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a b s t r a c t

This paper proposes a Conditional Value-at-RiskMinimization (CVaRM) approach to optimize an insurer’s
product mix. By incorporating the natural hedging strategy of Cox and Lin (2007) and the two-factor
stochastic mortality model of Cairns et al. (2006b), we calculate an optimize product mix for insurance
companies to hedge against the systematic mortality risk under parameter uncertainty. To reflect the
importance of required profit, we further integrate the premium loading of systematic risk. We compare
the hedging results to those using the duration match method of Wang et al. (forthcoming), and show
that the proposed CVaRM approach has a narrower quantile of loss distribution after hedging—thereby
effectively reducing systematic mortality risk for life insurance companies.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decade, a longevity shock has spread across
human society. Benjamin and Soliman (1993), McDonald et al.
(1998), Grundl et al. (2006) and Stallard (2006) confirm that un-
precedented improvements in population longevity have occurred
worldwide. The decreasing trend in the mortality rate has cre-
ated a great risk for insurance companies. The existing litera-
ture has proposed a number of solutions to mitigate the threat
of longevity risk to life insurance companies. These solutions can
be classified into three categories. The capital market solutions
include mortality securitization (see, for example Dowd, 2003;
Lin and Cox, 2005; Cairns et al., 2006a; Blake et al., 2006a,b;
Cox et al., 2006), survivor bonds (e.g. Blake and Burrows, 2001;
Denuit et al., 2007), and survivor swaps (e.g. Dowd and Blake,
2006; Dowd et al., 2006). These studies suggest that insurance
companies can transfer their exposures to the capital markets.
Cowley and Cummins (2005) provide an excellent overview of
the securitizations of life insurance assets and liabilities. The
second set of solutions, the industry self-insurance solutions, in-
clude the natural hedging strategy of Cox and Lin (2007), the
duration matching strategy of Wang et al. (forthcoming), and
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the reinsurance swap of Lin and Cox (2005). The advantages of
these solutions are that the hedging does not require a liquid
market and can be arranged at a lower transaction cost. Insurance
companies can hedge longevity risk by themselves or with coun-
terparties. The third kind of solution, known asmortality projection
improvement, provides a more accurate estimation of mortal-
ity processes. As Blake et al. (2006b) propose, these studies fall
into two areas: continuous-time frameworks (e.g. Milevsky and
Promislow (2001), Dahl (2004), Biffis (2005), Schrager (2006), Dahl
and Moller (2006)) and discrete-time frameworks, e.g., Brouhns
et al. (2002), Renshaw and Haberman (2003) and Cairns et al.
(2006b). Parameter uncertainty andmodel specification in relation
to the mortality process have also attracted more attention in re-
cent years.
Among the industry self-insurance solutions, the natural hedg-

ing strategy suggests that life insurance can serve as a hedging
vehicle against longevity risk for annuity products. Wang et al.
(forthcoming) employ duration as a measure of the product sensi-
tivity to mortality change, and propose amortality duration match-
ing (MDM) approach to calculate the optimal product mix. Their
work, however, is based on several restrictive assumptions. First,
they assume that future mortality changes involve parallel shifts
in the mean, and do not measure the higher-order moments of
the mortality risk distribution. Second, the MDM approach applies
to only two products. Third, the MDM approach is a pure risk-
reductionmethod because the profit loading is not considered dur-
ing the hedging procedure. Fourth, Cairns (2000), Melnikov and
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Romaniuk (2006) and Koissi et al. (2006) suggest that parameter
risk is crucial when dealing with longevity risk. The parameter un-
certainty does not play a role in the MDM approach, since Wang
et al. (forthcoming) consider the mortality shift only in terms of its
mean.
To overcome these problems, we employ the two-factor

stochastic mortality model of Cairns et al. (2006b) and construct
the Conditional Value-at-Risk Minimization (CVaRM) (Dowd and
Blake, 2006) approach to control the possible loss. Managing prod-
ucts risk with parameter uncertainty is one feature of the CVaRM
approach. The other feature is that we add the profit-loading con-
straint into the optimization. The premium-pricing principle sug-
gested by Milevsky et al. (2006) is employed to estimate the re-
quired profit loadings, i.e., in order to compensate the stockhold-
ers bearing systematic mortality risk with the same Sharpe ratio
as other asset classes in the economy.1 Furthermore, the CVaRM
approach could be easily implemented using linear programming
(Rockafellar and Uryasev, 2000), and insurance companies could
adopt it as their own internal risk-management tool.
The results of our simulation reveal that the proposed CVaRM

approach yields a less dispersed product distribution after hedging
and so effectively reduces systematic mortality risk for life insur-
ance companies. The MDM approach, on the other hand, has a lim-
ited effect on the dispersion of the product distribution. In addition,
the CVaRM approach considers not only risk reduction but also
the required profit constraint. We found that the required loading
substantially changes the optimal product mix and so cannot be
ignored.
The remainder of this article is organized as follows: Section 2

outlines the models, including the mortality model of Cairns et al.
(2006b), the duration matching model of Wang et al. (forth-
coming), the loading estimation of Milevsky et al. (2006) and
the CVaRM approach. In Section 3 we introduce the mortality
data, project future mortality and design the products. Section 4
presents the numerical examples in two scenarios: the two-
product scenario without a required loading constraint and a
multiple-product scenario with a required loading constraint. The
hedging results of the MDM and CVaRM approaches are also com-
pared in this section. Conclusions and implications are contained
in Section 5.

2. The models

Before introducing the CVaRM approach, this section first
briefly reviews the two-factor stochastic mortality model of Cairns
et al. (2006b), themortality durationmatchingmodel ofWang et al.
(forthcoming), and the loading-estimation methods of Milevsky
et al. (2006).

2.1. The two-factor stochastic mortality model

Several stochastic models proposed in the literature attempt to
capture themortality processes.We chose the two-factormortality
model, i.e., CBD model, as the underlying mortality process for
two reasons. First, the CBD model characterizes not only a cohort
effect but also a quadratic age effect. The two factors A1(t) and
A2(t) in the CBD model represent all age general improvements
in mortality over time and different improvements for different
age groups. These two factors reflect both the trend effect and the

1 The non-systematic risk of products is not considered here. We assume that
the non-systematic mortality risks are all diversified across policyholders via the
law of large numbers. Shareholders bearing non-systematic mortality risk are not
rewarded.We also assume that insurance companieswill not suffer from insolvency
risk.
age effect. Thus, the analysis will be economically or biologically
meaningfulwhenwe consider the parameter changes of the factors
over time. Second, the CBDmodel is a discrete-timemodel and can
be more conveniently implemented in practice. This paper offers
a brief description of the two-factor model; for a more detailed
discussion, see Cairns et al. (2006b).
Let qt,x be the realizedmortality rate for age x insured from time

t to t+ 1. Assume that the mortality curve has a logistic functional
form as follows:

qt,x =
eA1(t+1)+A2(t+1)·(x+t)

1+ eA1(t+1)+A2(t+1)·(x+t)
. (1)

The two stochastic trends A1(t+1) and A2(t+1) follow a random-
walk process with drift parameter µ and diffusion parameter C:
A(t + 1) = A(t)+ µ+ CZ(t + 1), (2)
where A(t + 1) = (A1(t + 1), A2(t + 1))T and µ = (µ1, µ2)

T

are 2 × 1 constant parameter vectors. C is a 2 × 2 constant
upper-triangular Cholesky square-root matrix of the covariance
matrix V = CCT and Z(t) is a two-dimensional standard normal
randomvariable. To include the uncertainty ofµ and C , Cairns et al.
(2006b) invoke a normal-inverse-Wishart distribution from a non-
informative prior distribution:

V−1 |D ∼ Wishart(n− 1, n−1V̂−1)
µ−1 |V ,D ∼ MVN(µ̂, n−1V ),
where D(t) = A(t)− A(t − 1),

µ̂ =
1
n

n∑
t=1

D(t),

and V̂ =
1
n

n∑
t=1

(
D(t)− µ̂

) (
D(t)− µ̂

)T
.

(3)

Thus, we can generate A(t) from Eq. (2) with the parametersµ and
C from Eq. (3). Then we get qt,x, as Eq. (1) suggests.

2.2. The Mortality Duration Matching (MDM) method

Wang et al. (forthcoming) propose the MDM approach to cal-
culate an optimal life insurance/annuity weight to immunize the
value change frommortality risk. They propose the following prod-
uct mix of life insurance:

wD =
Da

Da + Dl
, (4)

where Da denotes the effective duration of the annuity and Dl de-
notes the effective duration of the life insurance. Formally, the ef-
fective duration can be calculated as follows:

Da = −
V a+ − V a−

2V a1q
and Dl =

V l+ − V l−

2V l1q
.

The1q refers to the change in the mortality rate, V a+ and V l+ rep-
resent the product values at highermortality rate (q+1q) and V a−
and V l− represent the values at the lower mortality rate (q−1q).
If the change is small, this strategy leads to the product immuniza-
tion as follows:

∆V = wDDl − (1− wD)Da = 0. (5)
Wang et al. (forthcoming) also propose themortality convexity ad-
justment for a large change as

Ca =
V a− + V a+ − 2V a

V a(∆q)2
and C l =

V l− + V l+ − 2V l

V l(1q)2
.

Then the product mix weight with convexity on life insurance is

wC =
Da − 1q

2 C
a

Da + Dl + ∆q
2

(
C l − Ca

) . (6)

Here, the change is set as1q = q̄(1+ s)− q̄, where q̄ is the mean
of themortality process and s is a shift proportion such as 1%. Thus,
the change here involves a parallel shift in the mean.
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2.3. Profit-loading estimation: The Sharpe ratio method

Milevsky et al. (2006) show that when the mortality rate is
stochastic, the standard deviation per policy does not vanish de-
spite the law of large numbers. Rather there exists systematic or
market risk even in a large diversified product portfolio. The share-
holders of an insurance company request a risk premium for bear-
ing the systematic risk. Milevsky et al. (2006) propose that the risk
premium π , which is used to compensate shareholders, be speci-
fied using the Sharpe ratio. The Sharpe ratio for the product pre-
mium is defined as

SR =
E(V )(1+ π)− E(V )

σ (V )
, (7)

where E(V ) is the expected or actuarially fair price of the product
under the law of large numbers, and σ(V ) is the standard deviation
of product values. When the capital market is in equilibrium, the
SR in Eq. (7) may be set equal to the Sharpe ratio of some broadly
diversified portfolio, such as the S&P500 index; then the risk pre-
mium π is implicitly specified by (7). For more details please see
Section 4.2.

2.4. The Conditional Value-at-Risk Minimization (CVaRM) approach

Let the random variable vi be the value of the ith product. Simi-
larly let E(vi) be its present value or actuarially fair price. Since q is
stochastic, vi will generate deviations from E(vi). The loss propor-
tions for each product are denoted as

r i =
vi − E

(
vi
)

E
(
vi
) . (8)

The total loss proportion is

rp =
∑
i

wir i, (9)

where wi is the weight of the ith product in relation to the whole
product. The ith product could refer to life insurance or an annuity.
We engage in natural hedging to minimize the risk rp by choosing
differentwi. The Conditional VaR (CVaR) is proposed as a measure
of the product risk. CVaR is chosen as a riskmeasure instead of VaR,
because CVaR is a coherent measure, whereas VaR is not; this is
shown by Artzner et al. (1997), Artzner et al. (1999) and Deprez
and Gerber (1985). The CVaRM approach is expressed as

Min
wi

E
[
rp
∣∣rp ≥ rp(α) ] (10)

s.t.
∑
i

wi · π i ≥ π̄ , (11)∑
i

w = 1, and 0 ≤ wi ≤ 1 (12)

where E
{
rp
∣∣rp ≥ rp(α)} is the conditional expected loss that ex-

ceeds the threshold, rp(α), under the specified probability α. In
Eq. (11), π i denotes the profit loading on the ith product charged
by the insurance company and is estimated using the Sharpe ratio
noted in Section 2.3. The weighted profit

∑
wi · π i is constrained

to be greater than or equal to π̄ . Here we let the target profit π̄ be
exogenously given. We ensure that the sum of the weights is equal
to one and prohibit short selling via Eq. (12). Although CVaR is usu-
ally defined in terms of monetary value, here we represent it as a
percentage loss; this avoids confusion over magnitude.
In the CVaRM approach, rp is generated as follows. First, we ap-

ply the CBD model to simulate the mortality processes and cor-
responding distributions of vi. We compute E(vi) and substitute
it into Eq. (8) to obtain the distribution of r i. We calculate rp with
Year, t

-3.1

-3

-2.9

-2.8

-2.7

-2.6

1965 1970 1975 1980 19901985 1995 2000 2005

Year, t

1965 1970 1975 1980 19901985 1995 2000 2005

-3.2

-2.5

A
1(

t)

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

0.074

0.092

A
2(

t)

Fig. 1. The estimated parameters in the CBDmodel for men aged 60–84 from 1965
to 2003.

Eq. (9). Also note that the CBDmodel allows parameter uncertainty
to be considered and this approach makes it possible to incorpo-
rate longevity risk and parameter uncertainty simultaneously. To
demonstrate the results of the optimization, we provide three ex-
amples in Section 4.

3. Mortality model estimation and product designs

This section describes the mortality data set and products. We
employ the data from Cairns et al. (2007) and the JPMorgan Life-
Metrics (2006); a sample of USmen aged 60–84 from 1968 to 1979
and US men aged 60–89 from 1980 to 2003.2 The estimated drift
and diffusion parameters are

µ̂ =

(
−0.016289
0.0004769

)
and

V̂ = Ĉ ĈT =
[
0.00011695 0.00000334
0.00000334 0.00000031

]
.

The hats indicate the estimated values. By substituting the coeffi-
cients µ̂ and V̂ into Eq. (2), we obtain A(t) = (A1(t), A2(t))T. The
paths of A1(t) and A2(t) are shown in Fig. 1. Then we convert the
qt,x from (1) into a survival index St for a cohort of age x at time t .
There are three types of products in our numerical examples:

whole-life annuity, whole-life insurance, and 20-year term-life
insurance. Thewhole-life annuity is issued tomen aged 60, and the
cohort groups are paid $1 at the end of each year. The whole-life
insurance is issued to men aged 40 or 60, and the payout benefit

2 The data set and CBD estimation model are available on the JPMorgan Life-
Metrics website: http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/
lifemetrics.

http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics
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Table 1
Basic assumptions about products.

Whole-life annuity Whole-life insurance Term-life insurance

Age/Gender 60/Men 40 or 60/Men 40/Men
Payout benefit $1 per year $100 $100
Coverage Whole life Whole life 20 years
Premium type Single Single Single
Interest rate 3% 3% 3%
Deferred period Immediately Immediately Immediately
Mortality process CBD CBD CBD
Premium value $14.94 $54.41/$74.72 $29.76
Table 2
The CVaRs and statistics of the loss distributions for Fig. 2.

Model α = 0.99 α = 0.95 α = 0.90 Average Std.× 102 wl × 102 Loading×104

All whole-life annuity 3.712 0.580 0.247 0.000 1.428 0.0 1.438
All whole-life insurance 1.853 0.286 0.122 0.000 0.696 100.0 0.192
Duration match 3.324 0.519 0.222 −0.000 1.279 10.6 1.306
Duration with convexity 3.348 0.523 0.223 0.000 1.288 9.9 1.314
The CVaRM approach 1.725 0.270 0.116 0.000 0.662 67.3 0.599

The Std. andwl are multiplied by 100. The loading values are multiplied by 10,000 (for example, 1.438 is 0.0001438).
is $100. The term-life insurance is issued to men aged 40, and the
payout benefit is also $100. Both premiums are collected in a single
premium today. For the sake of simplicity, the deferred periods
are zero. The interest rate is 3%, and the mortality process follows
the CBD two-factor model. The products’ expected values for the
whole-life annuity, whole-life insurance and 20-year term-life
insurance are $14.94, $54.41/$74.72, and $29.76, respectively. The
information is summarized in Table 1. We calculate the expected
values of products on the basis of the mortality distributions
generated by JPMorgan LifeMetrics (2006).3

4. Numerical analysis of the optimal product mix

To demonstrate the hedging effect, we construct three exam-
ples in two scenarios. In scenario one the insurer cares only about
risk reduction and does not consider any profit loading. Here we
choose a two-product framework and compare the hedging effects
of the CVaRM and MDM approaches. We show that the CVaRM
approach has a better hedging effect in terms of the aggregate
distribution than the MDM approach does. The analysis is then
extended to the multi-product framework in scenario two. We
provide a three-product example with a required profit-loading
constraint and find the optimal product mix. The results show that
the CVaRM approach achieves a better hedging effect than the
MDM approach under the required profit-loading constraint.
In the simulation, we first generate 10,000-timesmortality pro-

cesses to obtain the distributions of vi. The loss distribution, r i,
is the product value minus its expected value, divided by the ex-
pected value as shown in Eq. (8). With these returns, we estimate
the weights wD (duration match), wC (convexity adjustment) and
wCVM (CVaRM). The confidence intervals are chosen as α = 99%,
95% and 90%. To implement the CVaRM optimization, we follow
themethodology of Rockafellar and Uryasev (2000). The algorithm
is implemented in C++ and we used the CPLEX 7.0 Callable Library
to solve the linear programming problem.

4.1. Scenario 1: Pure risk reduction and two-product hedging

We consider a two-product framework in this scenario. There
are five cases. Case 1 is the distribution of the whole-life annuity;

3 If the market prices of mortality-linked securities are available, then the
mortality distribution could be transformed into a pricing distribution. For more
details, see Cairns et al. (2006b).
Case 2 is whole-life insurance; Case 3 is the mixed distribution of
wD; Case 4 is the mixed distribution ofwC and Case 5 is the mixed
distribution ofwCVMα . We solvewCVMα using the following approach:

Min
w

E
[
rp
∣∣rp ≥ rp(α) ]

s.t. wa + wl = 1, and 0 ≤ wa, wl ≤ 1

wherewa andwl are theweights for the annuity and life insurance,
respectively.
The loss distributions are shown in Fig. 2. In Fig. 2, thewhole-life

annuities (Case 1) have thewidest distribution among all cases and
represent a high-risk product. The distribution of whole-life insur-
ance (Case 2) has a more central distribution and lower risk than
Case 1. The annuity issued formen aged 60 has awider distribution
than the life insurance issued for men aged 40 before hedging. We
find a narrower distribution in Case 3, in which the annuity dis-
tribution is mixed with some life insurance, wD = 10.6%, as sug-
gested by the MDM approach. We have a narrower and centered
loss distribution in Case 4, but the effect of the convexity adjust-
ment does not cause a significant improvement in the tail distri-
butions. The postulation is that the convexity adjustment does not
work well with distribution risk. The risk is significantly reduced
in Case 5; the distribution reveals higher frequency in the center
and lower frequency in the tails after hedging under the weight,
wCVM99% = 67.3%. The hedging result for the CVaRM approach has
the smallest tail risk among cases 3 through 5.
The CVaRs and statistics are shown in Table 2. The 99% CVaRs

of annuities and life insurance are 3.712 and 1.853, respectively.
Hedged by the MDM and MDMwith convexity, the 99% CVaRs de-
crease to 3.324 and 3.348. The CVaRM method decreases the 99%
CVaR to 1.725. We can see similar effects for other confidence in-
tervals, i.e., 95% and 90%. The CVaRM approach offers the smallest
CVaR,which is even smaller than that forwhole-life insurance. Col-
umn 5 shows that the CVaRM also has the smallest standard devia-
tions (0.662%). This approach achieves a hedging effect in terms of
the variance too. We do not add the required loading constraint in
this scenario, but merely present the weighted loadings in the last
column. The CVaRM approach has a lower weighted-loading profit
(0.599 bps).
In Fig. 3 the whole-life insurance for the age-60 cohort is re-

placed by the age-40 cohort. In Fig. 3, the distribution for the
whole-life insurance has a more centered distribution than its
counterpart in Fig. 2. To reflect this change, the MDM approach
holdsmore life insurance and increaseswD from10.6% to 36.7%, i.e.,
see column 6 of Table 3. However, the CVaRM approach increases
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Fig. 3. The loss distributions for whole-life annuities and whole-life insurance both at age 60 (x-axis: values of rp , y-axis: relative probability).
the weight wCVM99% from 67.3% to 87.2%. The CVaRM approach rec-
ommends much more life insurance than the MDM approach.
Table 3 shows the CVaRs of these distributions. Consider the

99% CVaR in column 1 as an example: the whole-life annuity
and whole-life insurance CVaR values are 3.712 and 0.583,
respectively. After being hedged by the MDM and MDM with the
convexity, the CVaRs decrease to 2.206 and 2.238, respectively. The
CVaRM approach reduces CVaR to 0.379, the smallest value. These
results show that the CVaRM approach offers a better hedging
performance, in the scenario of the age-40 cohort.
The tendency in this risk-reduction scenario is to hold too

much life insurance, as the CVaRM approach suggests. However,
the weighted profit loadings of the CVaRM approach are the
smallest (0.222 bps), as shown in the last column of Table 3. The
loading constraints are included in the next scenario to fix this
problem.
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Table 3
The CVaRs and statistics of the loss distributions for Fig. 3.

Model α = 0.99 α = 0.95 α = 0.90 Average Std.× 102 wl × 102 Loading×104

All whole-life annuity 3.712 0.580 0.247 0.000 1.428 0.0 1.438
All whole-life insurance 0.583 0.090 0.038 0.000 0.217 100.0 0.044
Duration match 2.206 0.345 0.147 0.000 0.851 36.7 0.926
Duration with convexity 2.238 0.350 0.149 0.000 0.863 35.9 0.938
The CVaRM approach 0.379 0.059 0.024 0.000 0.147 87.2 0.222

The Std. andwl are multiplied by 100. The loading values are multiplied by 10,000 (for example, 1.438 is 0.0001438).
Table 4
The CVaRs and statistics of the loss distributions with π̄ = 1 bps.

Model α = 0.99 α = 0.95 α = 0.90 Average Std.× 102 wa wl1 wl2 Loading×104

All whole-life annuity 3.712 0.580 0.247 0.000 1.428 100.0 0.0 0.0 1.438
All whole-life insurance 1.853 0.286 0.122 0.000 0.696 0.0 100.0 0.0 0.192
All term-life insurance 6.532 1.017 0.435 0.000 2.517 0.0 0.0 100.0 1.268
The CVaRM approach 2.666 0.422 0.181 0.000 1.059 50.6 27.6 21.8 1.056

The Std. andwl are multiplied by 100. The loading values are multiplied by 10,000 (for example, 1.438 is 0.0001438).
4.2. Scenario 2: Multi-product mix with loading constraint

Assume that the insurance company sells three life insurance
products in themarket. The three products arewhole-life annuities
for the age-60 cohort, whole-life insurance and 20-year term-life
insurance for the age 40 cohort. The CVaRM approach with the
required profit-loading constraint is

Min
w

E
[
rp
∣∣rp ≥ rp(α) ]

s.t. wa · π a + wl1 · π l1 + wl2 · π l2 ≥ π̄ ,

wa + wl1 + wl2 = 1, and 0 ≤ wa, wl1 , wl2 ≤ 1

wherewa is the weight of the whole-life annuity,wl1 is the weight
of the whole-life insurance, and wl2 is the weight of the term-
life insurance. π a, π l1 and π l2 are profit loadings on the annuity,
whole-life and term-life insurance, respectively, and are 1.438,
0.192, and 1.268 basis points, as implied by the premium-pricing
principle, with the Sharpe ratio being equal to 15%. Consider the
example of whole-life insurance: E(vl1) = 54.41, σ(r l1) =
0.00696 (in Table 4), and SR = 15% indicates that π l1 = 0.192
basis points.4 These loadings reflect the profit requested by the
shareholders bearing the systematic mortality risk in the capital
market. The higher the standard deviation, the higher the profit
loading. The target return, π̄ , is set equal to 1 basis point. The CVaRs
of the three-product distributions and their productmix are shown
in Table 4.
In Table 4, the all whole-life insurance has a small CVaR value,

1.853 under α = 0.99. However, the CVaRM approach cannot hold
this product too much under the inequality constraint. The CVaRM
approach proceeds with the trade-off between rp and π i, and then
gives wa = 50.6%, wl1 = 27.6% and wl2 = 21.8% under the 99%
confidence interval. In row 4 of Table 4, we have mild CVaRs, e.g.,
CVaR= 2.666 forα = 0.99, and theweighted loading is 1.056 basis
points, which is very close to 1 basis point which means that the
constraint is active. The other two mortality confidence intervals,
95% and 90%, lead to similar hedging results.

5. Conclusion and discussion

This article proposes a new approach to optimize the insurer’s
product mix under systematic mortality risk. By incorporating

4 Here we assume that the premium loadings are given, i.e., the firm with a
natural hedging strategy can take a free ride on others without natural hedging.
the natural hedging strategy of Cox and Lin (2007), the two-
factor stochastic mortality model of Cairns et al. (2006b), and the
Sharpe ratio-loading price of Milevsky et al. (2006), we construct
a CVaRM approach to evaluate the product mix. We consider
two numerical scenarios: the two-product case without a loading
constraint and the multi-product case with a loading constraint.
In the first scenario, the CVaRM approach exerts a better risk-
reduction effect than the MDM approach. In the second scenario,
the three-product example reveals a trade-off between the CVaR
and the required loadings. The results show that the proposed
CVaRM approach leads to an optimal product mix and effectively
reduces the mortality risks associated with forecasting longevity
patterns for life insurance companies.
Some important issues for future research and practice clearly

deserve further investigation. First, this paper deals with the
parameter risk, but ignores the misspecification or modeling risk.
For example, the real mortality process may not follow the CBD
model. Second, this paper omits the basis risk of the mortality
rate between life insurance and annuities because of the data
limitations. Our numerical example assumes that the mortality
processes for life insurance and annuities are the same. In fact,
the mortality experiences may differ for these products. Third, in
this study, the premium loadings for each product are decided
individually bymeans of the Sharpe ratio. Tomaintain rigidity, they
should be priced according to their contributions to the aggregated
risk, in away similar to the beta concept of the Capital Asset Pricing
Model (CAPM). This work is beyond the scope of this paper, and
so we leave it for future study. Finally, we illustrate the hedging
strategy with a mortality term structure, but a flat interest-rate
yield curve. An analysis of the combined effects of stochastic
mortality and stochastic interest rate would offer more realistic
results.
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