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a b s t r a c t

Asset liability matching remains an important topic in life insurance research. The objective of this paper
is to find an optimal asset allocation for a general portfolio of life insurance policies. Using a multi-asset
model to investigate the optimal asset allocation of life insurance reserves, this study obtains formulae
for the first two moments of the accumulated asset value. These formulae enable the analysis of portfolio
problems and a first approximation of optimal investment strategies. This research provides a new
perspective for solving both single-period and multiperiod asset allocation problems in application to
life insurance policies. The authors obtain an efficient frontier in the case of single-periodmethod; for the
multiperiod method, the optimal asset allocation strategies can differ considerably for different portfolio
structures.
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1. Introduction

This article attempts to investigate optimal asset allocations in
a stochastic investment environment for a general portfolio of life
insurance policies. Asset liability matching remains an important
issue for long-term liabilities, such as insurance policies or pension
funds. Most insurance companies’ assets consist of policyholders’
premiums, such that each policy represents a specific liability for
the insuring firm. Thus, maximizing investment returns may not
be the primary goal of insurance companies, which may instead
be more concerned with managing policyholders’ premiums, such
that returns adequatelymeet future benefits or guarantee profits to
policyholders. Besides, insurance policies offered by insurers also
vary in duration, so it is not realistic to discuss only the case of asset
liability management for a single policy. Therefore, we consider
asset liabilitymanagement in amore general case inwhich random
policy durations exist in a product’s profile.
In this paper, we investigate the asset allocation issue on life

insurance reserves. Previous research focuses on studying the
distribution of reserves, from one policy (e.g. Panjer and Bell-
house, 1980; Bellhouse and Panjer, 1981; Dhaene, 1989) to portfo-
lios (e.g. Waters, 1978; Parker, 1994a,b; Marceau and Gaillardetz,
1999). They examine the distribution of life insurance reserves in a
specific interest rate model, for example, AR(1) model or ARCH(1)
model. We introduce a multi-asset model and consider the asset
allocation problem of life insurance companies.
For the asset allocation issue, widespread investigations con-

sider the investment strategy for a single-period approach
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(e.g. Hurlimann, 2002; Sharpe and Tint, 1990; Sherris, 1992, 2006;
Wilkie, 1985; Wise, 1984a,b, 1987a,b), whereas multiperiod asset
allocations in discrete time rarely have been explored. Extensive
research into the optimalmultiperiod investment strategy concen-
trates mostly on continuous time models with dynamic controls
(e.g. Chiu and Li, 2006; Emms and Haberman, 2007) or uses the
martingalemethod (e.g.Wang et al., 2007).With these approaches,
the optimal strategy takes the new information generated by fil-
tration, but to solve the closed form solution in discrete time, they
often suffer from mathematical complexity and intractability. An-
other approach is to get the numerical solution by stochastic pro-
gramming (see Dempster, 1980; Carino et al., 1994). It overcomes
the disadvantage of finding theoretical solution. The model can be
constructed easily and realistically. However, it faces other prob-
lems. Stochastic programming constructs the possible asset return
scenario by trees. A good description about themarket depends on
the number of nodes at each decision point. On the other hand, the
time cost has an exponential growth as does the number of nodes.
Thus, for the purpose of finding the solution in a tolerable time,
the node number is often insufficient to describe the real market.
Consequently, it is inevitable for the existence of large approxima-
tion error. Thus, to examine the appropriate investment strategy
in discrete time, wemust trade off between the convenience of the
method and the accuracy of the solution.
Specifically, we examine two kinds of rebalancing methodolo-

gies: constant rebalancing and variable rebalancing. At the begin-
ning of every year, the portfoliomix gets realigned according to one
of these two methods. Constant rebalancing means that the port-
folio mix should realign to a constant proportion of assets, or the
single-period method. Variable rebalancing implies that the port-
folio mix realigns with a different proportion of assets each time,
or the multiperiod method.

http://www.elsevier.com/locate/ime
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A continuing business line contains some mature polices and
some new policies every year, so the single-periodmethod is more
suitable than a multiperiod method, because of the ongoing new
policies. If the number of mature polices is close to the number
of new policies, the structure of the policy portfolio remains sim-
ilar between two neighboring decision dates. Therefore, it would
be reasonable to adopt a constant rebalance strategy and retain the
sameweight of assets in a stable proportion every year. If the num-
ber of mature polices differs from the number of new policies, the
durations of the policy portfolios should differ every year. There-
fore, the proportion of constant rebalance requires recalculation,
according to the updated durations of policy portfolios every year.
Occasionally, a business line ceases to exist, so no new policies oc-
cur in the future. In this case, variable rebalancing with a multi-
period method is suitable for matching the rest of the periods of
the liabilities.
Because insurance policies typically involve a long duration of

more than five years, choosing the optimal investment strategies
is crucial to ensure that insurance companies can maximize
their profits while reducing their insolvency risk. We propose an
optimization approach for analyzing the optimal portfolio problem
for both single-period and multiperiod asset allocations.
In turn, we propose an optimization approach to generate

the optimal investment strategy of an asset liability management
model for long-term endowment policies. The proposed discrete
time investment model includes both static, single-period and
multiperiod optimal investment strategies for a time-dependent
asset return process. We derive the formulae for the first and sec-
ond moments of the accumulated asset value of the insurer based
on a multi-asset return model. With these formulae, we can ana-
lyze the portfolio problems for both single-period andmultiperiod
methods. For the single-periodmethod,wedepict an efficient fron-
tier under a constant rebalance strategy, which can be determined
from arbitrary policy portfolios. In the case of the multiperiod
method, we obtain a first approximation of the optimal asset al-
location, as applied to a ceased life insurance product line. The nu-
merical results show that the proportion of cash should increase
when we compare a portfolio with uniform years before maturity
with a portfolio comprised of new policies.
In Section 2, we formulate the explicit form of the first twomo-

ments of accumulated asset value, followed by the mean-variance
analysis and an investigation of the optimal asset allocation strat-
egy for various policy portfolios in Section 3. We then examine the
parameter sensitivities and discuss the large sample problem in
Section 4. Finally, we give the conclusion in Section 5.

2. Model setting

The liability reserve is the value of the difference between the
present value of the future benefits and the future premiums re-
ceived, which is often discounted by conservative rates. Reserves
can be viewed as policyholders’ credit. The investment manager of
an insurance company attempts to make profits from these credits
while also ensuring the solvency of the insurer.
The liability reserve of a policy portfolio of an insurer also can be

expressed as the present value of the stochastic cash flows (Lai and
Frees, 1995; Marceau and Gaillardetz, 1999). Let CF (j) be the cash
inflow of the insurer at time j, or the net difference between the
premiums received and the benefits paid at time j (j = 1, . . . , n).
In addition, v (j) is the specified discount factor from time j to time
0. We define L as the liability reserve of a policy portfolio after the
enforced premiums are paid at the valuation date j = 0, which can
be expressed as
L = PV (future benefits)− PV (future premiums received)

= −

n∑
j=1

E [CF (j)] v (j) ,

where n is the maximum remaining policy term for this portfolio.
Thus, the reserve L is determined exogenously and equals the
minimal asset value of the insurance company at the valuation
date. Frequently, the life insurance authorities in various countries
require that the liabilities are valued on a market basis. Therefore,
the liabilities of a life insurance portfolio behave more like
a portfolio of bonds. In addition, nowadays the life insurance
authorities in various countries require that a certain amount of
moneyneeds to be set aside as capital at the endof each year. In this
paper, we ignore these two issues and assume that the required
asset at time 0 is L, consistent with Hurlimann (2002). In turn, this
article proposes a feasible asset allocation model to manage L.
Let I (j), j = 0, . . . , n, be the accumulation factor from time

j to time n, which depends on the asset allocation strategy of
the insurance company, and I (n) = 1. We define F (j) as the
accumulated asset value after adding CF (j) at time j (j = 1, . . . , n),
and F (0) = CF (0) = L. Hence,

F (j+ 1) = F (j)
I (j)
I (j+ 1)

+ CF (j+ 1) ,

and the accumulated asset value at time n can be written as

F (n) =
n∑
j=0

CF (j) I (j) .

We can describe the first two moments of F (n)with the following
lemma.

Lemma 2.1. Assuming the asset returns and mortality processes are
independent, the first two moments of the accumulated asset value at
time n are given by

E [F(n)] =
n∑
j=0

E [CF (j)] E [I (j)] , and

Var [F (n)] = E
[
Var

[
F (n)

∣∣i∗ ]]+ Var [E [F (n) ∣∣i∗ ]] ,
where

E
[
Var

[
F (n)

∣∣i∗ ]] = n∑
j=0

n∑
k=0

E [I (j) I (k)] Cov [CF (j) , CF (k)] ,

Var
[
E
[
F (n)

∣∣i∗ ]] = n∑
j=0

n∑
k=0

E [CF (j)] E [CF (k)] Cov [I (j) , I (k)] ,

and i∗ represents the information set for the asset returns until time n.

Thus, to obtain the closed form of the first two moments of
F (n), we first must create the asset return and cash flow models,
respectively. The first two moments of the accumulated function,
I (j), and the first two moments of the cash flow function, CF (j),
then can be calculated. We do not focus on the mortality model
herein; we provide the cash flow model and calculations for the
corresponding first twomoments in Appendix A. Instead, we focus
on calculating the accumulate function, for which we require
an asset return model, and formulate an investment strategy to
produce the accumulated value.
In the asset return model, we adopt the discrete model pro-

posed by Huang and Cairns (2006), which includes three assets: a
one-year bond (cash), a long-dated bond, and an equity asset. The
log-return rates between time t − 1 and t of these assets can be
denoted y(t− 1), δb (t), and δe (t), respectively, with the following
underlying processes1:
y(t − 1) = y+ φ(y(t − 2)− y)+ σyZy(t − 1)
δb (t) = y (t − 1)+∆b (t)
= y (t − 1)+∆b + σbyZy (t)+ σbZb (t)

δe (t) = y (t − 1)+∆e (t)
= y (t − 1)+∆e + σeyZy (t)+ σebZb (t)+ σeZe (t) ,

1 For a general form of this asset model, please refer to chapter 2.1 of Campbell
and Viceira (2002).
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where Zy (t), Zb (t), and Ze (t) are N (0, 1) random variables that
are independent of one another and i.i.d. through time t . The cash
asset follows an AR(1) process and the excess returns on the long-
dated bond (the equity asset) are i.i.d. and normally distributed.
The time indicator of the parentheses represents the measurabil-
ity of the randomvariables. For example, both Zy(t−1) and y(t−1),
are measurable at time t − 1, whereas Zy (t), Zb (t), and δb (t) are
not measurable until time t .
Let p1t represent the proportion of the liability invested in

equities and p2t represent the proportion of the liability invested
in long-dated bonds at time t − 1. The remaining assets shall be
held in the form of cash. Let i (t) be the portfolio return from t − 1
to t . Using a second-order Taylor approximation of the nonlinear
function that relates the log-individual asset returns to the log-
portfolio returns, we canwrite the log return on the fund from t−1
to t , Z (t), as:

Z (t) = ln (1+ i (t))

= y(t − 1)+ (p1t , p2t)
(
∆e (t)
∆b (t)

)
+
1
2
(p1t , p2t)

(
vee
vbb

)
−
1
2
(p1t , p2t)Σ

(
p1t
p2t

)

= y(t − 1)+ (p1t , p2t)
(
∆e σey σeb σe
∆b σby σb 0

) 1
Zy (t)
Zb (t)
Ze (t)


+ ρ (p1t , p2t)

where

ρ (p1t , p2t) =
1
2
(p1t , p2t)

(
vee
vbb

)
−
1
2
(p1t , p2t)Σ

(
p1t
p2t

)
,

vee = Var∆e (t) , vbb = Var∆b (t) ,

Σ =

(
vee veb
veb vbb

)
, and veb = Cov (∆e (t) ,∆b (t)) .

This discrete time approximation is an exact version within the
limit of continuous time. Huang and Cairns (2006) show that the
return 1 + i (t) at time t can be described as a fair return at t
on an initial investment of 1 at time t − 1 under the continuous
time model and the complete market assumption. The function
ρ (p1t , p2t) is a second-order adjustment which ensures that the
model is arbitrage-free.
Note that the return rate of each asset follows Log-normal

distribution. Since the products of Log-normal random variables
are themselves Log-normal, this means for an initial investment of
1 in a single asset at time 0 the final payoff at time t is Log-normal
distributed. However, this advantage cannot be carried over
directly from individual asset to portfolios. Bymeans of the second-
order Taylor approximation to define the portfolio return Z (t), we
can approximate the portfolio returnwith Log-normal distribution
and so can take the advantage of the Log-normal assumption.

Theorem 2.2. The first twomoments of the accumulate functions I (j)
can be written as follows:

(a) The expected value, variance, and covariance of Z (t) at the
valuation date are:

E [Z (t)] = y+ (y (0)− y) φt−1 + (p1t , p2t)
(
∆e
∆b

)
+ ρ (p1t , p2t) ,

Var [Z (t)] =
σ 2y

1− φ2
(
1− φ2(t−1)

)
+ (p1t , p2t)Σ

(
p1t
p2t

)
,

and

Cov [Z (t) , Z (t + k)] =
σ 2y

1− φ2
(1− φ2(t−1))φk

+φk−1 (p1t , p2t)
(
σey
σby

)
σy; ∀k ∈ N

(b) If we define S (k) =
∑k
j=1 Z (j), then the accumulation factor

I (k), depending on the actuarial portfolio selection of the insurer,
will be I (k) = exp {S (n)− S (k)}. Moreover, the expected value,
variance, and covariance of S (k) are:

E [S (k)] = ky+ (y(0)− y)
1− φk

1− φ

+

k∑
j=1

[(
p1j, p2j

) (∆e
∆b

)
+ ρ

(
p1j, p2j

)]
,

Var [S (k)] =
σ 2y

(1− φ)2

[
(k)−

1− φ2k

1− φ2

]
+

k∑
j=1

(
p1j, p2j

)
Σ

(
p1j
p2j

)

+
2σ 2y φ(

1− φ2
)
(1− φ)

[
(k− 1)−

φ
(
1− φk−1

)
1− φ

−
1− φ2(k−1)

1− φ2
+
φk−1

(
1− φk−1

)
1− φ

]

+ 2
k−1∑
j=1

1− φk−j

1− φ

(
p1j, p2j

) (σey
σby

)
σy, and

Cov [S (k) , S (k+m)] = Var [S (k)]

+
σ 2y φ (1− φ

m)(
1− φ2

)
(1− φ)

(
1− φk

) (
1− φk−1

)
(1− φ)

+

k∑
j=1

[
φk−j (1− φm)
1− φ

(
p1j, p2j

) (σey
σby

)
σy

]
.

(c) The moments associated with the asset accumulation model are:

E [I (j)] = exp
{
E [S (n)]− E [S (j)]

+
1
2
[Var (S (n))+ Var (S (j))− 2Cov (S (n) , S (j))]

}
,

E [I (j) I (k)] = exp
{
Cj,k + Dj,k

}
, and

Cov [I (j) , I (k)] = E [I (j) I (k)]− E [I (j)] E [I (k)] ,

where

Cj,k = 2E [S (n)]− {E [S (j)]+ E [S (k)]} , and

Dj,k =
1
2
{4Var [S(n)]− 4Cov [S(n), S(j)]− 4Cov [S(n), S(k)]

+ Var [S(j)]+ 2Cov [S(j), S(k)]+ Var [S(k)]} .

We provide the proof of Theorem 2.2 in Appendix B.
By including the results of Theorem 2.2(c) and the Lemma in

Appendix A into Lemma 2.1., we can obtain the explicit formulae
of the first two moments of accumulated asset value.

3. Optimal asset allocation

In this section, we investigate the optimal asset allocation of
three unique cases using both constant and variable rebalancing
methodologies. These two methodologies are independent of the
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Table 1
Number of policies maturing every year for each 10-policy portfolio.

Year(s) before maturity 1 2 3 4 5 6 7 8 9 10

Case A 0 0 0 0 0 0 0 0 0 10
Case B 1 1 1 1 1 1 1 1 1 1
Case C 1 2 1 1 0 3 0 1 0 1

investment model. Constant rebalancing means that the portfolio
mix should realign to a constant proportion of assets. In contrast,
the variable rebalancing method means that the portfolio mix
could realign to a different proportion of assets at the beginning
of the year. In other words, the realignment is limited to a constant
proportion in constant rebalancing but is unconstrained in variable
rebalancing. For being more realistic, short selling is forbidden in
this study.
In an attempt to ensure realism, we consider three endowment

policy portfolios that contain 10 policies each and use the same
10-year term. Case A contains 10 new policies at the valuation
date, similar to the case of a single policy. Case B is a uniform
case with 10 different maturity dates. Finally, Case C represents a
realistic sample with maturity dates generated stochastically. The
policyholders are all aged 30 at the policy issue date. For simplicity,
we adopt an underlying mortality index based on the American
man’s life table2 for 2002, set the death benefit and survival benefit
to 1, and assume the yearly payment premium is 0.0845. Table 1
provides a detailed composition of the three portfolios.
In this study, the numerical results are based on the following

parameters: φ = 0.8965, y = 0.0441,∆b = 0.0265,∆e = 0.0317,
σy = 0.0170, σb = 0.0971, σby = −0.0294, σe = 0.1424,
σey = −0.0500, σeb = 0.0065, y (0) = 0.0192, and v (j) = e−y(0)j.
They are calibrated by the US historical data from 1978 to 2007.3
The low initial return rate of cash asset model (y (0)) reflects the
low interest rate situation in the recent years. According to the his-
torical data, the long-term mean of cash asset is 4.41%. The excess
means of long-dated bond and stocks are 0.0265 and 0.0317, and
the standard deviations of∆b (t) and∆e (t) are 10.14% and 15.1%,
respectively.

3.1. Constant rebalancing

For constant rebalancing, we first look at the mean–standard
deviation plot of F (n) , n = 10. According to Lemma 2.1 and
Theorem 2.2, we depict Fig. 1 for Case B; those for Cases A and C
are similar. Because they are all analogous and Case B is the most
general case, we only depict it in this study.We see from Fig. 1 that
an efficient frontier is obtained in the mean–standard deviation
plot. At this efficient frontier, we can find an optimal investment
strategy that either achieves the maximum accumulated value,
given a certain level of risk, or obtains the minimum level of risk
according to an identified, permissible level of accumulated value.
The optimal investment strategy should be selected from this
efficient frontier. For example, if the risk tolerance, or the standard
deviation of accumulated value, is 1.5, the insurance company’s
portfolio mix should consist of 27% stock holdings, 42% long-dated
bonds, and 30% cash,4 which creates a maximum accumulated
value of 1.74. If the insurance company’s target accumulated value
is 1, the insurance company should hold an asset mix comprised
of 14% stocks, 19% long-dated bonds, and 67% cash, resulting in a

2 Data source: The Human Mortality Database (http://www.mortality.org).
3 The data for the calibration of one-year bonds and long-term bonds are on the
Web address: http://federalreserve.gov/releases/h15/data.htm.
4 The sum of the portfolio proportion (and hereafter) is not equal to 1 due to
rounding error.
Fig. 1. Mean–standard deviation plot of Case B.

minimum standard deviation with the accumulated value of 1. As
we can further note from Fig. 1, the efficient frontier moves down
along the diagonal line if a short sales constraint exists. Therefore,
we know that no cash should be invested if the target accumulated
value is sufficiently large.
In the constant rebalancing case, insurance companies can

find an optimal investment strategy from the efficient frontier
to increase the expectation and/or to reduce the variance of
accumulated asset value. For example, an insurance company may
set its objective function as follows:

max
{
E [F (n)]− kVar [F (n)]0.5

}
, (3.1)

where k is a specific, positive, real number. The candidates for the
optimal strategy can be obtained from the efficient frontier. The
value k represents howmuch risk an insurance company is willing
to suffer. Furthermore, the numerical results of the following
optimization problems are carried out by applying the statistical
software Matlab7.0.
Table 2 shows the optimal asset allocation strategy for some

k in the case in which constant rebalancing occurs in accordance
with the objective function. The result of Case C depends on the
random sample. When k = 1.5 or 2, the short sales constraint
does not affect the optimal investment strategy. Thus, in Case B,
in comparison with Case A, the insurance company holds more of
the riskless cash asset (from 0.3250 to 0.4742 or from 0.4964 to
0.5964) and less of the risky assets, namely, stocks (from 0.2669
to 0.2116 or from 0.2033 to 0.1664) and long-dated bonds (from
0.4081 to 0.3143 or from 0.3003 to 0.2372). One policy matures in
each of the ten years in Case B, and the insurance company needs to
holdmore cash to reduce its illiquidity risk for policies that mature
at earlier dates. In comparison with Case B, an insurance company
holds more of the riskless cash asset (from 4742 to 0.5437 or from
0.5964 to 0.6487) and less of the risky stock (from 0.2116 to 0.1841
or from 0.1664 to 0.1452) and long-dated bonds (from 0.3143 to
0.2723 or from 0.2372 to 0.2060) assets in Case C, because of a
shorter duration (two policies will mature in two years and three
policieswillmature in six years). The insurance company therefore
needs more cash in the earlier term for Case C than for Case B.
Also, we may observe the sensitivity of k from Table 2. As k

increases, the weight of Var [F (n)] increases, and the investment
strategy should be more conservative. In contrast, as k decreases,
theweight of E [F (n)] increases, so the investment strategy should
be more aggressive.

http://www.mortality.org
http://federalreserve.gov/releases/h15/data.htm
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Table 2
Optimal asset allocation of the portfolio using constant rebalance.

k Cash Long-dated bond Stock

1 Case A 0.0000 0.6034 0.3966
Case B 0.1406 0.5246 0.3348
Case C 0.2507 0.4570 0.2923

1.5 Case A 0.3250 0.4081 0.2669
Case B 0.4742 0.3143 0.2116
Case C 0.5437 0.2723 0.1841

2 Case A 0.4964 0.3003 0.2033
Case B 0.5964 0.2372 0.1664
Case C 0.6487 0.2060 0.1452

Fig. 2. Optimal variable asset allocation, k = 1.5.

3.2. Variable rebalancing

Fig. 2 depicts the optimal investment strategies for each case
when k = 1.5, based on the application of the variable rebalancing
methodology according to the objective function. We depict the
results for all cases on a comparison plot. We first compare
the optimal investment strategy of Cases A and B and find that
the trend of optimal asset allocation varies greatly. In Case A,
the proportion of cash increases while the proportion of stocks
decreases, which matches a ‘‘top-down’’ investment strategy.5 An
insurance company will hold more risky assets at the beginning
of the term to make more profits and then gradually switches to
riskless assets to reduce its illiquidity risk and meet the liability
payment in year 10 in Case A. In Case B, the top-down pattern is
less significant to that of Case A, because one policy matures each
year, so the insurance company needs to hold more cash upfront
to meet the liability of its early maturing policies.
Fig. 2 also exhibits the optimal asset allocation for Case C. Due

to the randomness of the remaining terms, the optimal investment
strategy appears less smooth, though the pattern is similar to that
for Case B (uniform case). Observing Fig. 2 and the remaining
term of the policies (Case C, Table 1), we find that an increasing
number of policies with coinciding maturity dates results in a
larger proportion of cash held within the portfolio in the same
period. For example, in Fig. 2, three policies will mature six years
later, so the insurance company will hold a higher proportion of
cash at the beginning of the sixth year.

5 This pattern will be more conspicuous when there is no short sales constraint.
Fig. 3. Optimal asset allocation under variable rebalance, k = 1, 1.5, and 2.

4. Sensitivity analysis

The optimal asset allocation depends on the selection of a range
of parameters. In this section, we examine the sensitivity of the
optimal investment strategy to some parameters. We first investi-
gate the sensitivity of the optimal multiperiod asset allocation to
the parameter k, the weighted coefficient of the objective function,
and then survey the sensitivity to the parameters of asset model.
In terms of the sensitivity to the parameters of the asset model, we
explore two situations: a simultaneous increase of the excess re-
turns on risky assets (∆b and ∆e), and a simultaneous increase of
the volatility coefficients, which include σy, σb, σby, σe, σey and σeb.
Specifically, we explore the optimal asset allocation when the ex-
cess returns on risky assets or the volatility coefficients increase by
0.5 times. Finally, we discuss the impact of the portfolio size to op-
timal asset allocation and suggest a practice technique when there
is a large sample problem. In this section, we only explore the uni-
form case (Case B) at k = 1.5.

4.1. Sensitivity of the optimal asset allocation to the parameter k

In Table 2, we show the optimal asset allocations for k = 1,
1.5, and 2 under constant rebalancing. Here, we display the corre-
sponding results in Fig. 3 for the application of the variable rebal-
ancing methodology. The coefficient k can be viewed as the risk
tolerance measure of the insurance company, such that as k in-
creases, the insurer’s risk-averse attitude increases, and the invest-
ment strategy becomes more conservative.

4.2. Sensitivity of the optimal asset allocation to the parameters of
asset model

We again explore two situations: (1) a 1.5 times increase in the
excess return on risky assets, which we refer to as the high excess
mean case, and (2) a 1.5 times increase in the variance on all three
assets, which we refer to as the high variance case. Table 3 shows
the results for the constant rebalance rule, and Figs. 4 and 5 show
the results of the variable rebalance rule. The insurer should be
more aggressive as the excess mean rises and more conservative
as variance increases, in both two rebalancing rules.

4.3. Sensitivity of the optimal asset allocation to the size of the
portfolio

Table 4 shows the optimal asset allocation under constant re-
balancing for different portfolio sizes, including 10,100,1000 and
10,000 policies in a single policy portfolio. Fig. 6 presents the



276 H.-C. Huang, Y.-T. Lee / Insurance: Mathematics and Economics 46 (2010) 271–280
Fig. 4. Optimal asset allocation under the variable rebalance rule (high excess
mean).

Table 3
Optimal asset allocation under the constant rebalance rule (varied parameters of
asset model).

Cash Long-dated bonds Stocks

Case B 0.4742 0.3143 0.2116
High excess mean 0.3089 0.4229 0.2682
High variance 0.5548 0.2605 0.1847

Table 4
Optimal asset allocation for different portfolio sizes under the constant rebalance
rule.

Portfolio sizes Cash Long-dated bonds Stocks

10 0.4742 0.3143 0.2116
100 0.4784 0.3116 0.2100
1,000 0.4788 0.3113 0.2099
10,000 0.4789 0.3113 0.2099

impact of portfolio size to optimal asset allocation in the variable
rebalancing strategy. The size of the portfolio indeed changes the
optimal asset allocation with the objective function (3.1). We see
from Table 4 and Fig. 6 that the insurance company is slightly get-
ting towards being conservative when the portfolio size increases.
However, the change of asset proportion is decreasing for both
strategies of constant rebalancing and variable rebalancing. We
find that the difference among aportfolio of 100policies, 1000poli-
cies and 10,000 policies is marginal. Hence we may conclude that
the optimal asset proportion will converge to some value as the
portfolio size approaches infinity.

4.4. Large sample problem — a practice technique

For a general policy portfolio with 10-year endowments, the
years beforematurity of each policy should be distributed stochas-
tically across the integers 1 to 10. We set the uniform case as the
base case and infer that if a portfolio is statistically indifferent from
the base case, the optimal asset allocation strategy should be close
to it. Following this idea, we compare this uniform case (100 poli-
cies) with the other four portfolios, each of which is composed of
100 policies, and the years before maturity for each policy is se-
lected stochastically from 1, 2, . . . , 10. These four portfolios have
the same statistical property, such that the years before maturity
for these 100 policies of a single portfolio reach a p-value of 0.0487
according to the chi-square goodness-of-fit test. The null hypoth-
esis states that the years before maturity for these 100 policies of
Fig. 5. Optimal asset allocation under the variable rebalance rule (high variance).

Fig. 6. Optimal asset allocation under the variable rebalance rule (different
portfolio sizes).

a single portfolio may be selected from a discrete uniform distri-
bution. Thus, these four portfolios are unlike those uniformly dis-
tributed in a statistical sense.
Table 5 provides the optimal asset allocation of the four special

portfolios under the constant rebalance rule. Fig. 7 illustrates the
optimal asset allocation of the four special portfolios under the
variable rebalance rule. The results support our inference. As we
show in Fig. 8, which depicts the distribution of the remaining
term of the policies within each portfolio, most of the policies in
Portfolio (a) mature in the second half of the 10 years, whereas in
Portfolio (b), most of the policies will mature in the first half of the
10 years.
According to the constant rebalance rule, the proportion of cash

for the base case is 47.84%, whereas the proportion of cash for
the four special portfolios varies from 42.36% to 54.96%. As we
demonstrated in Section 3.1, the insurance company should hold
more cash to reduce its illiquidity risk for policies that mature
earlier, so the highest proportion of cash should exist for Portfolio
(b), whereas the smallest should occur for Portfolio (a). The optimal
investment strategies for Portfolios (c) and (d) fall within the range
marked by Portfolios (a) and (b).
With the variable rebalance rule, the patterns of the asset hold-

ing proportion of these four special cases are analogous to the base
case, as depicted by the rough line (Fig. 7). As we observe in Case C
(Section 3.2), in comparisonwith the base case, an increasing num-
ber of policies with coinciding maturity dates results in a larger
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Table 5
Optimal asset allocation of the four special portfolios under the constant rebalance
rule.

Cash Long-dated bonds Stocks

Uniform case 0.4784 0.3116 0.2100
(a) 0.4236 0.3451 0.2314
(b) 0.5496 0.2685 0.1819
(c) 0.5010 0.2979 0.2011
(d) 0.4559 0.3253 0.2188

Fig. 7. Optimal asset allocation of the four special portfolios under the variable
rebalance rule.

proportion of cash held within the portfolio during the same pe-
riod. However, a smaller group of maturing policies results in a
downward trend in the proportion of cash held. For example, in
Portfolio (a), most of the policies mature in the second half of the
10 years; thus, in comparison with other portfolios, the insurance
company does not have an immediate obligation to pay for its lia-
bility, which enables it to hold more risky assets at the beginning
of the term to increase investment returns. In contrast, most of the
policiesmature in the first half of the 10 years in Portfolio (b); thus,
the insurance companyhas an obligation to pay for the liability ear-
lier. Therefore, it holds more riskless assets (and less risky assets)
at the beginning of the term to reduce its illiquidity risk. Again, the
optimal investment strategies for Portfolios (c) and (d) fall within
the range represented by Portfolios (a) to (b). We display the com-
plete and detailed plots of these four extremely skewed cases in
Appendix C.
For the optimal asset allocation of a specific portfolio, the

deviation from the base case decreases if the level of the skewness
of the years before maturity for these 100 policies decreases, with
both rebalancing rules. That is, if an insurance company knows the
optimal asset allocation of the base case, following the properties
mentioned above, it can gain an approximation of the investment
strategy, based on that of the base case, without investigating the
complicated combination of policies within a portfolio.

5. Conclusion

As Campbell and Viceira (2002) indicate, there are several im-
portant developments in the long-term portfolio choice area re-
cently. These include computing power and numerical method,
discovery of new closed form solution and access from approxi-
mate analytical solutions. In our study, we approximate the actual
portfolio return by Log-normal random variable, which makes the
moments tractable.We derive the formulae for themoments of the
accumulated asset value of the insurer, and then get the numerical
a b

c d

Fig. 8. Distribution of the number of policies within four different portfolios based
on remaining years to maturity.

results by numerical method. Hence, we find the optimal asset al-
location by numerical method, but also exploit the advantage from
the approximate analytical method.
This paper successfully derives the formulae of the first and

second moments of accumulated asset value based on a multi-
asset return model. With these formulae, we can analyze portfolio
problems and obtain optimal investment strategies. Therefore,
this research provides a new perspective on solving both single-
period andmultiperiod asset allocation problems, as applied to life
insurance policies.
We investigate the optimal asset allocation with both the con-

stant and variable rebalancing methods. For constant rebalanc-
ing, we find an efficient frontier in the mean–standard deviation
plot that occurs with arbitrary policy portfolios. The insurance
company should hold more cash to reduce its illiquidity risk for
portfolios in which policies will mature at earlier dates. In the case
of variable rebalancing, we find that the optimal asset allocation
strategy can differ considerably, given different portfolio struc-
tures. Thus, it is important for an insurance company to find a suit-
able investment strategy for different policy portfolios.
In the present model, we calculate the liability reserve exoge-

nously for simplicity. In practice, the reserve should be valued on
the market basis according to the requirement of various coun-
tries. In addition, nowadays the life insurance authorities in var-
ious countries require that a certain amount of money needs to be
set aside as capital at the end of each year. These two issues are im-
portant and unavoidable in practice. It is somewhat difficult to take
these two issues into account andwe ignore these two issues in this
paper. However, in practice if the market information can be ac-
quired, the insurance company is able to value the liabilities on the
market basis. It can obtain the reserve from themarket information
and then find the optimal asset allocation strategy by applying the
method proposed in this paper. Moreover, an insurer can estimate
the distribution of the accumulated asset value through simula-
tion and so can know the probability of failing the authority’s re-
quirement. By adjusting the value of the parameter k (risk-tolerant
parameter) in the objective function, one can find a conservative
investment strategy that achieves an authority’s requirement.

Appendix A. Cash flow model and its moments

We consider a general portfolio with m fully discrete policies.
Let ni be the term of the ith policy; ri (ri < ni) be the difference
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between the issue date and the valuation date; and n =

maxi∈{1,2,...,m} {ni − ri}, which means the maximum years before
the maturation of the policies within the portfolio. The age of the
insured i at the date of issue is xi, so the insured i is aged xi + ri
at the valuation date. A death benefit bi exists if the insured i dies
before the maturity and a survival benefit ci otherwise. Both bi and
ci are specific, and the benefit would be paid at the end of each
policy year. A level premium πi for the ith policy is payable at the
beginning of each policy year.
We provide the moments related to the cash flow model in

terms of the following lemma. A more detailed formula can be
found in Marceau and Gaillardetz (1999).

Lemma. Define

Di,j =
{
1, if the insured i dies during the time interval (j− 1, j]
0, otherwise

Si,j =
{
1, if the insured i is alive at time j
0, otherwise.

Then, CF (j), time j’s cash inflow, or the net difference between the
premiums received and the benefits paid at time j, is

CF (j) =
m∑
i=1

Si,jπi1(ni−ri>j) −
m∑
i=1

Di,jbi1(ni−ri≥j)

−

m∑
i=1

Si,ni−rici1(ni−ri=j), j = 1, . . . , n,

where 1A is the indicator function with a value of 1 if condition A is
satisfied and 0 otherwise.

Moreover, based on the moments of binomial distribution and
assuming that the mortality processes of two different insured
individuals are independent, the expected value, variance, and
covariance of CF (j) are:

E [CF (j)] =
m∑
i=1

πijp
(τi)
xi+ri1(ni−ri>j) −

m∑
i=1

bij−1|q
(τi)
xi+ri1(ni−ri≥j)

−

m∑
i=1

cini−rip
(τi)
xi+ri1(ni−ri=j), j = 1, . . . , n

Var [CF (j)] =
m∑
i=1

b2i · j−1|q
(τi)
xi+ri

(
1− j−1|q

(τi)
xi+ri

)
1(ni−ri≥j)

+

m∑
i=1

c2i · jp
(τi)
xi+ri

(
1− jp

(τi)
xi+ri

)
1(ni−ri=j)

+ 2
m∑
i=1

bicij−1|q
(τi)
xi+ri · jp

(τi)
xi+ri1(ni−ri=j)

+

m∑
i=1

π2i · jp
(τi)
xi+ri

(
1− jp

(τi)
xi+ri

)
1(ni−ri>j)

− 2
m∑
i=1

biπi · j−1|q
(τi)
xi+ri · jp

(τi)
xi+ri1(ni−ri>j)

and

Cov [CF (k) , CF (j)] = −
m∑
i=1

b2i · j−1|q
(τi)
xi+ri · k−1|q

(τi)
xi+ri1(ni−ri≥j)

−

m∑
i=1

bici · k−1|q
(τi)
xi+ri · jp

(τi)
xi+ri1(ni−ri=j)

+

m∑
i=1

biπi · k−1|q
(τi)
xi+ri · jp

(τi)
xi+ri1(ni−ri>j)
+

m∑
i=1

π2i · jp
(τi)
xi+ri ·

(
1− kp

(τi)
xi+ri

)
1(ni−ri>j)

−

m∑
i=1

biπi ·
(
1− kp

(τi)
xi+ri

)
· j−1|q

(τi)
xi+ri1(ni−ri≥j)

−

m∑
i=1

πici · jp
(τi)
xi+ri ·

(
1− kp

(τi)
xi+ri

)
1(ni−ri=j)

where k < j and (τi) denote the specific mortality of the insured i.

Appendix B. Proof of Theorem 2.2

(a)

E [Z (t)] = E [y (t − 1)]+ (p1t , p2t)
(
E [∆e (t)]
E [∆b (t)]

)
+ ρ (p1t , p2t)

= y+ (y (0)− y) φt−1 + (p1t , p2t)
(
∆e
∆b

)
+ ρ (p1t , p2t)

Var [Z (t)] = Var [y (t − 1)]+ (p1t , p2t)Σ
(
p1t
p2t

)
=

σ 2y

1− φ2
(
1− φ2(t−1)

)
+ (p1t , p2t)Σ

(
p1t
p2t

)
Cov [Z (t) , Z (t + k)]

= Cov
[
y(t − 1)+ (p1t , p2t)

(
∆e (t)
∆b (t)

)
, y (t + k− 1)

]
= Cov

[
y(t − 1)+ (p1t , p2t)

(
∆e (t)
∆b (t)

)
,

φky (t − 1)+ φk−1σyZy (t)
]

=
σ 2y

1− φ2
(1− φ2(t−1))φk + φk−1 (p1t , p2t)

(
σey
σby

)
σy; ∀k ∈ N

(b)

E [S (k)] = E

[
k∑
j=1

Z (j)

]

=

k∑
j=1

[
y+ (y (0)− y) φj−1 +

(
p1j, p2j

) (∆e
∆b

)
+ ρ

(
p1j, p2j

)]

= ky+ (y(0)− y)
1− φk

1− φ

+

k∑
j=1

[(
p1j, p2j

) (∆e
∆b

)
+ ρ

(
p1j, p2j

)]

Var [S (k)] = Var

[
k∑
j=1

Z (j)

]

=

k∑
j=1

Var [Z (j)]+ 2
k−1∑
j=1

k∑
m=j+1

Cov [Z (j) , Z (m)]

= (A)+ (B) ,
where

(A) =
k∑
j=1

Var [Z (j)]

=

k∑
j=1

[
σ 2y

(1− φ)2
(
1− φ2(j−1)

)
+
(
p1j, p2j

)
Σ

(
p1j
p2j

)]

=
σ 2y

(1− φ)2

[
(k)−

1− φ2k

1− φ2

]
+

k∑
j=1

(
p1j, p2j

)
Σ

(
p1j
p2j

)
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a

b

c

d

Fig. C.1.
(B) = 2
k−1∑
j=1

k∑
m=j+1

[
σ 2y

1− φ2
(1− φ2(j−1))φm−j

+φm−j−1
(
p1j, p2j

) (σey
σby

)
σy

]

= 2
k−1∑
j=1

σ 2y

1− φ2
(1− φ2(j−1))

φ
(
1− φk−j

)
1− φ

+ 2
k−1∑
j=1

1− φk−j

1− φ

(
p1j, p2j

) (σey
σby

)
σy

=
2σ 2y φ(

1− φ2
)
(1− φ)

k−1∑
j=1

(
1− φk−j − φ2(j−1) + φk+j−2

)
+ 2

k−1∑
j=1

1− φk−j

1− φ

(
p1j, p2j

) (σey
σby

)
σy

=
2σ 2y φ(

1− φ2
)
(1− φ)

[
(k− 1)−

φ
(
1− φk−1

)
1− φ
−
1− φ2(k−1)

1− φ2
+
φk−1

(
1− φk−1

)
1− φ

]

+ 2
k−1∑
j=1

1− φk−j

1− φ

(
p1j, p2j

) (σey
σby

)
σy

Cov [S (k) , S (k+m)] = Cov

[
S (k) , S (k)+

k+m∑
j=k+1

Z (j)

]

= Var [S (k)]+ Cov

[
k∑
j=1

Z (j) ,
k+m∑
j=k+1

Z (j)

]
= Var [S (k)]+ (C) ,

where

(C) =
k∑
j=1

k+m∑
l=k+1

Cov [Z (j) , Z (l)]

=

k∑
j=1

k+m∑
l=k+1

[
σ 2y

1− φ2
(1− φ2(j−1))φ l−j
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+φ l−j−1
(
p1j, p2j

) (σey
σby

)
σy

]

=

k∑
j=1

[
σ 2y

1− φ2
(1− φ2(j−1))

φk+1−j (1− φm)
1− φ

]

+

k∑
j=1

[
φk−j (1− φm)
1− φ

(
p1j, p2j

) (σey
σby

)
σy

]

=
σ 2y φ (1− φ

m)(
1− φ2

)
(1− φ)

k∑
j=1

(1− φ2(j−1))φk−j

+

k∑
j=1

[
φk−j (1− φm)
1− φ

(
p1j, p2j

) (σey
σby

)
σy

]

=
σ 2y φ (1− φ

m)(
1− φ2

)
(1− φ)

(
1− φk

) (
1− φk−1

)
(1− φ)

+

k∑
j=1

[
φk−j (1− φm)
1− φ

(
p1j, p2j

) (σey
σby

)
σy

]
.

(c) Because I (j) = exp {Z (j+ 1)+ Z (j+ 2)+ · · · + Z (n)} and
Z (t) follows a normal distribution for all t conditional on time 0,
we have
E [I (j)] = E [exp (Z (j+ 1)+ Z (j+ 2)+ · · · + Z (n))]

= E [exp (S (n)− S (j))]

= exp
{
E [S (n)− S (j)]+

1
2
Var [S (n)− S (j)]

}
= exp

{
E [S (n)]− E [S (j)]+

1
2
[Var (S (n))

+ Var (S (j))− 2Cov (S (n) , S (j))]
}

E [I (j) I (k)] = E [exp [S (n)− S (j)] exp [S (n)− S (k)]]
= E [exp [2S (n)− (S (j)+ S (k))]]

= exp
{
2E [S (n)]− E [S (j)]− E [S (k)]

+
1
2
Var [2S (n)− S (j)− S (k)]

}
,

where

Var [2S (n)− S (j)− S (k)]
= [4Var (S (n))+ Var (S (j))+ Var (S (k))
− 4Cov (S (n) , S (j))− 4Cov (S (n) , S (k))
+ 2Cov (S (j) , S (k))] .
Appendix C. Distribution of the remaining term and the opti-
mal asset allocation of each special portfolio under the variable
rebalance rule

See Fig. C.1.
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