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HEDGING LONGEVITY RISK WHEN INTEREST RATES
ARE UNCERTAIN

Jeffrey T. Tsai,* Larry Y. Tzeng,† and Jennifer L. Wang‡

ABSTRACT

This paper proposes an asset liability management strategy to hedge the aggregate risk of annuity
providers under the assumption that both the interest rate and mortality rate are stochastic. We
assume that annuity providers can invest in longevity bonds, long-term coupon bonds, and short-
term zero-coupon bonds to immunize themselves from the risks of the annuity for the equity
holders subject to a required profit. We demonstrate that the optimal allocation strategy can lead
to the lowest risk under different yield curves and mortality rate assumptions. The longevity bond
can also be regarded as an effective hedging vehicle that significantly reduces the aggregate risk
of the annuity providers.

1. INTRODUCTION

As the population ages and the deterioration of pension funds continue, hedging longevity risk is
becoming increasingly important worldwide. Longevity risk, defined by Cairns et al. (2006b), is the
uncertainty in the long-term trend in mortality rates. Specifically, it is the risk that the realized mor-
tality rate is lower than the prediction in the long run. Many studies have suggested that an unprec-
edented improvement in population longevity has occurred globally over the course of the twentieth
century (Stallard 2006). Longevity risk represents a critical threat to pension funds and private insurers
because it increases the payout period and the liability costs of providing annuities. Hedging longevity
risk has received serious attention because mispricing annuity products or misallocating investments
could cause substantial deficits in financial institutions.

Longevity risk has motivated many studies in the last decade. The literature has contributed by
proposing either better models to predict mortality rates or better strategies to hedge the longevity
risk. Recently Renshaw and Haberman (2003) and Cairns et al. (2006a, b) have adapted discrete-time
models to capture the randomness of mortality rates. At the same time, other authors (see, for example,
Dahl 2004; Schrager 2006; Ballotta, et al. 2006; Hainaut and Devolder 2008) have proposed modeling
mortality rates in a continuous-time framework. In addition, many hedging strategies have also been
discussed. To hedge longevity risk, Blake et al. (2006a, b), Lin and Cox (2005), and Cox et al. (2006)
have proposed using mortality securitization, while Blake and Burrows (2001), Denuit et al. (2007),
and Dowd et al. (2006) have suggested using survivor bonds and survivor swaps. Cox and Lin (2007),
Wang et al. (2010), and Tsai et al. (2010) analyzed natural hedging strategies. Following this line of
research, our paper proposes a risk management approach to control the longevity risk of annuity
providers. To the best of our knowledge, although the literature has provided many ingenious strategies
to hedge longevity risk, most papers have analyzed the effects of their strategies under a common
assumption that the insurance company faces longevity risk but has not considered the interest rate
risk at the same time. Ignoring interest rate risk may result in underestimating the aggregate risk and
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misleading the hedging strategy. However, they do not consider risk management strategies providing
annuities. Jalen and Mamon (2009) provide a model to price mortality-dependent contingent claims
with stochastic mortality and interest rates.

In this paper we propose taking the analysis one step forward to develop a risk management approach
that can deal with interest rate risk and longevity risk simultaneously. We assume that annuity providers
can invest in longevity bonds, long-term coupon bonds, and short-term bonds to minimize the risks of
annuities. Under the required rate of return, we derive an optimal solution that can be applied to
different mortality and interest rate processes. This strategy leads to an optimal hedging strategy.

This article contributes to the literature in three ways. First, because our integrated approach deals
with interest rate risk and longevity risk simultaneously, we propose a more realistic hedging strategy
for the annuity providers. Second, we find that the optimal allocations are quite sensitive to the pa-
rameters in the stochastic interest rate process. On the other hand, the optimal allocations do not
change much under different levels of parallel shifts in the interest rate. Third, we demonstrate that
adding longevity bonds to the portfolio substantially improves the hedging efficiency. Notice that we
assume that the change of mortality rate used in the annuity price is perfectly positively correlated to
that used in the longevity bond. In fact, it may not be the case in reality. This means that there exists
some basis risk when we use the longevity bond to hedge the annuity. The cost of the basis risk could
greatly reduce the portfolio weight on the longevity bond.

The remainder of the paper is organized as follows. In Section 2 we derive the optimal solution for
the annuity providers and review the stochastic interest and mortality rate model. In Section 3 we
describe the data and design the assets and liabilities. The parameters for the stochastic interest and
mortality risk are also specified. In Section 4 we present the numerical results and their analyses.
Concluding remarks and a discussion are provided in the last section.

2. THE MODEL

We first introduce notation and the hedging scheme. We then offer a brief description of the CIR
interest rate model of Cox et al. (1985), as well as of the two-factor stochastic mortality model of
Cairns et al. (2006b).

2.1 The Hedging Approach
The hedging strategy is based on an asset-liability-management framework. We propose a single-period
static hedging strategy, and the length of the hedge period is one year. We assume the annuity provider
collects an A dollar annuity premium and invests the money in the long-term coupon bonds B, longevity
bonds Bl, and short-term zero coupon bonds B f defined as follows:

• B(rt): The present value of one default-free coupon bond depending on the interest rate rt for t � 0,
1, . . . , TB, where TB is the time to maturity of the coupon bond. In Section 3, the coupon bond is
assumed to be issued at a 5% annual coupon rate, for TB � 30 years, with a face value $1.

• Bl(rt, mt,x): The present value of one longevity bond, depending on rt and mortality rate mt,x, for
t � 0, 1, . . . , Tl, where Tl is the time to maturity of the longevity bond; mt,x is the population
mortality rate1 of age x at time t determining the proportion of the longevity bond coupons that will
be paid. The central death rate mt,x for individuals aged x in year t changes with time. In Section 3
the longevity bond we refer to is the EIB/BNP longevity bond that had a planned issue in November
2004 with a time to maturity of 25 years. The coupon payments were linked to a survivor index based

1 The publicly available longevity bond structures are based on population mortality, not annuitant mortality. Thus, hedging mortality risks on
annuities by longevity bonds could involve basis risk. It is conceivable that a large pension plan could get an investment bank or reinsurer to
issue a longevity bond written on the pension plan’s portfolio of annuities, but it would be an additional expense. We thank the referee who
pointed out this issue.
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HEDGING LONGEVITY RISK WHEN INTEREST RATES ARE UNCERTAIN 203

on the realized mortality rate of males form England and Wales aged 65 in 2003. The EIB/BNP
longevity bond was not ultimately issued.

• B f(rt): The present value of a risk-free zero-coupon bond depends on the interest rate rt for t � 0,
1, . . . , T f, where T f is the time to maturity of the zero-coupon bond. We assume the zero-coupon
bond is a T f � 1 year pure discount bond with face value $1 in Section 3.

• A(rt, The total present value of the annuity depends on rt and annuitant mortality rates forA Am ): mt,x t,x

t � 0, 1, . . . , TA, where TA, is the coverage period of the annuity. We assume that the annuitant
mortality rate has some correlation with the population mortality rate at the same age x, that is,
� , mt,x) � 0. We do not require that they are perfectly positive correlated to each other. Thus,A(mt,x

there exists some basis risk at the same age x if we use the longevity bonds to hedge the longevity
risk of annuities. In Section 3 the annuity is whole life, issued for men aged 65, and pays the annuitant
$1 at the end of each year. We assume the annuity is single premium immediate annuity. There are
no other guarantees or benefits in the annuity. We assume there are no transaction costs for buying
or selling these bonds and annuities.

The initial equity of the annuity provider is the difference between assets (B, Bl, B f) and liabilities
(A). Thus, the equity denoted as E also depends on the interest rate rt and mortality rate mt,x and can
be expressed as

l f AE(r , m ) � x B(r ) � x B (r , m ) � x B (r ) � A(r , m ), (1)t 0,x 1 t 2 t 0,x 3 t t 0,x

where x1, x2, and x3 are the amounts invested in the long-term coupon bonds, longevity bonds, and
zero-coupon bonds, respectively; x1B(rt), x2Bl(rt, mt,x), and x3B f(rt) are total investment values of the
long-term coupon bonds, longevity bonds, and zero-coupon bonds, respectively.

To incorporate the risk of unexpected changes of current interest and mortality rate at the same
time, we apply a two-variable Taylor expansion of E with respect to current interest rate r0 and current
mortality rate m0,x (for simplicity in notation, we later use m0 to represent m0,x):

�E � E(r � �r , m � �m ) � E(r , m )0 0 0,x 0 0 0

1 2 1 2– –� E �r � E �m � E �r � E �m � E �r �m , (2)r 0 m ,x 0 2 r r 0 2 m m 0 r m 0 00 0 0 0 0 0 0 0

where �E is the change of the equity corresponding to �r0 and �m0, �r0, and �m0 represent the
unexpected changes of the current mortality and interest rates, and are the partial derivativesE Er m0 0

of the equity with respect to r0 and m0, are the second partial derivatives, and is theE , E Er r m m r m0 0 0 0 0 0

cross-derivative with respect to r0 and m0. The higher-order terms are dropped in equation (2). We
assume the unexpected change of annuitant mortality rate is positively correlated to �m0, and inA�m0

the form � �0�m0, where �0 is the correlation coefficient between the unexpected change ofA�m0

annuitant and population mortality rate. Assume 0 � �0 � 1, which means that they are not perfectly
positive correlated to each other and there exists some basis risk at the same age x. Substituting
equation (1) into equation (2), we obtain

l f l�E � (x B � x B � x B � A )�r � (x B � A )�m1 r 2 r 3 r r 0 2 m m 00 0 0 0 0 0

l 1 l f 2–� (x B � A )�r �m � (x B � x B � x B � A )�r2 r m r m 0 0 2 1 r r 2 r r 3 r r r r 00 0 0 0 0 0 0 0 0 0 0 0

1 l 2–� (x B � A )�m , (3)2 2 m m m m 00 0 0 0

where and are the partial derivatives for the assets and liabilities with respectl l fB , B , B , B , A , Ar r m r r m0 0 0 0 0 0

to r0 or m0. Similarly, and are second partial derivatives. andl f l lB , B , B , A , B , A Br r r r r r r r m m m m r m0 0 0 0 0 0 0 0 0 0 0 0 0 0

are the cross-derivatives of r0 and m0.Ar m0 0

If the future interest and mortality rate are correctly forecasted in the model, the unexpected change
�(�r0) and �(�m0) will be zero.2 We also assume that �r0 and �m0 are independent to each other. The

2 We assume CIR and the Cairns et al. model has considered the trends of interest and mortality rate (and age effect) in the future. Based on
their projection, the unexpected change are unbiased in mean, i.e., �(�r0) and �(�m0) are zero.
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independence assumption provides a great simplification, especially on cross-terms, E(�r0�m0) � 0,
� 0, and � 3.3 Then the expected value of �E becomes2 2E(�r �m ) E(�r �m )0 0 0 0

1 2 l 2 l 2 f 2 2 2–�(�E) � [B � � x � (B � � B � ) � x � B � � x � A � � A � ],2 r r r 1 r r r m m m 2 r r r 3 r r r m m m0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

where �(�E) denotes the expected gains (or losses) of the equity with respect to the change of r0 and
m0. and are rewritten as and The variance of �E is2 2 2 2�(�r ) �(�m ) � � .0 0 r m0 0

2 2 2�(�E) � � x � � x � � x � � x x � � x x � � x x � � x � � x � � x � � , (4)1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 7 1 8 2 9 3 10

where �1, �2, . . . , �10 are coefficients of the partials derivatives and moments 2 3 3(� , �(�r ), �(�m ))r 0 00

of r0 and m0. They are all independent of x1, x2, and x3, and the full expressions are provided in the
Appendix.

Now we can choose the optimal investment variables x1, x2, and x3 to minimize �(�E) subject to
the profit constraint:

Min �(�E), (5)
x ,x ,x1 2 3

B l f As.t. x I � x I � x I � AI � �(�E) � R E, (6)1 2 3 E

where IB, I l, and I f are interest payments from the long-term coupon bonds, longevity bonds, and zero-
coupon bonds at the end of the hedge period; the annuity payment is IA if the annuitant survives at
the end of the period. The total expected income earned from these contracts is x1IB � x2I l � x3I f �
AIA, and it is independent of �r0 and �m0. The total expected change from the balance sheet is denoted
by �(�E) and depends on �r0 and �m0. Thus the left-hand side of equation (6) can be regarded as the
total profit that consists of the expected changes from balance sheet and expected income earned from
the contracts. On the right-hand side of equation (6), RE is the required rate of return for the equi-
tyholders, and REE is the total required profits. In Section 3 we assume RE can be estimated by the
Sharp ratio method following Milevsky et al. (2006). They propose that the shareholders of an insurance
company request a risk premium for bearing systematic risk and will be compensated with the same
Sharpe ratio as other asset classes in the capital market. Thus, we minimize the variance of the equity
change, �(�E), subject to the total profit (the profit from balance-sheet change plus certain interest
earned from contracts) equaling the required profit. Then we solve for the optimal investment alloca-
tions, x1, x2, and x3.

The Lagrange multiplier method is used to solve this constrained maximization problem. The solution
to equation (6) is given by the following linear equations:

�X � �,

where

2� � �1 4 5 x1� 2� �4 2 6� � , X � x (7)2� � 2� � �5 6 3� � x2 B l 2 l 2 l f 2 f 3B � � 2I B � � B � � 2I B � � 2Ir r r r r r m m m r r r0 0 0 0 0 0 0 0 0 0 0 0

and

��7

��8� � . (8)
��9� �2 2 AA � � A � � 2I � 2R Er r r m m m E0 0 0 0 0 0

3 However, some studies identify that in the long run interest rates could be related to the size of population and mortality rates.
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HEDGING LONGEVITY RISK WHEN INTEREST RATES ARE UNCERTAIN 205

The solution of X in equation (7) is

�� �jx � , j � 1, 2, 3, (9)j �� �

where the determinant ��j � replaces the jth column of �� � whose components are the elements in �.
The solutions can be solved easily by widely available programming software.

2.2 The CIR Model
If the interest rate follows the stochastic process suggested by Cox et al. (1985), then the interest rate
path can be expressed as

dr � a(b � r ) dt � ��r dz, (10)t t t

where a, b, and � are constants and dz follows a standard Brownian motion. The drift rate of the
interest rate under above model is a(b � rt). The standard deviation of the interest rate is Cox��r .t
et al. (1985) solved equation (10) and showed that

f ��(t,T)rtB (r ) � �(t, T)e ,t t

where Bt is the price of a zero-coupon bond at time t and
22 2 2ab/�2 2 (a��a �2� )(T�t)/22�a � 2� e

�(t, T) � ,� �2 22 2 �a �2� (T�t) 2 2(�a � 2� � a)(e � 1) � 2�a � 2�
2 2�a �2� (T�t)2(e � 1)

�(t, T) � . (11)2 22 2 �a �2� (T�t) 2 2(�a � 2� � a)(e � 1 � 2�a � 2�

2.3 The Two-Factor Stochastic Mortality Model
We choose the two-factor mortality model (the CBD model) as the underlying mortality process. We
offer a brief description here; for a more detailed discussion, see Cairns et al. (2006b).

qt,x is the single-year mortality rate for age x insured from time t to t � 1. Cairns et al. (2006b)
assume the mortality process as

A (t�1)�A (t�1)�(x�t)1 2e
q � , (12)t,x A (t�1)�A (t�1)�(x�t)1 21 � e

where A1(t) and A2(t) can be regarded as age-general improvements in mortality over time and different
improvements for different age groups. They reflect the ‘‘trend effect’’ and ‘‘age effect.’’ The two
stochastic trends follow a random walk process with drift parameter 	 and diffusion parameter C:

A(t � 1) � A(t) � 	 � CZ(t � 1), (13)

where A(t � 1) � [A1(t � 1), A2(t � 1)]T, and 	 � [	1, 	2]T are 2 � 1 constant parameter vectors. C
is a 2 � 2 constant upper triangular. Their model can also include the parameter uncertainty of 	 and
C, invoking Bayesian methods and sampling from a noninformative prior distribution:

�1 �1 �1ˆV �D 	 Wishart(n � 1, n V ),
�1 �1	 �V, D 	 MVN(	, n V), (14)ˆ

where

D(t) � A(t) � A(t � 1),
n1

	 � D(t),
ˆ n t�1

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 1

9:
15

 2
4 

Fe
br

ua
ry

 2
01

4 



206 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 15, NUMBER 2

and
n1 TV̂ � (D(t) � 	)(D(t) � 	) .
 ˆ ˆn t�1

A(t) is generated from equation (13) with the parameters 	 and C from equation (14). Then we obtain
qt,x as equation (12) suggests. Cairns et al. (2006b) propose an approximation on the central death
rate mt,x for individuals aged x in year t with respect to qt,x:

qt,xm � .t,x 1–1 � q2 t,x

Convert the central death rate to the survival rates by St�1 � St(1 � mt,x).
Then Cairns et al. (2006b) apply the risk-neutral valuation approach to value the longevity bond

price by summing the present value of the coupons (i.e., survival rate) over 25 years. The initial price
of the longevity bond is

lT
l �(0,t)r Q(
)0B (r , m ) � �(0, t)e E [S �M ], (15)
0 0,x t 0

t�1

where r0 is the current spot rate used in the CIR model and value of survival rate under the information
set M0 with respect to the risk-neutral probability Q(
). The probability that a person age x at time 0
will survive to time t, according to the model of the population underlying the longevity bond, is defined
as

Q(
)p � E [S �M ].t x t 0

Then the longevity bond price at time 0 will be
lT

l �t �itB (r , m ) � e p , (16)
0 0,x t x
t�1

where it is the yield to maturity of the interest rate at time 0 to discount a payment at time t:

1
�(0,t)r0i � log(�(0, t)e ).t t

The values i1, i2, . . . give the term structure of interest rates at time 0, and we use them in calculating
prices at time 0. The bond and annuity prices at time 0 are as follows:

BT �1
�t �i �T �i Bt B TB(r ) � c e � (1 � c)e , (17)
0 t

t�1

f �T �i BB TB (r ) � e , (18)0 t

A AT T
�t �i Q(
) A �t �i At tA(r , m ) � a � e E [S �M ] � e p , (19)� 
 
A0 0 x�T t 0 t x

t�1 t�1

where c is coupon payment of coupon bonds, and the superscript A indicates that the person is subject
to annuitant mortality rather than population mortality.

3. NUMERICAL ANALYSIS

In this section to demonstrate the hedging strategy, we present a numerical example of an annuity
provider. We assume that the annuity provider invests in longevity bonds, coupon bonds, and zero-
coupon bonds to minimize the risks of equity holders subject to a targeted profit. The hedging effect
of this approach is presented in Section 4.
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HEDGING LONGEVITY RISK WHEN INTEREST RATES ARE UNCERTAIN 207

Table 1
Parameters of CBD Mortality Model


1 Market price of longevity risk associated with level shift in mortality 0.175

2 Market price of longevity risk associated with tilt in mortality 0.175
x Initial age of cohort 65
T Bond maturity 25

Table 2
Parameters of CIR Interest Rate Model

a Small speed of mean reversion 0.20
b Long-run mean interest rate 0.05
� Volatility 0.08
r0 Initial interest rate 0.03

Table 3
Basic Assumptions on Assets and Liability

Asset Side Coupon Rate Maturity Face Value Price

Coupon bond 5% 30 years $1 $1.101
Longevity bond Base on mt,x of male age 65 25 years $1 11.296
Zero-coupon bond — 1 year $1 0.9687

Liability Side Age/Gender Coverage Per Payment Premium

Term-life annuity 65/male 35 years $1 $10.697
Premium-type Deferred period
Single Immediately

3.1 The Asset Side
On the asset side, the long-term coupon bond is assumed to be issued at a 5% coupon rate, for 30
years, with a face value $1. The zero-coupon bond is a one-year pure discount bond with face value $1.
For the longevity bond, we use the EBI/BNP longevity bond with a 25-year maturity and face value $1.
Its cash flows are based on the actual mortality experience of the English and Welsh male population
age 65. The coupons are equal to the fixed annuity multiplied by the percentage of the reference
population still alive at each time point. We employed the model of it in Section 2.3 to project the
mortality trend for future 25 years. The parameters are shown in Table 1.

Furthermore, we also assume the spot interest rate follows the CIR interest model. The assumed
speed of mean reversion and volatility are shown in Table 2. The initial interest rate is 3%, and the
long-run interest rate is 5%. The mean reversion and volatility parameter of CIR model are 0.2 and
0.08, respectively. We use this information to estimate the yield curve from 1 to 30 years.

3.2 The Liabilities Side
On the liabilities side, the annuity is assumed to be a 35-year term-life annuity, issued for men aged
65, and pays the annuitant $1 at the end of each year. It has no deferred period, and the premiums
are collected as a single premium. The discount rate follows the CIR model as in Section 3.1, and the
mortality process follows the mortality rate of the longevity bond produced by the correlation coeffi-
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Table 4
Partial Derivatives on Assets and Liabilities

Coupon Bond Zero-Coupon Bond Longevity Bond Annuity

First partial derivatives on r0 � �3.8545Br0 � �1.6292fBr0 � �3.1279lBr0 � �3.0672Ar0
Second partial derivatives on r0 � 16.614Br r0 0

� 2.6984fBr r0 0
� 11.975lBr r0 0

� 11.6Ar r0 0

First partial derivatives on m0 � �1.0579lBm0
� �0.78967Am0

Second partial derivatives on m0 � 1.9 � 10�13lBm m0 0
� �1.7 � 10�13Am m0 0

Cross-partial derivatives � 3.2409Br m0 0
� 2.8741Ar m0 0

Table 5
Optimal Allocations Value under Different CIR Parameters

Case (r0, a, b, �) Weight of B Weight of B l Weight of B f �(�E ) � 104

1 (3%, 0.2, 3%, 0.08) 0.3389 0.5347 0.1264 0.003795
2 (1%, —, —, — ) 0.2996 0.6061 0.0943 0.017469
3 (5%, —, —, — ) 0.4221 0.3794 0.1985 0.000009
4 (3%, —, 5%, — ) 0.3882 0.4140 0.1978 0.017200
5 (3%, —, 1%, — ) 0.3062 0.6017 0.0921 0.000153
6 (—, 0.25, —, — ) 0.3402 0.5342 0.1256 0.005477
7 (—, —, —, 0.15) 0.3466 0.5362 0.1172 0.001362

cient. We assume the correlation coefficient is 0.75.4 The value of the longevity bond on issuing day is
$11.296,5 and the premium of the whole-life annuity is $10.697. We summarize the information in
Table 3.

4. THE RESULTS

The estimated partial derivatives for assets and liabilities are presented in Table 4. The coupon bond
(30 years), longevity bond (25 years), and zero-coupon bond (1 year) have negative partial derivatives
in regard to interest rates. The partial derivatives with respect to the interest rate are, respectively,
�3.8545, �3.1279, and �1.6292 and decrease with time in absolute value. The second partial deriv-
atives of coupon and zero-coupon bonds are positive, and coupon bonds have larger convexity than
zero-coupon bonds. The longevity bonds and annuities both have negative sign when the interest rate
changes. The second partial derivatives of interest are larger than the one for zero-coupon bonds but
smaller than the one for the coupon bonds. For the longevity bond, the first partial derivatives with
respect to the mortality rate are negative. The second partial derivatives with respect to the mortality
rate are very small and can be neglected. By substituting these partial derivatives into equation (9),
we can obtain the optimal allocation of x1, x2, and x3.

The optimal solutions of x1, x2, and x3 are shown in Table 5. The solutions under different interest
parameters of the CIR model are also shown. We examine the effects of short-term interest rate r0,
long-term interest rate b, mean reversion speed a, and volatility � on the optimal allocations. In the
base case, case 1, the short-term interest rate r0 is 3%, and parameters a, b, � are 0.2, 3%, and 0.08,
respectively. The optimal weight is 33.89% in long-term bonds and 12.64% in short-term bonds. In this
base case, the yield curve is flat, and the annuity provider holds most assets in longevity bonds (53.47%).

4 The insurers can estimate their own mortality processes, which may have different correlation coefficients to the ones in the longevity bonds.
We use �t � 0.75 for all t, which is a simplified assumption. Actually, it need not to be so. We leave the study of time-variant correlation
coefficients between annuitant and longevity bond for further research.
5 The longevity bonds are priced as in Cairns et al. (2006b), but the discount rate is specified by the CIR model rather than the constant
interest rate.
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Table 6
Optimal Allocations with and without Longevity Bond

Case Weight of B Weight of B l Weight of B f �(�E ) � 104

With investment in B l 0.3389 0.5347 0.1264 0.003795
Without investment in B l 0.7654 0 0.2346 0.860060

This shows that the longevity bond is much more attractive than the coupon bond in this minimization-
risk programming. We then consider the upward-sloping yield curve in case 2. Here the short-term
interest rate is lower than long-term interest rate, and the rate of return on the zero-coupon bond is
also lower. This effect causes the annuity providers to hold less in zero-coupon bonds (9.43%). If the
short-term interest rate is higher than long-term rate, that is, a downward-sloping yield curve as in
case 3, the annuity provider will tend to hold more zero-coupon bonds (19.85%). This is because the
risks associated with the coupon bond are smallest (the first derivative plus second derivatives), and
they are regarded as ‘‘a better thing’’ than long-term bonds and longevity bonds as the expected return
increases. In case 4, if we have a upward-sloping yield curve caused by a higher long-term interest rate,
the weights for B (38.82%) and B f (19.78%) both increase while that for Bl decreases. In this case the
long-term bonds become more attractive than the longevity bonds because the the increased returns
in the future for longevity bonds are mitigated by mortality rate. However, the annuity provider is still
mostly positioned in longevity bonds (41.40%). The short-term bonds also increase because of the risk-
return trade-off effect between B and B f. In the opposite case, case 5, the long-term interest decreases,
and the annuity provider will tend to buy more longevity bonds because the yield on longevity bonds
is higher than that on long-term bonds. In cases 6 and 7, the faster mean reversion speed a � 0.25
and higher volatility � � 0.15 result in rather small changes in B, Bl, and B f. In these cases we find
the allocations are less sensitive to the mean reversion and volatility parameters but more sensitive to
the different shapes of the yield curves.

In Table 6 we consider the scenarios of the allocations with or without the longevity bond. The results
show that when there is no longevity bond in the portfolio, the annuity provider tends to hold long-
term bonds instead of short-term bonds. The variance of equity holders increases sharply from 0.003795
to 0.86006. We claim that, at the same required rate of return, the longevity bond indeed largely
reduces the equity holders’ risk. The longevity bond effectively reduces the interest and mortality risk
from the annuity.

5. CONCLUSION

Longevity risk has received serious attention both in the industry and in the research literature. Al-
though the literature has provided many ingenious strategies to hedge the longevity risk, most papers
analyzed the effects of the hedging strategies without considering the interest rate risk at the same
time. However, ignoring interest rate risk may underestimate the aggregate risk and result in mislead-
ing hedging strategies. This paper proposes an asset liability management strategy to hedge the ag-
gregate risk of equity for annuity providers by considering both independent stochastic interest rate
risk and mortality rate risk. The numerical examples in our paper show that failing to integrate interest
rate risk into the model for hedging longevity risk could cause a substantial risk for equity holders.
We also find that the shape of the yield curve significantly affects the allocation weights. Moreover, the
simulation results also suggest that the longevity bond plays a critical role in the integrated model.
We demonstrate that our proposed approach can lead to optimal asset liability allocation and the
longevity bond can serve as an effective vehicle to significantly reduce the aggregate risk for annuity
providers.

Notice that our model proposes only a single-period, static hedging strategy to immunize the risk.
Several issues should be considered if a model of dynamic hedging is considered. First, the insurer’s
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objective function should be the accumulated future value of the equity rather than the present value
of it. Second, the static programming should be replaced by a dynamic programming. Third, the re-
quired returns should be subject to multiperiod constraints. The issues of the dynamic hedging are
beyond the scope of this paper, but we believe it could provide fruitful results in a future study.

APPENDIX

The coefficients of equation (4) are the following:

2 2 3� � (B ) � � B B �(�r ),1 r r r r r 00 0 0 0 0

l 2 2 l 2 2 l 2 2 2 l l 3 l l 3� � (B ) � � (B ) � � (B ) � � � B B �(�r ) � B B �(�m ),2 r r m m r m r m r r r 0 m m m 00 0 0 0 0 0 0 0 0 0 0 0 0 0

f 2 2 f f 3� � (B ) � � B B �(�r ),3 r r r r r 00 0 0 0 0

l 2 l 3 l 3� � 2B B � � B B �(�r ) � B B �(�r ),4 r r r r r r 0 r r r 00 0 0 0 0 0 0 0 0

f 2 f 3 f 3� � 2B B � � B B �(�r ) � B B �(�r ),5 r r r r r r 0 r r r 00 0 0 0 0 0 0 0 0

l f 2 l f 3 f l 3� � 2B B � � B B �(�r ) � B B �(�r ),6 r r r r r r 0 r r r 00 0 0 0 0 0 0 0 0

2 3 3� � �2A B � � A B �(�r ) � B A �(�r ),7 r r r r r r 0 r r r 00 0 0 0 0 0 0 0 0

l 2 l 3 l 3 l 2 l 3� � �2A B � � A B �(�r ) � B A �(�r ) � 2A B � � A B �(�m )8 r r r r r r 0 r r r 0 m m m m m m 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l 3 l 2 2� B A �( �r ) � 2B A� � ,m m m 0 r m r m0 0 0 0 0 0 0

f 2 f 3 f 3� � �2A B � � A B �(�r ) � B A �(�r ),9 r r r r r r 0 r r r 00 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 3 3� � (A ) � � (A ) � � (A ) � � � A A �(�r ) � A A �(�m ).10 r r m m r m r m r r r 0 m m m 00 0 0 0 0 0 0 0 0 0 0 0 0 0
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