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This  paper  proposes  an optimization  approach  for  generating  an  investment  strategy  for  multi-period
asset-liability  management  of long-term  with-profit  life  insurance  policies.  Our  approach  uses  mod-
els to  simulate  the  processes  insurance  companies  employ  when  determining  multi-period  investment
strategies  over  a  given  planning  horizon.  The  approach  utilizes  an  enhanced  heuristic  algorithm  to deter-
mine  optimal  multi-period  investment  strategies.  Simulation  models  take  into  account  asset  numbers,
objective  functions,  and  asset  allocation  frequency.  Strategy  performance  is evaluated  by  applying  three
single-period  investment  strategies  to the  simulation  models.  Computational  results  not  only  verify  the
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efficiency  and  robustness  of the  algorithm,  but also demonstrate  the  effectiveness  of  frequent  asset
reallocation,  and dispute  the  suitability  of  traditional  top-down  investment  strategies  in  maximizing
investment  returns  of  with-profit  insurance  policies.

©  2012  Elsevier  B.V.  All  rights  reserved.
ith-profit policy

. Introduction

Over the last few decades, improvements in mortality rates have
ecessitated a reassessment of the different products offered by the

nsurance industry. Common products such as pension plans are
ow facing ever-greater challenges in performing their intended

unction of protecting retirees from outliving their resources. The
ecent global financial crisis has drawn this issue into even sharper
ocus, as overburdened governments and businesses attempt to
rovide benefits to retirees.

Insurance policy types have many different classifications. The
wo most common types are referred to as “with-profit” and “unit-
inked”. A conventional non with-profit and non unit-linked life
nsurance policy implies that the policyholder earns the assumed
guaranteed) interest rate of the contract, i.e., the interest rate taken
nto calculations to determine the value of a contract. With con-

entional policies, the insurance amount is specific, and insurers
ake on investment risk. This means that policyholders’ earnings
re guaranteed by that interest rate and are irrelevant to the profit
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sien 545, Taiwan. Tel.: +886 49 6003100x4673; fax: +886 49 2915205.
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568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.07.016
or loss of the insurance company. On the other hand, a with-profit
policy (referred to as a “participating policy” in the US) provides
an assumed interest rate generally lower than that of a conven-
tional policy, but provides company share dividend payments. This
is intended to reduce potential insurer loss when the assumed
interest rate is greater than the actual return rate. As the assumed
interest rate of a with-profit policy is less than that of a conventional
policy, the price of the with-profit policy is greater. This reduces
the investment risk faced by insurers and enables them to have the
flexibility to pursue a more aggressive investment policy aimed
at achieving long-term capital growth. Policyholders are willing to
pay a higher premium for the opportunity to share in higher poten-
tial profits. Policyholders receive this benefit through dividends,
usually an increase in the insurance amount, when the actual return
rate is greater than the assumed interest rate. However, the divi-
dend mechanism is not transparent and clear to policyholders, as
the dividend amount is determined by the insurer as well as market
competition.

“Unit-linked policies” (referred as “variable life policies” in
the US, or “segregated funds” in Canada) are a type of insurance
that provides both life insurance and investment opportunity. For

conventional life insurance policies, including with-profit and uni-
tized with-profit policies, insurers have the authority to manage
funds (premiums) collected from policyholders. This type of fund
is referred to as a “general fund” when discussing separate funds for

dx.doi.org/10.1016/j.asoc.2012.07.016
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:tyyu@ncnu.edu.tw
mailto:engtsong@mail.ncyu.edu.tw
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dx.doi.org/10.1016/j.asoc.2012.07.016
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nit-linked policies. Most of the premiums (minus their deductions
o general fund) of a unit-linked policy are located in a separate
und. Any associated deductions are used to buy some low-level
ife protection and pay expenses. The investment component of
nit-linked insurance exists as a separate fund. Policyholders have
he authority to allocate his fund, i.e., separate fund, to a basket of

utual funds. However, policyholders take on investment risk and
ace a high level of uncertainty over the final insurance amount, as
hese amounts tend to fluctuate in line with stock market move-

ents. On the other hand, policyholders can track the value of their
nvestment as well as the insurance payout and expense charges
t any given point in time, and are able to cash in if necessary.
hile the investment risk for policyholders is higher with unit-

inked policies than in conventional policies, unit-linked policies
ffer policyholders both higher return potential and greater trans-
arency.

Unitized with-profit policies emerged in the UK in the mid-
980s as consumers demanded more transparency into the design
f with-profit policies [1]. In reality, unitized with-profit policies
re a type of with-profit policy with united feature. The word
unitized” means that the fund is broken into units, just like united-
inked policies and general mutual funds. This allows the funds to
e an open-ended investment, and investors can pool assets while
etaining individual net asset values. This mechanism, combined
ith a declared rate of interest, helps consumers understand the
ethods by which with-profit policy returns are determined. Part

f the transparency of unitized with-profit policies comes from
 specific interest rate declaration process similar to the deter-
ination of declared interest rate, rp, discussed in this paper.

olicyholders realize the investment return of their premiums
ased on this declaration. In contrast, policyholders of with-profit
olicies cannot appreciate the return rate of their premiums when
here is an increase of the insurance amount or when the insurer

akes a profit.
Unitized with-profit policies combine the with-profit policy

dvantages of participating in insurer profits with the trans-
arency of unit-linked policies. Unitized with-profit policyholders
re aware of the value of their investment at any given point
n time and are able to cash in if necessary. They also have the
hance to achieve an increased return without taking on the risk of
nvestment. In addition, most unitized with-profit policies provide
olicyholders with the flexibility to change premiums. We  have
utlined the features of each type of life insurance policy in Table 1.

While the risk associated with unitized with-profit contracts, as
ith virtually all insurance contracts, includes risk from financial
arkets, surrenders, and mortality, our study focuses on financial

isk. Since the interest rate is declared in advance, it is vital that
nsurers issuing unitized with-profit contracts take the declared
nterest rate into account. For example, if the insurer pursues an
ggressive investment strategy during the life of a contract and an
nitial bull market is followed by a bear market, the insurer may
uffer serious losses due to excess payments during the bull mar-
et period. To reduce financial risk posed by unitized with-profit
olicies, the approach outlined in this paper utilizes a hybridized
volutionary algorithm to explore optimal asset allocation.

. Models

Typical investment strategies attempt to diversify investment
hrough asset allocation to achieve a high level of return while low-
ring potential risk. The Markowitz mean-variance (MV) model is

idely regarded as the gold standard for asset allocation [2–4]. The
V approach is practical for solving the problem of single-period

sset allocation under a restrictive set of assumptions. However, a
ingle-period investment is not suitable for long-term obligations
ting 12 (2012) 3452–3461 3453

such as insurance liabilities, which extend over a period of five or
more years. Applying the MV  approach to problems of multi-period
asset allocation is also problematic; consequently, mean-variance
portfolio optimization is inadequate for insurance liability asset
management.

Current popular methods for solving multi-period asset allo-
cation are control theory [5,6] and the Martingale approach [7,8],
which are widely applied to financial optimization models. How-
ever, the objective of these two approaches is to find a theoretical
solution to multi-period asset allocation problems. They fail to deal
with realistic objectives owing to their theoretical nature. In order
to get a closed-form solution, many real-world issues, such as trans-
action costs and limitations on the proportion of asset allocation for
some specific assets, must be ignored in order to prevent problems
from becoming too complex. While these approaches elegantly
provide insight into asset allocation problems, they are inapplica-
ble in practice. For example, the proportion of asset allocation for
specific assets may  be subject to regulatory limits, or there may  be a
certain probability of insolvency in the objective or constraint func-
tion. Neither control theory nor the Martingale approach can obtain
a closed-form solution to meet these simple constraints. Linear pro-
gramming is also incapable of solving complicated asset allocation
models, since many are nonlinear [9]. Instead, heuristic algorithms
have become the most commonly used techniques for optimization
problems, as they provide a general-purpose modeling framework
capable of considering a multiplicity of constraints. Practitioners
evaluate asset allocation issues through simulations, which enables
them to realize potential outcomes over a set of return scenarios
with specific asset allocation strategies. Among the heuristic algo-
rithms, the Evolutionary algorithms have been successfully applied
to many research fields and became useful simulation tools [9–13].

This paper proposes an optimization approach to generate an
optimal investment strategy for multi-period asset liability man-
agement of long-term with-profit policies. The objective function
considers both investment returns and insolvency risks. The opti-
mal  multi-period investment strategy allows insurance companies
to achieve the highest investment return while minimizing insol-
vency risk. Our simulation models replicate the decision processes
of insurance companies in determining multi-period investment
strategies over a given planning horizon, and a hybrid heuristics
algorithm integrated into the simulation models determines opti-
mal  multi-period investment strategies. For illustration purposes,
a set of equal-probability scenarios of future returns are simulated
using Wilkie’s investment model [14]. Each scenario represents
one potential uncertain return over the planning horizon, and a
large scenario set represents highly unlikely market swings. Given
a set of plausible scenarios of future returns (e.g., 1000 equal-
probability scenarios of returns over 10 years), we developed a
simulation model to calculate the terminal profit and insolvency
probability for a given multi-period investment strategy. Evolu-
tion strategies integrated into the simulation models enable our
approach to obtain the optimal investment strategy, and we include
different simulation models based on asset numbers, objective
functions and asset reallocation frequency. Three single-period
investment strategies (conservative, somewhat aggressive and
aggressive) were chosen to evaluate the performance of the multi-
period investment strategies produced. The information used to
generate different scenarios for Wilkie’s model is presented in
Appendix A. Based on that information, the interested reader may
reproduce the approach using the algorithms presented in this
study.

Asset liability management for with-profit policies is an

important and challenging undertaking for insurance companies,
primarily because of the guaranteed returns it provides to poli-
cyholders. Since these types of liabilities are long-term in nature,
an appropriate investment strategy is required to match them.
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Table 1
Comparison of conventional life policy, with-profit, unit-linked and unitized with-profit policies.

Conventional With-profit Unit-linked Unitized with-profit

Insurance amount Fixed Variable, may  increase
due to dividend

Variable, depends on
investment
performance

Variable, may increase
due to dividend

Participation in insurer profits No Yes No, but can participate
in stock market

Yes
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Investment decision Insurer Insurer 

Transparency Low Low 

Flexibility in premium payment No depends o

herefore, insurance companies use standard asset classes includ-
ng short-term bonds, long bonds, index-linked gilts and equities
n conjunction with a multi-period asset allocation approach to
chieve optimal results through annual asset reallocation.

Our research uses well-known models familiar to the insurance
ndustry [14,15], and are summarized as follows:

Let the return rate of long bonds be ib(t) and the return rate of
tocks (equity) be is(t) during the period t − 1 to t. Moreover, wb(t)
enotes the weight of long bonds in the portfolio at the start of
olicy year t and ws(t) denotes the weight of stocks in the same
ortfolio. Thus, the terminal value of the portfolio is:

(T) = A(0)

[
T∏

t=1

[wb(t)(1 + ib(t)) + ws(t)(1 + is(t))]

]
(1)

With-profit life insurance contracts have three key benefits: a
ertain guaranteed benefit, periodic reversionary bonuses, and a
erminal bonus. The reversionary bonus rate is usually determined
ia a smoothing adjustment to the rate of return of the asset port-
olio. The reversionary bonus, once added, becomes part of the
uaranteed benefit. The guaranteed payoff and the reversionary
onus constitute the “policy reserve”. Upon the claim date of the
ontract, a terminal bonus is included, based on the final surplus
arned by the insurance company. The smoothing and terminal
onus are used to reduce the insurance company’s guaranteed risk
s illustrated below:

When considering a single premium unitized with-profit con-
ract which will terminate at T, suppose an policyholder pays a
ingle premium, P(0) = 100, at the start of the contract. Over the
ifetime of the contract, at the beginning of each policy year the
olicy value, P(t), accumulates at rate rp so that:

(t) = P(t − 1)(1 + rp(t)) t = 1, 2, . . . , T (2)

here rp is the declared interest rate of the contract, decided by the
quation:

p(t) = max

(
rG,

ˇ

n

(
A(t)

A(t − 1)
+ · · · + A(t − n + 1)

A(t − n)
− n

))
,

n = min(t, ϕ) (3)

Using the annual guaranteed rate rG,  ̌ ∈ (0, 1) denotes the partic-
pating rate, where n is the length of the smoothing periods chosen
s n = min(t, ϕ), and the smoothing factor ϕ is the length of the
veraging period (3 years throughout this study). A(t) denotes the
alue of the reference portfolio, and the initial portfolio value A(0)
s equal to P(0) = 100 if there are no other charges. This smoothing
djustment, called the arithmetic smoothing scheme, is the most
ommon method used in the United Kingdom for the accumula-
ion of benefits and reversionary bonuses in unitized with-profit

ontracts.

At the maturity date of the contract, T, the policyholder will
eceive the terminal value of the policy plus some percentage of any
urpluses generated by the reference portfolio exceeding the value
Policyholder Insurer
High High

tract depends on contract depends on contract

of the benefit. That is, the terminal payoff (henceforth denoted as
gain) of the policyholder is:

gain = P(T) + �R(T) (4)

where

R(T) = (A(T) − P(T))+ =
{

A(T) − P(T), A(T) ≥ P(T)

0 A(T) < P(T)
(5)

The � ∈ (0, 1) is the second participation parameter. The partici-
pation parameter  ̌ is used to determine the declared interest rate
of the contract rp(t), and the participation parameter � is used to
determine the terminal payoff (gain) of the policyholder. Conse-
quently, the terminal profit for the insurer, Earn, is:

Earn =
{

(1 − �)R(T) if A(T) ≥ P(T)

A(T) − P(T) if A(T) < P(T)
(6)

The contract guarantee is triggered if the reference portfolio is
less than the policy value at the maturity date. Thus, the guaranteed
cost of the insurer at the maturity date, D, is:

D = (P(T) − A(T))+ =
{

P(T) − A(T), P(T) ≥ A(T)

0 P(T) < A(T)
(7)

Even though insurance investment models can vary, attention
has focused on the model that can cover most situations. One
criticism of traditional with-profit policies is that their dividend
amounts depend partially on the discretion of insurer actuaries. The
interest rate declaring rule is not transparent when compared to
unitized with-profit policies [1,15].  To improve this deficiency, the
interest rate declaring rule of unitized with-profit policies has been
adapted to traditional with-profit policies. The model presented in
this study can be versatile and applicable for both with-profit and
unitized with-profit life insurance contracts.

3. Simulation optimization approaches

A typical investment optimization problem is to obtain the opti-
mal  investment strategy for different assets under bearable risks.
Optimization theories and applications are generally classified into
local and global search algorithms, and many studies have dis-
cussed the advantages and drawbacks of each [16,17]. Briefly, local
search is faster than global search, but it is sensitive to initial solu-
tions and often becomes trapped in local optimums. Local search
also has difficulty obtaining true derivatives for complicated or
nonlinear functions. If the functions have constraint conditions, the
algorithm cannot guarantee that the solutions generated meet the
constraint requirement.

Global search algorithms can identify several critical parameters
for the algorithm to converge to the right solution. These include
population size, number of generations, solution space, and num-

ber of decision variables. However, a global search algorithm can be
computationally expensive, as it requires a both large population
and a large number of generations for the algorithm to converge.
Because the complexity of a problem may  vary, no particular set
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f parameters is capable of generating optimal results for all prob-
ems. Poorly chosen parameters may  prevent the search algorithm
rom obtaining a global optimal solution. This problem becomes

ore severe when the number of decision variables increases,
hereby dramatically expanding the solution space [18].

Our study proposes a hybrid approach that applies the advan-
ages of local and global search techniques to the simulation

odels, combining an evolution strategy algorithm (ES) for global
ptimization, and the Levenberg–Marquardt algorithm (LM) for
he local search method. Solutions obtained by ES then work as
he initial solutions for LM,  speeding up final optimal solution
onvergence. Our application of these algorithms, along with our
ethodology for testing their effectiveness and robustness are dis-

ussed in the following sections.

.1. The local search algorithm

LM is a robust, standard numerical method in nonlinear opti-
ization, representing a combination of steepest descent and the
auss–Newton method. It iteratively locates a minimum for non-

inear functions (it requires an inverse function for problem finding
aximum). The formula is as follows:

JT J + �diag(JT J))ı = −JT f (xi) (8)

here J is the Jacobian matrix and JTJ is also denoted as a Hessian
atrix. ı is the solution vector, defined as xi+1 − xi and � is a positive

calar and used as the damping term to adjust between the steepest
escent and Gauss–Newton methods.

Several issues typically arise in LM optimization. Since Jaco-
ian (and Hessian) matrixes are involved, it is necessary to find
he derivatives of the objective function. However, because the
bjective function is generally high-order, nonlinear, or very com-
licated, a true derivative is difficult or impossible to obtain. Thus,

 numerical approximation is required. To reduce numerical errors,
ur study adopts a four-point formula approximation [19]. Notice
hat the error has an order of h4. In this study, h = 0.001 is used.

∂f

∂xi
= 1

12h
(f (xi − 2h) − 8f (xi − h) + 8f (xi + h)

− f (xi + 2h)) + h4

30
f (5)(�) (9)

Another issue relates to constraint conditions. Most optimiza-
ion problems in real world applications involve constraints to the
olutions. When solving mathematical optimization problems, it is
enerally difficult to find a closed form for the function subject to
esolve outside conditions or constraints. LM cannot guarantee that
olutions will fall inside the constraints. To overcome this problem,
he Lagrange Multiplier method provides a strategy for finding the
ptimal solution of a constrained function [20]. However, utilizing
his method to overcome constraint conditions for a local search
ncreases computational costs, since the solution space increases
rom (x1, x2,. . .,  xn) to (x1, x2,. . .,  xn, �1, �2, . . .,  �M). To avoid this
ssue, LM can be used simply to search for the solution without

orrying about any constraints. If a given solution does not meet
he constraints, then the solution from LM will be abandoned (the
riginal solution from the global search will remain) and another
earch will begin. If global search can provide a good initial solution
or LM,  then LM can reach convergence more efficiently.

.2. The global search algorithm
Evolutionary algorithms (EAs) are randomized search methods
ncorporating the principles of evolution [10,21,22] and are com-

on  among heuristic algorithms. Instead of single points, EAs use
ting 12 (2012) 3452–3461 3455

populations to search and solve complex optimization problems.
Unlike local searches, the initial populations in EAs are usually gen-
erated randomly. Offsprings are produced from the members, or
parents, in the population. Favorable offsprings then populate the
next generation, based on the theory of “survival of the fittest”.
This process continues until a termination criterion is satisfied
and a superior solution is obtained. As mentioned previously, this
approach requires a large population and numerous generations for
convergence. While other evolutionary heuristic algorithms exist,
some of them were originally designed for integer-base applica-
tions, such as the genetic algorithm and Ant Colony algorithm. Even
though they can be adjusted and used for real number applications,
modifications are usually required to change the natural. On the
other hand, evolution strategy (ES) was originated for real number
application and has been available for many decades. Many studies
have demonstrated the effectiveness of using ES for non-linear, real
number problems [12,23,24].  As the financial problem presented in
this study is a continuous real number problem, ES was  selected for
the global searching algorithm.

Evolution strategy (ES) is a type of evolutionary algorithm
originally developed for solving nonlinear programming problems
[25–27]. The steps of (�, 	) ES approach, which � is the number of
parents and 	 is the number of offsprings produced from the par-
ents and 	 is about seven times � [10,25,28],  are summarized as
follows:

Step 1. Generate a population for initial generation.

A population of � solutions is generated. Each solution is a two-
part row vector. The elements in the first part are the values of
decision variables (xj), and the elements in the second part are
mutation step sizes (
j) corresponding to the decision variables
in the first part.

Step 2. Apply recombination and mutation to the parents to pro-
duce � offsprings.

Parents (A and B) are randomly chosen from the population,
and recombination and mutation are applied to produce child C.
Discrete recombination is used to determine the child C decision
variable values. The value of each decision variable is random and
equally selected from the value of the same variable in A and B. The
mutation step sizes for C are determined by intermediate recom-
bination. Determining the mutation step size is usually difficult.
The optimal step size depends on the problem, and may  vary dur-
ing the simulation process. Small steps often work well, yet larger
mutation steps, if successful, can yield good results much quicker.
Our study follows previous research [10,25,28,29] in setting the
mutation step size. The recombination approach is implemented
by calculating the intermediate mutation step size and then used
for the final mutation step size. In other words, the jth mutation
step size in C is determined by the average of the jth mutation step
size in A and B, as demonstrated by the following equation:


j(C) = 0.5(
j(A) + 
j(B)) (10)

Then Child C is mutated by first modifying its mutation step
sizes, then adding these to mutate the corresponding decision vari-
ables. Each mutation step size, 
j (C), is modified by the following
equation:


 ′
j(C) = 
j(C) exp(t′N(0, 1) + tNj(0,  1)) (11)

� and � ′ are two  exogenous parameters, and are set as the following
equations [10,25,28,29].(√ )−1

�  = 2

√
n , � ′ =

(√
2n

)−1
(12)

n is the size of the decision variables. These two variables were fre-
quently set to 1 according to Nissen and Biethahn [28]. The N(0, 1)
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Fig. 1. Evolutionary strategy flowchart.

enotes a normally distributed one-dimensional random number
ith a mean of zero and standard deviation of one. That random
umber is generated anew for each value of j, as indicated in Nj(0,
). The decision variable, xj, is mutated by the following equation:

′
j(C) = xj(C) + Nj(0,  
 ′

j(C)) (13)

When child C is generated, a normalization method is applied
o the four asset variables to ensure that the sum equals one. The
eproduction procedure repeats until 	 offsprings are produced.
his procedure of determined mutation step size is carried out in
ach generation. An example of the solution vector (take the size
f the decision variable as 2, for example) could be (−82.52, 86.31,
.87, 1.58). Notice that the first two are the decision variable val-
es, and the last two are the mutation step size corresponding to the
ecision variables. When the simulation ends, this solution vector
ill converge and the decision variables will converge to the opti-
al  solution, and the mutation step size values will approach to

ero.

tep 3. After all the 	 offsprings are all produced, the fitness func-
ion is evaluated with the decision variables with all the offsprings.

tep 4. Select the best � offsprings to constitute the population
or the next generation.

Generated children act as inputs for the simulation model, and
e choose the best � parents from among the 	 offsprings for the
ext generation.

tep 5. Check the termination criterion.

If the termination criterion is satisfied, stop, otherwise go to
tep 2. Our approach sets the number of generations, maxgen, as
he termination criterion.

The flow chart of this algorithm is presented in Fig. 1.

.3. Hybrid approach (HA)

Heuristic approaches are population-based algorithms, and

equire both a large population and a large number of genera-
ions to converge globally. The general concern is the performance
fficiency if the objective function is computationally costly. The lit-
rature shows the performance of current optimization algorithms
ting 12 (2012) 3452–3461

deteriorates when the size of the determinate variables increase
[31,32]. Unfortunately, many real-world problems tend to be large-
scale nonlinear problems. This is particularly true for insurance
investment models, which contain many complex constraints over
a very long simulation horizon. Simulation models that require
excessive computational times would be impractical for financial
institutions. The motivation behind the hybrid approach (HA) pro-
posed in this study is to utilize the advantages of both local and
global algorithms efficiently and provide quality solutions within
a reasonable period. In this study, ES is used to find a solution
for future diversification, and the best two  solutions are used as
initial solutions for intensification purposes in the local search
algorithm. We  attempt to limit the population size and number
of generations in the ES algorithm to save computation costs,
and use LM to speed up convergence to a proper initial solution.
Numerical approaches are used for the derivative functions. The
decision variables in our approach are the proportions of the asset
allocations at each point of asset reallocation. Note that in the
multi-period asset allocation model containing four assets, for a
10-year term policy, we  have to determine forty decision vari-
ables for a solution. During the (�, 	) ES process, when child C
is generated, a normalization method is applied to the four asset
variables. The proportion of asset allocation is a real value in the
range of [0, 1], and the sum of the four asset allocations in a
given period is equal to one. The initial mutation step sizes are
set to three, following Back’s research [10,25].  Since we  assume
the solutions from ES are valid, we do not require the Lagrange
Multiplier for the LM.  If the LM solution cannot be improved, the
original ES solutions are retained. With this approach, the extra
computation load from solving the Lagrange Multiplier equation
is alleviated. Experiment results have shown this assumption to
be reasonable, and computational costs have been dramatically
reduced.

3.4. Effectiveness and robustness test

Research has proven hybrid approaches can improve conver-
gent speed and efficiency, and achieve high precision solutions
for complex continuous large-scale applications [31,32].  Ten com-
mon  verified benchmarks are used to test effectiveness, robustness
and efficiency [29,30]. The number of decision variables for the
benchmarks in our study was  set to 50 to ensure efficacy with
a target insurance model of 40 variables. Our research compared
the results of our approach with those of basic ES simulation,
and also compared them with another evolutionary heuristic algo-
rithm, the genetic algorithm (GA) [33]. While different evolutionary
techniques have unique control parameters that can make com-
parisons difficult, GA is an evolutionary approach similar to ES,
and is used here for effectiveness and robustness comparison.
Tables 2 and 3 present these benchmark functions and the com-
putational results.

For the robustness test, we  independently implemented basic ES
(BES), basic GA (BGA) and HA to each benchmark function ten times
with a randomly generated initial population. A decision variable
for a solution in an initial population was randomly generated from
a uniform distribution, with the range constraining the variable in
the benchmark functions. The parameters of BES, BGA and HA were
set as follows:

For the BES, the number of parents (�) was twice the deci-
sion variables considered in a solution (� = 2n = 100). The number
of offsprings (	) was seven times �. The number of generations
for convergence, maxgen, was set as 200. In order to provide a

fair comparison for BGA, we  set the population size to 800 (the
sum of parent number and the offsprings of BES) and the same
generation number of 200. Note that these numbers are relatively
small when compared with those used in previous studies [29,30].
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Table  2
Selected Benchmark functions and related information.

Objective function (n = 50) Range Minimum value

f1(�x) =
∑n

i=1
�2

i
−5.12 ≤ xi ≤ 5.12 f1(�0) = 0

f2(�x) =
∑n

i=1
|xi| +

∏n

i=1
|xi| −10 ≤ xi ≤ 10 f2(�0) = 0

f3(�x) =
∑n

i=1

(∑i

j=1
xi

)2

−100 ≤ xi ≤ 100 f3(�0) = 0

f4(�x) =
∑n−1

i=1
(100 · (xi+1 − (xi)

2)
2 + (xi − 1)2) −30 ≤ xi ≤ 30 f4(�1) = 0

f5(�x) =
∑n

i=1
i · x4

i
+ rand[0, 1) −1.28 ≤ xi ≤ 1.28 f5(�0) = 0

f6(�x) =
∑n

i=1
(x2

i
− 10 cos(2xi) + 10) −5.12 ≤ xi ≤ 5.12 f6(�0) = 0

f7(�x) = −20 exp

(
−0.2

√
1
n

∑n

i=1
x2

i

)
− exp

(
1
n

∑n

i=1
cos(2xi)

)
+ 20 + e −32 ≤ xi ≤ 32 f7(�0) = 0

f8(�x) = 1
4000

(∑n

i=1
x2

i

)
−
∏n

i=1
cos

(
xi√
i+1

)
+ 1 −600 ≤ xi ≤ 600 f8(�0) = 0

f9(�x) = 
n

{
10(sin2(y1)) +

∑n−1

i=1
((yi − 1)2(1 + 10(sin2(yi+1)))) + (yn − 1)2

}
+
∑n

i=1
u(xi, 10,  100, 4) −50 ≤ xi ≤ 50 f9(−�1) = 0

f10(−→x ) = 0.1
{

sin2(3xi) +
∑n−1

((xi − 1)2(1 + sin2(3xi+1))) + (xn − 1) + (1 + sin2(2xn))
}

+
∑n

u(xi, 5, 100, 4) −50 ≤ xi ≤ 50 f10(1, . . . 1, − 4.76) = −1.142
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s discussed before, heuristic algorithms require significant
iological parameters to reach global optimization, and since the
opulation size and maxgen in this study were not large enough,
omputational results show that both BES and BGA did not con-
erge completely (i.e., to good solution quality). In contrast, most
esults show that HA converged to global optimums. Table 3 also
resents mean and standard solution deviations. Most HA results
how that they reached optimal solutions, and standard devia-
ions approached zero. This also indicates the solutions obtained
rom BES are good initial solutions to the local search that LM
an converge efficiently to high-precision solutions. Compared to
ES and BGA, HA produced superior results, particularly for func-
ions f1, f2, f3, f7, f8, f9, f10. The global minimum, f4, occurred
n a very flat region where LM failed to converge well. Func-
ion f5 was not a continuous function, and LM failed to catch
he derivatives. Additionally, function f6 was a very complicated

ultimodal function, and the BES results were not close to a
lobal optimum, making LM fail to converge to a good quality
olution. However, if the solution domain (n) is reduced from
0 to 40, then both functions converge well under the HA algo-
ithm.

Notice that the goal of this research is not to compare HA
ith BES and BGA. These results demonstrate that the proposed

lgorithm is capable of efficiently converging on optimal solu-
ions, regardless of the initial benchmark population. Accuracy

nd efficiency are very important for many large-scale real-world
pplications, and this proposed approach meets this requirement.
hese results also help demonstrate the suitability of applying our
pproach to insurance investment models.

able 3
omputational results for benchmarks of different approaches.

Objective functions (n = 50) Minimum value

BES 

Mean STDev 

f1 1.02E−06 7.12E−07 

f2 8.94E−06 6.94E−06 

f3 8.43E+03 6.16E+02 

f4 1.00E+02 3.63E+01 

f5 1.87E−02 2.37E−03 

f6 1.77E+01 2.76E+00 

f7 2.18E−04 1.11E−04 

f8 3.22E−02 2.45E−02 

f9 4.18E−05 3.38E−05 

f10 −0.786 2.17E−01 
i=1

4. Results and discussion

In this section, we first describe the computational results that
illustrate the performance of the application of the proposed HA
for the multi-period asset allocation models using four different
objective functions. Then, we  discuss the sensitivity analysis of ˇ
and� on those models.

4.1. Computational results

The example used for our research is a ten-year unitized with-
profit policy. For illustration purposes, we  adopted Wilkie’s model
[14] to generate 1000 simulations of future market conditions.
Thus, 1000 simulations of 10-year asset returns would yield 1000
equal-probability scenarios for use by an asset manager to find the
best multi-period asset allocation for a participating policy. One
strategy is to change asset allocation proportions annually. Insur-
ance companies are generally concerned with one or all three of the
following: to increase profit, reduce deficits, or decrease the proba-
bility of insolvency. Therefore, we  consider four objective functions
of an insurer’s investment plan. The first objective is to maximize
expectation of terminal profit. The second objective is the same,
with the constraint of limiting loss. This constraint limits the mean
of the top ten percent of deficits to less than fifteen percent of the
mean of P(T). The third and fourth objectives attempt to minimize

the expectation of guarantee costs and to minimize the probability
of deficits. These four objective functions represent four different
objectives for the insurer. The insurer selects one of the objectives
first, and then finds the optimal asset allocation strategy. They are

BGA HA

Mean STDev Mean STDev

4.41E+01 1.10E+01 8.49E−22 1.11E−22
3.00E+00 4.61E−01 3.35E−10 3.68E−11
5.44E+02 6.23E+01 2.37E−17 6.25E−18
7.12E+02 8.37E+01 9.49E+01 7.67E+00
3.13E−03 9.61E−04 1.74E−02 4.13E−03
4.41E+01 3.70E+00 1.31E+01 2.76E+00
2.32E+00 1.41E−01 2.16E−07 1.62E−08
1.42E+00 6.90E−02 2.90E−05 4.09E−05
1.77E−01 1.73E−02 1.00E−22 0.00E+00
2.56E+00 8.17E−01 −1.14 4.91E−04
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Table 4
Insurer profits and deficits of three single-period investment strategies.

Long
Bonds

Stocks E [Earn] E [D] Prob
(D > 0)

Conservative 0.7 0.3 11.55 2.84 0.176
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Table 6
Mean and standard deviation of the five objective values produced by five different
initial populations for the two-asset model.

Mean (optimal value) Std dev

OBJ1 20.3399469663 0.0000037557
OBJ2 17.9984818335 0.0000272324

period investment strategy not only increases expected profits but
also decreases expected deficits and deficit probability. Suppose
that an insurance company holds four assets (equities, consols,

Optimal investment proportions

1.0

Obj1
Obj2
Obj3
Less  aggressive 0.5 0.5 14.13 4.52 0.212
Aggressive 0.3 0.7 13.59 8.53 0.271

ndependent and cannot be optimized simultaneously. These four
bjectives are defined as follows:

Objective 1: max  {E[Earn]}
Objective 2:

max{E(Earn)}
subject to CTE90(D) < (0.15 · E[P(T)])

Objective 3: min  {E(D)}
Objective 4: min  {Prob[D > 0]}

The parameters used in the simulation models are set as fol-
ows: the guaranteed interest rate rG is 0.07; both the premium P(0)
nd the initial asset A(0) are 100; the insurance period T is 10; the
moothing factor ϕ is 3 and both the participating rates  ̌ and � are
.6. The  ̌ is introduced in (3) and � can be found in (4).  HA is applied
o the simulation models to find the best multi-period asset alloca-
ion. These simulation models were executed with two  assets and
our assets in the portfolio. To illustrate the changes between risky
nd non-risky assets in investment strategies more clearly, we  first
iscuss the computational results of the models with two  assets
equities and consols) with equities representing risky assets and
onsols representing non-risky assets. We  then compare the per-
ormance of the investment strategies generated with two  and four
ssets each. We  investigate three single-period investment strate-
ies: an aggressive investment strategy (i.e., holding 70% equities
nd 30% consols during the 10-year period); a somewhat aggressive
nvestment strategy (50% equities and 50% consols during the 10-
ear period); and a conservative investment strategy (30% equities
nd 70% consols during the 10-year period).

Table 4 shows the investment results of insurer profits and
uarantee costs for the three single-period investment strategies.
he three criteria used to evaluate the performance of different
nvestment strategies are expectation of terminal profit, E [Earn],
xpectation of guarantee cost, E [D], and probability with deficits,
rob (D > 0). Studies find that insurers have larger profits and
eficits when they switch their investment strategy from con-
ervative to somewhat aggressive [34]. However, when insurers
witch strategy from somewhat aggressive to aggressive, profits
ecrease and deficits rise. This is because insurers declare more to
he insured in the earlier years of a policy and increase liability in
ater years. This is an interesting finding, in that it differs from the
eneral belief that the more aggressive the strategy used, the higher
he profits and the corresponding probability of deficits.

Table 5 presents the investment results of the multi-period HA

nvestment strategies for the two-asset models. For convenience,
BJ1 denotes the strategy for the model with the first objective

unction, OBJ2 for the model with the second objective function,
nd so on. The first column in Table 5 lists these strategies. The

able 5
nsurer profits and deficits in the best multi-period investment strategy for the two-
sset model.

Objective
function

E [Earn] E [D] Prob
(D > 0)

OBJ1 20.34 9.27 0.256
OBJ2 18.00 4.10 0.184
OBJ3 12.11 2.49 0.157
OBJ4 14.06 2.68 0.137
OBJ3 2.4886592916 0.0000125281
OBJ4 0.13700000000 0.0000000000

computational results show that a multi-period investment strat-
egy can simultaneously increase insurer profits and lower risk.
For instance, OBJ2 resulted in larger expected profits (18.00) than
those using somewhat aggressive (14.13) and aggressive (13.59)
strategies. Additionally, OBJ2 had smaller expected deficits and
deficit probability (4.1 and 0.184, respectively) than the somewhat
aggressive (4.52, 0.211) and aggressive (8.53, 0.271) strategies. Fur-
thermore, both OBJ3 and OBJ4 had larger expected profits, lower
expected deficits, and lower deficit probabilities than those of the
conservative strategy. We  also investigated the robustness of the
proposed algorithm by applying it to the two-asset model with each
of the four objective functions, using five randomly generated ini-
tial populations. For each of the four cases, we observed that the
multi-period investment strategies converged from the five initial
populations, and all five converged to almost the same investment
strategy. Our results demonstrate that the robustness of this hybrid
algorithm provides a great advantage for producing effective multi-
period investment strategies. For each case, the mean and standard
deviations of the four objective values were calculated, and the
results are summarized in Table 6.

Traditional top-down investment strategies promote an
“aggressive first, conservative later” approach. However, our find-
ings dispute that notion. Fig. 2 shows multi-period investment
strategies for the two-asset model using each of the four objec-
tive functions. A common property among these strategies is an
initially conservative application, which then gradually becomes
more aggressive as the term concludes. These findings turn the tra-
ditional investment wisdom on its head, advocating instead for a
“conservative first, aggressive later” outlook. In other words, insur-
ance companies should hold more riskless assets at the beginning
of the liability period in order to limit guarantee costs. They should
then gradually switch to risky assets to increase profit.

Our findings also indicated that by holding more assets in the
portfolio, when both profits and deficits are considered, a multi-
0 42 6 8
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Fig. 2. Optimal asset allocation of four objectives in the two-asset model.
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Table  7
Insurer’s profits and deficits of the best multi-period investment strategy for the
four-asset model.

Strategy (multiple
rebalance)

E [Earn] E [D] Prob
(D > 0)

OBJ1 27.16 8.47 0.232
OBJ2 23.76 3.81 0.164
OBJ3  8.54 0.59 0.092
OBJ4  11.01 0.84 0.057

Table 8
Mean and standard deviation of the five objective values produced by five different
initial populations for the four-asset model.

Mean (optimal value) Std dev

OBJ1 27.161777736 0.000021845
OBJ2 23.7612186747 0.0000294155
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Fig. 3. The asset allocation of different gamma values for OBJ1.
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OBJ3 0.5947023490 0.0000090678
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ndex-linked gilts and short-bonds) in its portfolio. Table 7 presents
he computational results of the multi-period investment strategy
or four assets. The computational results of OBJ1 and OBJ2 illus-
rate this phenomenon. When the number of assets increases from
wo to four, the expected profit produced by OBJ1 increases from
0.34 to 27.16, the expected deficit decreases from 9.27 to 8.47, and
he deficit probability decreases from 0.256 to 0.232. Similarly, the
xpected profit produced by OBJ2 increases from 18.00 to 23.76, the
xpected deficit decreases from 4.10 to 3.81, and the deficit prob-
bility decreases from 0.184 to 0.164. If only objectives related to
eficits are considered, the multi-period investment strategy sig-
ificantly decreases expected deficits and deficit probability when
he number of assets increases from two to four. We  applied the
ame method used to investigate HA robustness of the two-asset
odels to the four-asset models. The same phenomenon was dis-

overed, and the mean and standard deviations of OBJ1, OBJ2, OBJ3
nd OBJ4 are presented in Table 8.

We further studied the effect of the frequency of asset realloca-
ion on the performance of the multi-period investment strategy
hen considering two assets. Since the results of OBJ1 and OBJ4
ere similar to those of OBJ2 and OBJ3, only the results of OBJ2 and
BJ3 are presented in the following tables. Both tables show that,
ith the exception of the two-year asset reallocation frequency

n the E [D] result, the more frequently assets are reallocated, the

igher the expected profits, the lower the expected deficits, and the

ower the probability of deficits (Tables 9 and 10).

able 9
omparison of effectiveness for different frequencies of asset reallocation for OBJ2.

Frequency of changing
proportions

E  [Earn] E [D] Prob
(D > 0)

Every ten years 12.27 4.58 0.234
Every five years 14.64 4.12 0.194
Every two years 16.60 4.06 0.19
Every year 18.00 4.10 0.184

able 10
omparison of effectiveness for different frequencies of asset reallocation for OBJ3.

Frequency of changing
proportions

E  [Earn] E [D] Prob
(D > 0)

Every ten years 9.17 3.48 0.211
Every five years 10.98 2.77 0.17
Every two years 11.72 2.62 0.155
Every year 12.11 2.49 0.157
policy yea r

Fig. 4. The asset allocation of different beta values for OBJ1.

4.2. Sensitivity analysis of  ̌ and �

Two  parameters,  ̌ and� , are critical to the structure of the
contract. Therefore, we investigated the relationship between the
multi-period investment strategies (OBJ1, OBJ2, OBJ3, and OBJ4)
and  ̌ and � . Since this relationship is not influenced by a related
objective function, we only examined the effect of having different

 ̌ and � on OBJ1. Fig. 3 shows that OBJ1 becomes more aggres-
sive if � decreases under a fixed ˇ. From the definition of Earn, the
decrease in � leads to an increase in the profit rate. In the case
of � = 1, profit is zero if A(T) ≥ P(T), and will become negative if
A(T) < P(T). Thus, an aggressive strategy leads to more deficits, and
OBJ1 appears more conservative when compared with other cases
with a � of less than 1. If  ̌ decreases, Fig. 4 shows that OBJ1 becomes
more aggressive under the same objective function. The reason for
this is similar to the preceding case.

5. Discussion and conclusions

This paper proposes an optimization approach for gener-
ating an investment strategy for multi-period asset-liability

management of long-term with-profit insurance policies. We
put forward a hybrid algorithm combining evolution strategies
and the Levenberg–Marquardt algorithm. Our proposed algo-
rithm improves on evolutionary approaches by converging on
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uality solutions more efficiently. When excessive assumptions
re imposed on real-world simulation models in an attempt to
lleviate computation load, unreasonable results generally occur.
onciseness and efficiency are therefore vital to search techniques,
s solutions must be generated within a realistic period. This issue
as been crucial in developing large-scale simulation models. How-
ver, the fact remains that for complex problems, reaching global
ptimization is computationally intensive. Practical applications
equire that an algorithm be both robust and efficient before it can
e successfully implemented. The computational results demon-
trate that our simulation model is an effective tool for the study
f a multi-period asset allocation, and our hybrid approach is an
fficient, robust algorithm for generating optimal multi-period
nvestment strategies. Our experiment results show improved
eturns based on increased asset reallocation frequency.

Given that local search algorithms typically became trapped to a
ocal optimum when poor initial solutions are used, when to apply
M for local search remains an open question. Since the initial solu-
ion for LM was obtained from ES, it might not be mature enough
o be a good initial solution for LM if ES is far away from global con-
ergence. Solutions obtained from LM will be either outside the
onstraints or inferior to those obtained from the global search
lgorithm. In this case, the LM solutions will be abandoned and
earching will continue. On the other hand, applying LM with well-
onverged solutions from EA too late will compromise efficiency.
urther research needs to be conducted into how to maximize
fficiency and accuracy by using optimal initial solutions to local
earch. This issue is particularly difficult, given that local search
s problem-dependent and requires trial-and-error adjustment for
ptimal results.

Furthermore, application of our optimization approach disputes
he traditional notion of the top-down investment approach to
ong-term with-profit liability [34]. Rather than investing aggres-
ively in the beginning, and retreating to a more conservative
pproach as the liability term concludes, our simulation results
how that insurance companies need to be conservative during
he initial investment stage and gradually apply more aggressive
nvestment strategies near the end of the term to minimize guaran-
ee costs and increase profitability. It is our belief that our research
resents a novel approach, with potentially wide-ranging implica-
ions for the computing and investment communities.

ppendix A.

The Wilkie Model is a stochastic asset model that represents the
ehavior of various economic series over time. Wilkie’s investment
odel was first introduced in 1986, with an updated version pre-

ented in 1995. In the 1995 version, Wilkie updated the parameter
alues used in the original model and extended the model to cover
hort-term interest rates, the yield on long-dated index-linked gilts,
roperty rental yields, the force of property rental growth, and the
orce of salary growth. We  only introduce the series used in this arti-
le; detailed information can be found in Wilkie’s 1995 publication
14].

The force of inflation rate:

The force of inflation rate I(t), the driving force for other series,
s an AR(1) model, as follows:

(t) = QMU  + QA[I(t − 1) − QMU] + QE(t),
here QMU  is the mean force of inflation, QA is the parameter
ontrolling the strength of the autoregression, and QE(t) is an i.i.d.
identical independent distribution) random white noise term dis-
ributed Normal (0, QSD2). The parameters, including the following,
ting 12 (2012) 3452–3461

used in this article are consistent with the estimated parameters
suggested by Wilkie [14]. The parameters for the force of interest
rate are:

QMU = 0.047, QA = 0.58, QSD = 0.0425, I(0) = 0.047

• Long-term gilt yield:

The model of the long-term gilt yields C(t) at time t is:

C(t) = CW · CM(t) + CMU · exp(CN(t)),

with

CM(t) = CD × I(t) + (1 − CD) · CM(t − 1),  and

CN(t) = CA · CN(t − 1) + CY · YE(t) + CE(t),

where CE(t) is an i.i.d. random white noise term distributed Normal
(0, CSD2), YE(t) is defined below, and the values of the parameters
are:

CW = 1.0, CMU = 0.0305, CD = 0.045, CA = 0.8974,

CY = 0.3371, CSD = 0.1853, CM(0) = 0.047, CN(0) = 0.

• Short-term cash rate:

The model of the short-term cash rate B(t) at time t is:

B(t) = C(t) · exp[−BD(t)],

with

BD(t) = BMU + BA · (BD(t − 1) − BMU) + BE(t),

where BE(t) is an i.i.d. random white noise term distributed Normal
(0, BSD2), and the values of the parameters are:

BA = 0.74, BMU  = 0.23, BSD = 0.18, BD(0) = 0.23.

• Share dividend yield:

The share dividend yield Y(t) has two components: a term
related to the inflation rate and an AR(1) model for YN(t), as follows:

Y(t) = YMU · exp[YW · I(t) + YN(t)],

with

YN(t) = YA · YN(t − 1) + YE(t),

where YE(t) is an i.i.d. random white noise term distributed Normal
(0, YSD2). The values of the parameters are:

YW = 1.8, YMU = 0.0375, YA = 0.55,

YSD = 0.155, YN(0) = 0.

• Yield on long-dated index-linked gilts:
The model of the yield on long-dated index-linked gilts R(t) is

ln R(t) = ln RMU + RA · [ln R(t − 1) − ln RMU] + RBC · CE(t) + RE(t)
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here RE(T) is an i.i.d. random white noise term distributed Normal
0, RSD2). The values of the parameters are:

MU  = 0.04, RA = 0.55, RBC = 0.22,

RSD = 0.05, R(0) = 0.04.

Share dividend index:

The share dividend index D(T) at time t is:

(t) = D(t − 1) · exp [DQ (t) + DMU  + DY · YE(t − 1)

+DB · DE(t − 1) + DE(t)] ,

ith

Q (t) = DX · I(t − 1) + (1 − DX) · DM(t), and

M(t) = DD · I(t) + (1 − DD) · DM(t − 1),

here DE(T) is an i.i.d. random white noise term distributed Normal
0, DSD2). The values of the parameters are:

MU  = 0.016, DY = −0.175, DB = 0.57, DX = 0.42,

DD = 0.13, DSD = 0.07, DM(0) = 0.047, YE(0) = 0,

DE(0) = 0, and D(0) can be set arbitrary.

Share price index:

The share price index P(t) can be derived from the dividend index
nd the dividend yield, as follows:

(t) = D(t)
Y(t)

The return rate of each asset can be derived as follows:
The return rate of short-term bonds from t − 1 to time t then

quals B(t − 1).
The return rate of long bonds from t − 1 to time t,

b(t), equals C(t − 1) + (C(t − 1))/(C(t)) − 1; or equivalently,
 + ib(t) = C(t − 1) + (C(t − 1))/(C(t)).

The return rate of index-linked gilts from t − 1 to time t equals
R(t − 1))/(R(t))[1 + R(t)]exp[I(t)] − 1.

The return rate of equities from t − 1 to time t,
s(t), equals (P(t) + D(t))/(P(t − 1)) − 1; or equivalently,

 + is(t) = (P(t) + D(t))/(P(t − 1)).
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