate analysis can be used. And
when the individual data groups are not normal, then Fisher’s linear discriminant
function analysis, so-called canonical discriminant analysis (CANDISC), can be used.

CANDISC is a statistical method involving use of the Fisher method and
appropriate canonical analysis principles to establish canonical discriminant functions.
The significance of each explanatory variable can be known from its discriminant
power, while the impact of the explanatory variables upon forecasts and classifications
depends on the canonical discriminant coefficients.

Our study uses the holdout method, whereby the data objects of all samples are
classified under one of two categories; one is construction data, while the other is
validation data, the latter of which are used to evaluate the constructed data. These
data are used to establish a model function to test the accuracy of validation data
classifications. The results show whether the construction data can be used effectively
enough to meet the anticipated needs, thus enabling a determination regarding
whether the model can be used.

2.3.2 Artificial neural networks. ANN models can be categorized into four types:

(1) supervised learning networks;

(2) unsupervised learning networks;

(3) associate learning networks; and

(4) optimization application networks.

With supervised learning networks, training examples with complete input and output
variable values are obtained from problem spaces, and in the process the network
learns the internal correspondence rules between the input variables and output
variables. These rules are then used to infer output values in new cases where only
input values are available.
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Supervised learning networks can be applied to such things as classifications and
forecasts, and represent the most important and successful application of ANNs to
date. They have been applied in many enterprises for such purposes as auto engine
diagnosis, process control, analysis of mineral deposit detection signals, and stock
price forecasts. Back-propagation networks (BPNs) are currently the most notable and
widely applied type of ANN learning model. In basic principle, they use the gradient
steepest descent method to minimize the error function. A BPN is a type of supervised
learning network, and is therefore appropriate for diagnosis classification, forecasting,
etc. The present study uses the excellent forecasting and analytic capabilities of BPN to
establish a supplier selection model.

The ANN model of data mining analysis have been discussed and improved in
many papers (Andrew, 2005; Fish and Segall, 2004). Such as, Satsangi et al. (2003) used
the ANN model to discuss the systems dynamics issue. Segall and Zhang (2006)
applied the ANN, genetic algorithms, regression, and MDA to discuss the data mining
issue. In general, the ANN model could solve the prediction and classification problem
and build effective analysis model to help decision makers.

3. Research methods
We employ a questionnaire that includes five supplier evaluation criteria – quality,
price, delivery performance, service, and flexibility. Likert five-point scale
measurements are used as the basis for giving suppliers scores of 5 – very
satisfactory, 4 – satisfactory, 3 – fair, 2 – unsatisfactory, and 1 – very unsatisfactory.
Then we assign to each supplier an evaluation grade of A – excellent supplier, B – fair
supplier, or C – poor supplier. For each questionnaire the researcher engages in
purposive sampling, taking the initiative to contact the respondent, explain the
questionnaire, and fill in the responses. A total of 217 supplier evaluations have been
collected for the purpose of establishing and analyzing a model. With respect to the
respondents’ industries and personal identities, we intentionally interview respondents
from different backgrounds in order to use generally applicable and diverse viewpoints
when examining whether the model established can be effectively applied in any
industry.

Research procedure. We start by making on-site visits and talking to supplier
evaluators and purchasers. We ask them to fill out the questionnaire and give each
supplier a supplier score (from 1 to 5) and an evaluation grade (from A to C). Second, we
use SEM to test the data. We examine the fit between the data and the model, and carry
out confirmatory factor analysis (CFA), and the results prove that the questionnaire
data have good internal consistency, and that our criteria have a high degree of
homogeneity. In addition, we convert between the Likert scale and fuzzy scale for the
collected questionnaires so that the data types have two different data measurement
states, in hopes of using comparative analysis in order to examine which kind of scale
provides statistical data that support a more effective classification model. Finally, we
use MDA and ANN to establish a supplier classification model which, together with a
CANDISC variable reduction model, we use to determine which combination yields the
most accurate classification model.

The present study first defines the evaluation point system for the five continuous
input variables and the category codes for the categorical output variables. Second, we
use SEM modeling to analyze the preliminary fit of the samples, overall fit, and
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goodness of fit for the internal structure. After that, the study uses proportionate
stratified random sampling to segregate sample data into model establishment data
(training samples) and model validation data (testing samples), then MDA modeling is
used to carry out testing and analysis, then establishes an ANN model. MDA analysis
models are classified as either Likert or fuzzy data. These data are plugged into the
MDA model, and we observe to see their classification effectiveness. After that, we use
CANDISC variable reduction functions, using several CANDISC function replacements
to analyze the five input variables and observe whether they can effectively improve
classification accuracy. Finally, the combination that affords the most effective MDA
model classification is selected as the final MDA model classification accuracy.

When establishing the ANN model, therefore, training accuracy and validation
accuracy are the accuracy values that most concern us; testing accuracy values are
used as reference to inform judgments regarding model stability, and are not of
primary importance with respect to model accuracy. Before analyzing the ANN model,
the present study first tests the classification effectiveness of the linear model without
using any hidden layers, then one hidden layer is added, the number of neurons is
adjusted, and we observe to see whether switching to a non-linear model can improve
classification accuracy. If it does not, then application of the ANN model is pointless.
After a hidden layer has been added and the number of neurons adjusted, adjustment
of the parameters is also an important step affecting the classification accuracy of the
ANN model. For this reason, the present study selects the initial values for number of
learning cycles, initial learning rate, and the momentum factor, and adjusts the
parameters to improve the final accuracy of the model.

We also divide input data for the ANN model into Likert scale data and fuzzy scale
data, and use neuron coding to carry out data conversion for output variable
categorical data. We then examine to see which data (i.e. the data converted under
which scale) yield the ANN model with the most accurate classification, and finally. We
use several CANDISC function replacements for the five input variables, and plug them
into the ANN model and observe whether they can effectively improve classification
accuracy. Finally, from among various ANN model accuracy output variables, we
select the best performing model as the final ANN model output.

Accordingly, within the topic of supplier classification, the present study is
concerned primarily with using the ANN model together with fuzzy scale data
conversion, and then adding a CANDISC variable reduction model, to evaluate whether
it can be more effective than the traditional MDA statistical method, and whether it can
be developed into a new paradigm for supplier selection decision-making models.
Therefore, the analytical steps set out below must all be carried out with statistical
rigor to seek maximum effectiveness for the MDA model, and to ensure that the results
of this study are objective and unbiased.

4. Empirical analysis
4.1 Confirmatory factor analysis
CFA is mainly applied in two situations. First, during the development of a
measurement tool, it is used to evaluate the appropriateness of the measurement tool’s
factor structure. Second, it is used to examine whether the relationship between latent
variables conforms to certain theoretical concepts. This examination is referred to as
the testing of theoretical concepts. A review of past literature shows that quality, price,
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delivery performance, service, and flexibility are the five main criteria for supplier
selection, therefore the current study uses LISREL software to run structural equations
to perform confirmatory factory analysis and ascertain the relationships between
observed variables and latent variables, thereby examining the question of how to
assess the fit of the linear structure model, i.e. the degree to which the analytical model
for factor assessment can explain actually observed data.

SEM includes the following methods for estimating parameters: instrumental
variable, two-stage least squares, unweighted least squares (ULS), maximum likelihood
(ML), generalized least squares, elliptical distribution theory, and asymptotic
distribution free. Generally speaking, the ML method is usually used for estimation
of parameters, but this method requires an assumption that observed variables will
exhibit multivariate normal distribution, and that a larger sample is better. In addition,
testing of the collected sample data yields peak values of 0.608, 0.383, 0.601, 0.806, and
1.004, which represents normal distribution. But although the assumption of normal
distribution is satisfied, the requirements of the ML method are still not met, therefore
the present study adopts the ULS method for estimating parameters.

4.1.1 Testing the preliminary model fit. The present study uses these three criteria to
test the model’s preliminary fit. Table II shows that error variance is greater than zero,
and thus meets the first criterion for preliminary fit. Next, the test t-statistic shows that
error variance meets the level of significance, and thus meets the second criterion for
preliminary fit. In addition, standard error for each parameter falls between 0.098 and
0.152, so it is clear that standard error is not excessive and thus meets the third
criterion for preliminary fit. To summarize the abovementioned assessment criteria,
CFA of data obtained through testing done using the Likert scale, shows that the data
meet the preliminary fit criteria, which indicates an acceptable preliminary fit between
the model and the observed data. In addition, all factor loadings of the measurement
model are significant at 0.05. The estimated values for measurement model parameters
are shown in Table III.

4.1.2 Testing the overall model fit. The purpose of testing overall fit is to evaluate the
degree of overall fit between the model and the observation data collected during the
study. Table IV shows a x 2-value of 23.92 for the model established in the present
study. Next, the model has a NFI of 0.89, CFI of 0.92, IFI of 0.92, GFI of 0.98, and AGFI
of 0.95, all of which are near to or greater than 0.9. And third, SRMR is 0.064, thus is
below 0.08 and meets the suggested evaluation criteria. On the basis of these
indicators, the CFA model used in the present study shows an acceptable fit with the

Aspect Parameter variable Parameter estimate Standard solution SE t-value

Quality d1 0.90 * 0.90 0.10 8.68
Price d2 0.75 * 0.95 0.10 7.61
Delivery performance d3 0.87 * 0.70 0.12 7.03
Service d4 0.67 * 0.51 0.15 4.35
Flexibility d3 0.93 * 0.56 0.17 5.58

Notes: *Significance level of 0.05; the t-value shows a significant difference

Table II.
Estimation for error
variance of observed
variables
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observed data, i.e. this theoretical model can be used to interpret observed data. The
concept measurement model is shown in Figure 1.

In summary, the assessment criteria presented above show that the CFA model used
in the present study has acceptable internal quality, and is appropriate for use in
interpreting observed data. The testing model established in the present study is shown
in Figure 1. Using the CFA model, we find acceptable values for all assessment criteria.
This means that there is an acceptable fit between the model established by the present
study for analysis of supplier selection criteria (including quality, price, delivery
performance, service, and flexibility) and the observed data, i.e. this testing model is an
evaluation construct that contains these five evaluation measurement criteria.

4.2 Using multidiscriminate analysis to establish a model
First, we use proportionate stratified random sampling on 217 items of sample data to
extract 197 items of model training data and 20 items of model testing data (approx.
10:1). This is done because of a small number of samples. That is why we decided to
use a 10:1 ratio in establishing the model. Information on the training samples and
testing samples are shown in Table V.

After that, we use the Likert scale to plug the sample data into the MDA model to
carry out testing classification accuracy. Two normality assumptions (with identical

Aspect Parameter variable Parameter estimate Standard solution SE t-value

Quality lX1 0.32 * 0.32 0.06 5.83
Price lX2 0.19 * 0.21 0.05 3.67
Delivery performance lX3 0.55 * 0.55 0.06 9.56
Service lX4 0.80 * 0.70 0.08 10.62
Flexibility lX5 0.66 * 0.66 0.08 10.59

Notes: *Significance level of 0.05; the t-value shows a significant difference

Table III.
Estimation for

measurement model
parameters

Figure 1.
Conceptual measurement

model of supplier
performance

Supplier performance

Quality

Price

Delivery performance

Service

Flexibility

x 2 DF NFI CFI IFI GFI AGFI SRMR

23.92 5 0.89 0.92 0.92 0.98 0.95 0.064

Table IV.
Testing of overall

model fit
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covariance values and different covariance values) are used to check their differences.
The test statistics for the analysis results are shown in Tables VI and VII.

As shown in Tables VI and VII at a reliability level of 0.01 all the input variables
reach the level of significance, which means that all the influencing factors tested in the
present study using the SEM model have a significant impact upon the MDA model
classification results. We, therefore, proceed to plug the five input variables into the
classification model and establish an MDA classification model. It can be seen in the
relevant test statistics of Table VIII that MDA classification has good significance,
which proves that this model should be very effective and reliable as a means of
classifying supplier performance.

The next step is CANDISC. Tables VIII-X show the statistics yielded through
CANDISC. These statistics are screened to select significant canonical discriminant
functions, and canonical scores are plugged into discriminant functions to analyze
classifications. We then extract two canonical discriminatory functions to represent the
effect of all independent variables upon supplier performance.

Sample class Class A Class B Class C Total

Training samples 76 85 36 197
Testing samples 8 9 3 20
Total samples 84 94 39 217

Table V.
Statistical table of sample
data class descriptions

Variable Label Total SD R 2 R 2/(1 2 R 2) F-value Pr . F

X1 Quality 1.0030 0.2579 0.3475 33.71 ,0.0001
X2 Price 0.8710 0.0538 0.0569 5.52 0.0047
X3 Delivery performance 1.1187 0.2082 0.2630 25.51 ,0.0001
X4 Service 1.1328 0.1695 0.2041 19.80 ,0.0001
X5 Flexibility 1.2749 0.1117 0.1257 12.20 ,0.0001

Table VI.
Test statistics for MDA
variables

Statistic Value F-value Num DF Den DF Pr . F

Wilks’ lambda 0.54875923 13.30 10 380 ,0.0001
Pillai’s trace 0.46393568 11.54 10 382 ,0.0001
Hotelling-Lawley trace 0.79915897 15.13 10 282.26 ,0.0001
Roy’s greatest root 0.76907904 29.38 5 191 ,0.0001

Table VII.
MDA test statistics

No.
canonical

Canonical
correlation

Adjusted canonical
correlation

Approximate
SE

Squared canonical
correlation

1 0.659344 0.649181 0.040376 0.434734
2 0.170885 0.129010 0.069343 0.029202

Table VIII.
Canonical discriminant
function coefficients
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Canonical discriminant function correlations are shown in Table VIII and can be used
to judge their impact upon the classification model. Table IX shows canonical
discriminant function eigenvalues and explanatory variances. Table X tests whether
canonical discriminant functions are statistically significant. The first canonical
discriminant function has good statistical significance and therefore can appropriately
be plugged into the MDA model and used as the basis for analyzing work performance
classification. Accordingly, forward selection is used to plug canonical discriminatory
functions one at a time into the MDA model. Table XI shows the impact of individual
independent variables within the canonical functions. The coefficients can be used to
evaluate the degree of impact of those variables within the canonical functions upon
classification results.

The classification accuracies are shown in Table XII. After the Likert scale is
converted into the fuzzy scale using the analytical steps described above, we again
carry out the same analytical steps and discover that there is no significant difference
in the resulting MDA model test statistics or canonical discriminatory function test
statistics. In both cases, there is a high degree of significance. The post-conversion
fuzzy scale is plugged into the MDA model, analytical comparisons are performed, and
we observe to see whether there is any significant variance between the resulting
classification effectiveness and that obtained with the model established using the
Likert scale.

Table XII shows that the classification accuracy of the fuzzy scale is slightly better
than that of the Likert scale, but the difference is not significant. And using canonical
discriminant functions as a tool for screening variables does not effectively raise its
classification effectiveness. The reason is that all of the effect variables are significant
variables, therefore carrying out variable reduction actually reduces the classification

No. canonical Eigenvalue Difference Proportion Cumulative

1 0.7691 0.7390 0.9624 0.9624
2 0.0301 – 0.0376 1.0000

Table IX.
Canonical discriminant

function eigenvalues and
explanatory variances

No. canonical Likelihood ratio Approximate F-value Num DF Den DF Pr . F

1 0.54875923 13.30 10 380 ,0.0001
2 0.97079845 1.44 4 191 0.2235

Table X.
Canonical discriminant
function test statistics

Variable Canonical coefficient 1 Canonical coefficient 2

X1 0.6750590453 0.0439559138
X2 0.3237840613 0.4991686009
X3 0.3611516991 20.6449027355
X4 0.4242175224 20.1094601341
X5 0.1009241176 0.7092749976

Table XI.
Pooled within-class

standardized canonical
coefficients
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effectiveness of the model. Accordingly, using the fuzzy scale to directly establish a
model yields the best classification model. Classification accuracy is greater than 70
percent regardless whether the normality assumption calls for identical covariance
values or different covariance values, but training accuracy is slightly higher with
different covariance values than with identical covariance values. For this reason, this
datum is adopted as the optimum result for the model.

4.3 Using an ANN to establish a model
Researchers have argued that an ANN model cannot judge whether input variables are
representative, or if they have any effect. Our study uses the CFA of SEM to prove that
the five input variables selected in the present study (Table II) are all measurement
variables that can be used to measure supplier performance classifications. In addition,
our study uses a MDA model to prove that these five variables all have good
significance in the evaluation and classification of suppliers (Table VI).

Using rigorous statistical methods to assist in confirming the input data of a BPN
model should enable the BPN model to yield better output and effectiveness, and by
taking advantage of its excellent forecasting and classification capability, we are
confident that a better result can be obtained in the establishment of a supplier
evaluation model.

We then use PCNeuron 4.0 software to perform analytical comparisons against a
single set of sample data. First, the present study divides 217 items of data into 197
items of model construction data and 20 items of model validation data. The content of
the data is all identical to the content used by MDA. The 197 items of model
construction data are further divided into 177 items of training data and 20 items of
testing data. These are used for observing whether the established model is effective,
and parameters are adjusted to optimize the model’s effectiveness. After the model has
been established, we then use the 20 items of validation data to test the model’s actual
effectiveness and observe how accurately it classifies. Finally, all the most effective
ones in the model are selected as the best supplier evaluation model.

We take a Likert scale and a fuzzy scale together with canonical correlation function
value conversions (CAN1, CAN1 þ CAN2) and plug them into a BPN model to
establish a model. The initial model settings are adjusted to the most commonly used
values, i.e. the number of learning cycles is set at 300, initial learning rate is set at 1,

Model with identical covariance
values

Model with different covariance
values

Input variable types
Training accuracy

(%)
Testing accuracy

(%)
Training accuracy

(%)
Testing accuracy

(%)

Likert 60.9137 60 61.4213 70
Likert CAN1 58.3756 60 58.8832 60
Likert CAN1 þ CAN2 60.9137 60 61.9289 60
fuzzya 61.4213 70 62.4365 b 70 b

fuzzy CAN1 58.8832 60 58.8832 60
fuzzy CAN1 þ CAN2 61.4213 65 62.4365 60

Notes: aThe best variable for that analytical model; ba relatively good classification result; where test
results are identical, the training accuracy is used as reference

Table XII.
Likert and fuzzy scales
MDA classifications
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and initial momentum factor is set at 0.5. Next, the present study first tests the model’s
effectiveness without adding any hidden layers; if effectiveness is good it means that
there is a significant linear relationship between the data in question and it is therefore
unnecessary to use an ANN model to establish a model because a regular statistical
model will yield better results. However, testing shows that with zero hidden layers
there is still room for improvement in classification effectiveness, therefore we added
one hidden layer and tested the output results with different numbers of neurons.

Six different measurement scales (Likert, Likert CAN1, Likert CAN1 þ CAN2,
fuzzy, fuzzy CAN1, fuzzy CAN1 þ CAN2) are plugged into a BPN model, and this
yields four parameters: optimum number of neurons, optimum number of learning
cycles, initial learning rate, and initial momentum factor. We take the optimum
parameters for those scales, plug them into the validation model, and observe the
classification effectiveness of the validation model. The test results thus obtained are
shown in Tables XIII-XXIV.

After multiple tests, the output results for each scale are as set out in Table XXV.
The table shows that using Likert or fuzzy input variables yields classification
accuracy of 75 and 85 percent, respectively, both of which are better than the 70 percent
achieved with MDA. The accuracy achieved with the fuzzy scale is especially
satisfactory. Table XXVI shows detailed information on optimum model parameters

Hidden layers No. of neurons Training error rate Testing error rate Training RMS Testing RMS

0 0 0.35025 0.55000 0.24379 0.24832
1 1 0.39086 0.50000 0.24701 0.24784
1 2 0.35025 0.50000 0.23209 0.26170
1 3 0.32487 0.40000 0.22266 0.26262
1 a 4 a 0.31472 0.40000 0.22289 0.26170
1 5 0.31980 0.45000 0.22161 0.27663
1 6 0.31472 0.55000 0.22204 0.26796
1 7 0.33503 0.50000 0.22517 0.26718
1 8 0.31980 0.50000 0.22333 0.26621
1 9 0.31980 0.40000 0.22052 0.27994
1 10 0.30964 0.50000 0.21986 0.28485

Notes: aThe optimum values; data in italics represent the optimum parameters

Table XIII.
Seeking the optimum
number of neurons –

Likert scale BPN model

Item Value

Input variables 5
Output variables 3
Hidden layers 1
Neurons 4
Learning cycles 300
Initial learning rate 1
Initial momentum factor 0.5
Validation accuracy (%) 75
Validation RMS 0.21702

Table XIV.
Validation results for

Likert scale BPN model
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when the fuzzy scale is used. Table XXVII shows judgment probability output values
for the BPN supplier evaluation model. Decision makers can use the BPN supplier
evaluation model output probability values to judge which supplier category a given
supplier belongs under.

Hidden layers No. of neurons Training error rate Testing error rate Training RMS Testing RMS

0 0 0.40678 1.00000 0.24234 0.35033
1 1 0.40678 1.00000 0.24791 0.34968
1 a 2 a 0.39548 0.75000 0.24295 0.30892
1 3 0.40113 0.80000 0.24425 0.31237
1 4 0.40113 0.90000 0.24451 0.31576
1 5 0.40113 0.75000 0.24391 0.30930
1 6 0.40678 0.75000 0.24516 0.31103
1 7 0.40113 0.80000 0.24507 0.31239
1 8 0.41808 1.00000 0.25224 0.33956
1 9 0.40113 0.85000 0.24748 0.31352
1 10 0.40113 1.00000 0.24963 0.32042

Notes: aThe optimum values; data in italics represent the optimum parameters

Table XV.
Seeking the optimum
number of neurons –
Likert CAN1 scale BPN
model

Item Value

Input variables 1
Output variables 3
Hidden layers 1
Neurons 2
Learning cycles 300
Initial learning rate 1
Initial momentum factor 0.5
Validation accuracy (%) 55
Validation RMS 0.25554

Table XVI.
Validation results
for Likert CAN1 scale
BPN model

Hidden layers No. of neurons Training error rate Testing error rate Training RMS Testing RMS

0 0 0.37853 1.00000 0.23852 0.35600
1 1 0.40678 1.00000 0.24603 0.35394
1 2 0.38418 0.85000 0.23910 0.32757
1 3 0.37288 0.85000 0.24063 0.32499
1 4 0.38418 0.85000 0.24548 0.31838
1 5 0.37288 0.85000 0.24178 0.32657
1 6 0.37853 0.85000 0.24178 0.32737
1 a 7 a 0.38983 0.75000 0.24945 0.31210
1 8 0.37853 0.85000 0.24444 0.32652
1 9 0.38983 0.90000 0.24916 0.32752
1 10 0.39548 0.85000 0.24737 0.32215

Notes: aThe optimum values; data in italics represent the optimum parameters

Table XVII.
Seeking the optimum
number of neurons –
Likert CAN1 þ CAN2
scale BPN model
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Supplier categories are a type of nominal scale, therefore multi-neuronal coding is
used to carry out supplier classification coding, where (0 0 1) represents Class A (0 1 0)
represents Class B, and (1 0 0) represents Class C suppliers. For this reason, the BPN
model carries three different types of output variables.

Item Value

Input variables 2
Output variables 3
Hidden layers 1
Neurons 7
Learning cycles 3,000
Initial learning rate 1
Initial momentum factor 0.2
Validation accuracy (%) 55
Validation RMS 0.24838

Table XVIII.
Validation results for

Likert CAN1 þ CAN2
scale BPN model

Hidden layers No. of neurons Training error rate Testing error rate Training RMS Testing RMS

0 0 0.35533 0.55000 0.24417 0.24742
1 1 0.39086 0.50000 0.24755 0.24978
1 2 0.35025 0.50000 0.23220 0.26422
1 3 0.33503 0.55000 0.22520 0.27390
1 4 0.32487 0.45000 0.22246 0.26234
1 5 0.33503 0.40000 0.22302 0.26826
1 6 0.30964 0.55000 0.22050 0.27469
1 7 0.35533 0.55000 0.22614 0.27412
1 a 8 a 0.31980 0.45000 0.22356 0.26236
1 9 0.30964 0.50000 0.22009 0.378226
1 10 0.33503 0.45000 0.22316 0.26820

Notes: aThe optimum values; data in italics represent the optimum parameters

Table XIX.
Seeking the optimum
number of neurons –

fuzzy scale BPN model

Item Value

Input variables 5
Output variables 3
Hidden layers 1
Neurons 8
Learning cycles 5,000
Initial learning rate 0.5
Initial momentum factor 0.2
Validation accuracy (%) 85
Validation RMS 0.18799

Table XX.
Validation results for

fuzzy scale BPN model
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5. Conclusions
The optimum parameters for the BPN supplier evaluation model of Table XXVII
shows that misjudgments are made for data items 1, 13, and 19. However, the Class C
and Class B probabilities for datum 13 are very close (0.528 for Class C and 0.465 for

Hidden layers No. of neurons Training error rate Testing error rate Training RMS Testing RMS

0 0 0.40678 1.00000 0.24295 0.34933
1 1 0.40678 1.00000 0.24872 0.34873
1 2 0.39548 0.90000 0.24357 0.30913
1 3 0.39548 0.90000 0.24485 0.31670
1 4 0.40678 1.00000 0.24753 0.33039
1 5 0.40113 0.90000 0.24580 0.31593
1 a 6 a 0.40113 0.85000 0.24595 0.31395
1 7 0.40113 0.90000 0.24640 0.31481
1 8 0.39548 0.95000 0.24765 0.31666
1 9 0.41808 1.00000 0.25151 0.32707
1 10 0.40678 0.90000 0.25006 0.31351

Notes: aThe optimum values; data in italics represent the optimum parameters

Table XXI.
Seeking the optimum
number of neurons –
fuzzy CAN1 scale BPN
model

Item Value

Input variables 1
Output variables 3
Hidden layers 1
Neurons 6
Learning cycles 500
Initial learning rate 1
Initial momentum factor 0.6
Validation accuracy (%) 65
Validation RMS 0.24190

Table XXII.
Validation results
for fuzzy CAN1 scale
BPN model

Hidden layers No. of neurons Training error rate Testing error rate Training RMS Testing RMS

0 0 0.38418 1.00000 0.23900 0.35559
1 1 0.40678 1.00000 0.24664 0.35365
1 a 2 a 0.37853 0.80000 0.23966 0.31946
1 3 0.37853 0.85000 0.23959 0.32646
1 4 0.37288 0.80000 0.24215 0.32064
1 5 0.37853 0.85000 0.24200 0.32800
1 6 0.37853 0.85000 0.24198 0.32219
1 7 0.38418 0.85000 0.24153 0.32714
1 8 0.38418 0.85000 0.24337 0.32485
1 9 0.39548 0.95000 0.25225 0.32729
1 10 0.39548 0.85000 0.24734 0.32558

Notes: aThe optimum values; data in italics represent the optimum parameters

Table XXIII.
Seeking the optimum
number of neurons –
fuzzy CAN1 þ CAN2
scale BPN model
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Class B). If decision makers or auditors were to take the probabilities as points of
reference to support the decision-making process, he or she could go an extra step by
paying an on-site visit to the supplier represented by datum 13 and do a more careful
evaluation, thereby further improving overall judgment accuracy. In Table XXVII,

Item Value

Input variables 2
Output variables 3
Hidden layers 1
Neurons 2
Learning cycles 300
Initial learning rate 1
Initial momentum factor 0.5
Validation accuracy (%) 65
Validation RMS 0.25180

Table XXIV.
Validation results for
fuzzy CAN1 þ CAN2

scale BPN model

Setting Value

1. Input processing elements 5
2. 1st hidden layer processing elements 8
3. 2nd hidden layer processing elements 0
4. Output processing elements 3
5. Training samples 197
6. Testing samples 20
7. Learning cycles 5,000
8. Testing cycles 10
9. Use batch learning (yes ¼ 1, no ¼ 0) 0

10. Use weighted values for learned network links (yes ¼ 1, no ¼ 0) 0
11. Weighting range (0.1 , 0.5) 0.3
12. Random seed (0.1 , 0.9) 0.456
13. Initial learning rate (0.1 , 10.0) 0.5
14. Learning rate reduction factor (0.9 , 1.0) 0.95
15. Minimum learning rate (0.01 , 1.0) 0.1
16. Initial momentum factor (0.0 , 0.8) 0.2
17. Momentum factor reduction factor (0.9 , 1.0) 0.95
18. Minimum momentum factor (0.0 , 0.1) 0.1

Table XXVI.
Optimum parameters for
BPN supplier evaluation

model – fuzzy scale

Type of input variable Training accuracy (%) Testing accuracy (%) Validation accuracy (%)

Likert 68.528 60 75
Likert CAN1 60.452 25 55
Likert CAN1 þ CAN2 66.102 30 55
fuzzya 83.756 b 55 85 b

fuzzy CAN1 59.322 25 65
fuzzy CAN1 þ CAN2 62.147 20 65

Notes: aThe best variable for that analytical model; ba relatively good classification result; where
validation results are identical, the training accuracy is used as reference

Table XXV.
Comparison of BPN
classification results
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a value of 1 in column 1 indicates a Class C supplier, a value of 1 in column 2 indicates a
Class B supplier, and a value of 1 in column 3 indicates a Class A supplier. Columns 4-6
represent the probability values of the BPN supplier evaluation model outputs for,
Classes C, B, and A suppliers, respectively.

5.1 Theoretical implications
Our study uses the BPN model of ANNs together with CANDISC to perform variable
reduction testing and fuzzy scale conversion, and compares it against traditional MDA
classification prediction models. Before carrying out model testing, the present study
uses SEM to test sample data to prove that the comparison samples and measurement
criteria aspects being studied have a statistically good fit and significance. This part of
the study is an innovation that has not been attempted in previous research, and
deserves to be additionally developed and explored in further studies relating to the
science of decision making. One reason for this is that when a novel model is compared
against effectiveness of a conventional statistical method rigorous statistical methods
are not used to test the chosen samples or criteria aspects in order to determine whether
the sample data being studied and compared. When the samples are analyzed under
inappropriate conditions and the data are analyzed without being appropriately
processed, there is naturally room for doubt regarding the results and findings of the
research.

A new paradigm for the science of decision making that the present study attempts to
put forward not only includes a combination of several different effective methods of
research and analysis, which makes its decision-making model far more effective than
traditional methods of statistical analysis, but furthermore, is more rigorous than the
previous literature in data preprocessing and validation, and attaches greater

Case
Actual
Class C

Actual
Class B

Actual
Class A

Predict
Class C

Predict
Class B

Predict
Class A

1 0 0 1 0.556 0.399 0.152
2 0 0 1 0.278 0.429 0.482
3 0 0 1 0.272 0.205 0.748
4 0 0 1 0.139 0.336 0.745
5 0 0 1 0.222 0.358 0.617
6 0 0 1 0.184 0.372 0.650
7 0 0 1 0.149 0.236 0.827
8 0 0 1 0.260 0.223 0.753
9 0 1 0 0.239 0.679 0.261

10 0 1 0 0.232 0.959 0.022
11 0 1 0 0.219 0.736 0.202
12 0 1 0 0.300 0.605 0.265
13 0 1 0 0.528 0.465 0.169
14 0 1 0 0.202 0.518 0.461
15 0 1 0 0.288 0.849 0.081
16 0 1 0 0.405 0.595 0.152
17 0 1 0 0.365 0.600 0.218
18 1 0 0 0.659 0.242 0.220
19 1 0 0 0.262 0.310 0.620
20 1 0 0 0.670 0.147 0.340

Table XXVII.
Estimation of probability
for BPN supplier
evaluation model – fuzzy
scale
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importance to these steps, in hopes that the research results obtained will make a
greater contribution and be more reliable. In addition, with respect to its research
conclusions, although the CANDISC variable reduction method employed by the present
study does not actually improve the model’s classification accuracy, nevertheless, future
studies could still compare the effectiveness of CANDISC and other variable reduction
methods, and could also make use of it in other classification models, observing to
see whether it can help improve the models’ classification accuracy.

With respect to scale conversion, the results of our research indicate that analysis
with a fuzzy scale yields higher classification accuracy than with a Likert scale,
regardless whether the model is BPN or MDA. It may be that this conclusion is not
universally applicable, but future researchers would nevertheless be well advised to
consider using a fuzzy scale for measurement when establishing a decision-making
model (Munoz et al., 2008). We also argue that using scale conversion does indeed offer
the possibility of an improvement in a model’s classification effectiveness.

Finally, the results of our study indicate that after samples are put through the steps
of SEM and criteria validation, the use of a BPN classification model together with
fuzzy scale conversion can yield better classification accuracy than an MDA
classification model, which is a traditional statistical method. The new method thus
represents a new paradigm for supplier selection that we should try out and pay
attention to.

5.2 Managerial implications
As a practical matter, enterprises are faced with a large number of supplier candidates,
most of whom they have never dealt with before and are not familiar with. This usually
yields many unforeseen risks and detracts from the competitive benefits that otherwise
derive from proper utilization of a supply chain. For this reason, enterprises and
auditors must make a serious effort to use reliable evaluation criteria for the purpose of
effectively selecting appropriate suppliers. However, just relying on the subjective
judgments of purchasing personnel does not necessarily meet the need for objective
and impartial decision making, and may allow for personal biases, inexperience, and
other such factors to adversely affect decisions. There is thus a need to use a set of
scientific models to aid in the process of decision-making analysis.

The present study provides a new method of analyzing decision-making models,
one that can enable an enterprise and auditor that has amassed a certain quantity of
information on suppliers to establish a scientific model for decision-making analysis,
and can help enterprises identify appropriate suppliers. The model’s output results can
also be used as reference in evaluating the appropriateness of suppliers, thus enabling
purchasing personnel and auditor to employ a scientific means of selecting suppliers,
which will improve the effectiveness of decision making.

An enterprise must keep in mind the scale of its own operations and the diversity of
its sources of suppliers when deciding whether or not to establish this scientific
decision-making and internal control model. If supplier candidates that need to be
analyzed are relatively few in number and easily visited in person, then establishing
this type of decision-making and internal control model is not of great use, and the cost
would far outstrip the benefits. However, if the supplier group is so large and highly
heterodox that there is not enough manpower to carefully review each and every
supplier and prepare a list of the most promising candidates, then it is better to use the
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decision-making analysis and internal control model recommended in the present
study to assist in the decision-making and internal control process, as it can enable the
user to effectively and quickly identify an appropriate supplier list. Once such a list has
been prepared, individuals can make on-site visits or use their judgment to make the
final supplier selections. In this manner, it is possible for an enterprise to reap the
proverbial “twice the benefit for half the effort” in its SCM thanks to the adoption of an
effective supplier selection process.
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