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THE TERM STRUCTURE OF RESERVE DURATIONS
AND THE DURATION OF AGGREGATE RESERVES
Chenghsien Tsai

ABSTRACT

Estimating the duration gap of a life insurer demands the knowledge on the
durations of liabilities and assets. The literature analyzed the durations of
assets extensively but rendered limited analyses on the durations of insur-
ance liabilities. This article calculated the reserve durations for individual
policies and estimated the duration of the aggregate reserves. The results
showed that the duration of the policy reserve might be negative and/or
have a large figure. They further revealed an interesting pattern of the re-
serve duration with respect to the policy’s time to maturity. A term structure
with abnormal durations, however, does not result in an abnormal duration
of the aggregate reserves.

INTRODUCTION

Managing the company’s interest rate risk is vital to a life insurer. Life insurance poli-
cies are long-term contracts. Small changes in interest rates can therefore cause large
changes in the policy reserve liability, which usually constitutes more than 90 per-
cent of a company’s total liabilities. To offset the resulting fluctuations in the value
of the reserve liability, the company must look for an asset portfolio that produces
matched changes in values. If the match is not perfect, the high liability-to-surplus
ratio prevalent in the life insurance industry will make the mismatch large relative
to the insurer’s surplus. Movements in interest rates, therefore, can have a significant
adverse impact on the solvency of a life insurance company.1
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1In other words, what is meant by the company’s interest rate risk is the potential reduction in
the surplus caused by interest rate movements. Movements in interest rates cause changes in
the values of liabilities as well as assets. Using these value changes to measure the exposure of
an insurer to the interest rate risk will exaggerate the exposure, however, because the values
of liabilities and assets often change in the same direction and offset each other to a certain
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A common measure of an institution’s exposure to interest rate risk is the duration gap
(DGAP). Samuelson (1945) was the first to introduce the concept of DGAP in analyz-
ing how changes in interest rates may affect an institution. Redington (1952) invented
the expression immunization and set up the fundamental equations for immunization
strategies. One of the results of an immunization strategy is zero DGAP. Bierwag and
Kaufman (1985) calculated four DGAPs to measure an institution’s exposure to in-
terest rate risk in accordance with alternative management goals. Further application
and generalization of DGAP could be seen in Bierwag and Kaufman (1992, 1996).
Fooladi and Roberts (2004) added the notion of convexity gap and default risk to
DGAP to manage interest rate risk with better accuracy. The duration (gap) analysis
has enjoyed widespread practitioner application in banks, insurance companies, and
other financial institutions since the 1980s. Its usefulness as a measure of interest rate
risk is undeniable and its use in finance markets today is extensive (Bierwag and
Fooladi, 2006).

To calculate the DGAP of a life insurer, one usually has to calculate the durations
of individual assets and liabilities.2 The duration measure and the durations of the
important assets held by life insurers such as bonds, mortgages, stocks, and real estate
have been investigated extensively in the finance literature. As the review of Bierwag
and Fooladi (2006) shows, the duration measure has been refined substantially with
the considerations for stochastic interest rate processes, interest-rate-dependent cash
flows, and default risk since the original work of Macaulay (1938). The durations of
various asset classes, in addition to those of bonds, have also been explored substan-
tially (e.g., Bierwag, Kaufman, and Toevs, 1983; Bierwag, 1987; Leibowitz et al., 1989;
Bierwag, Corrado, and Kaufman, 1992; Babbel, Merrill, and Panning, 1997; Hayre and
Chang, 1997; Hevert, McLaughlin, and Taggart, 1998; Cornell, 2000; Hamelink et al.,
2002; Reilly, Wright, and Johnson, 2007) during the last quarter century.

In contrast, the durations of insurance liabilities have received limited attention.
Babbel (1995) estimated the option-adjusted durations of the liabilities associated with
a dozen life insurance products using a commercial software.3 Santomero and Babbel
(1997) listed the effective durations of the liabilities of several life insurance products
based on their on-site investigation on the risk management practices of insurance
companies. Briys and Varenne (1997, 2001) calculated the effective duration of the
liability associated with a single-premium participating contract having a minimum
guaranteed rate of return.

The contribution of this article is that we discover interesting characteristics of the re-
serve durations of individual policies and explicitly estimate the duration of aggregate
reserves. The former finding is new to the literature and has imperative implication

extent. Therefore, a more appropriate way to measure an insurer’s interest rate risk is the net
changes in the values of liabilities and assets, that is, the changes in the surplus values, with
respect to interest rate changes.

2The alternative way is to aggregate expected cash inflows and outflows of all assets and
liabilities and then calculate the duration of the net cash flow stream.

3Santomero and Babbel (1997) regard the measures of interest rate sensitivity that take into
account the interest-sensitive cash flows of an asset or liability as “option-adjusted duration”
or “effective duration.” “Macaulay duration” and “modified duration” are the measures of
interest rate sensitivity assuming that cash flows are insensitive to movements in interest rates.
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to the life insurer’s microhedging.4 The latter estimate fills in the missing details and
analyses of the previous papers and is essential to the macrohedging of life insurers.
First, we calculate the effective durations of the reserves for policies having different
maturities.5 These durations are important because the policy reserve liability com-
prises the reserves of policies that are sold at different times and its duration is a
weighted average of individual reserve durations. To date, no such calculations have
yet been reported in the literature, and the results from this part have momentous
implications to the microhedging of a life insurer. The interesting characteristics of
the reserve durations of individual policies are discovered after these calculations.

Second, we take some weighted averages of individual policies’ reserve durations to
estimate the durations of aggregate reserves.6 Analyzing the aggregate reserve dura-
tion is essential to the macrohedging of a life insurer. Without the aggregate reserve
duration, the insurer will not be able to know how to construct the asset portfolio
to hedge its DGAP. Babbel (1995) and Santomero and Babbel (1997) estimated the
effective durations of the reserves for some products, but they disclosed only the
final results without the policy specification, pool composition, interest rate model,
surrender behavior, or any other assumptions. Due to these missing details, the char-
acteristics of the duration of the policy reserve liability remain obscure in the present
literature.

We employ both effective duration and modified duration as the measures of interest
rate sensitivity in this study. The effective duration is the better measure because the
insurance literature pinpoints the importance of the interest rate sensitivity of cash
flows when estimating the durations of life insurance liabilities. In this article, the coin-
tegrated vector autoregression (VAR) model of the interest rate and the surrender rate
established in Tsai, Kuo, and Chen (2002) are adopted to generate interest-dependent
surrender rates and thus interest-sensitive cash flows. The modified duration is used
to establish intuition. The differences between the modified duration and effective
duration can further demonstrate how interest-sensitive cash flows affect the sensi-
tivity of policy reserves to interest rate changes. A 20-year endowment product issued
to 30-year-old males in different years serves as an illustrative example in this study.

After calculating the modified and effective durations of reserves for policies that
have different years to maturity, we find that the duration of the policy reserve may

4A financial institution can hedge interest rate risk either at the micro level or at the macro level.
Hedging a specific asset or liability is called microhedging while hedging the entire balance
sheet DGAP is called macrohedging.

5To see clearer how this article is related to the finance literature, we can regard this part
of analyses as having similar purposes to Hopewell and Kaufman (1973) and Haugen and
Wichern (1974) who showed how duration changes with properties of bonds such as the
maturity and the yield to maturity. It is similar to Morgan (1986) and Kalotay, Williams,
and Fabozzi (1993) in considering the interest rate dependence of cash flows. Our treatment
of mortality risk is similar to the adjustment for default risk done by Babbel, Merrill, and
Panning (1997), Fooladi, Roberts, and Skinner (1997), and Jacoby (2003). In short, we applied
some analyses of the aforementioned papers done on assets to the most important liabilities
of life insurers, the policy reserves.

6This part of analyses on durations of policy reserve portfolios can be deemed similar to
Bierwag, Corrado, and Kaufman (1990) who computed durations for bond portfolios.
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FIGURE 1
General Pattern of the Reserve’s Duration With Respect to the Policy’s Time to Maturity

be negative and may have a figure far exceeding the policy’s maturity.7 We further
discover an interesting pattern of reserve durations with respect to maturities as
shown in Figure 1.

Figure 1 is herein referred to as the term structure of reserve durations. It demonstrates
that the reserve duration is a function of the policy’s time to maturity, having a vertical
asymptote at a break-even maturity. The break-even maturity is the time to maturity
when the policy’s reserve equals to zero. The vertical asymptote is therefore called the
zero-reserve line. The duration increases with the maturity and approaches infinity
when the maturity approaches the break-even maturity from the left. The duration
turns into a negative infinity when the maturity crosses the break-even maturity and
then increases with the maturity.

The immediate implication of the above results is that life insurers will encounter
difficulties in performing microhedging for the reserves of individual policies against
interest rate risk because reserves may have abnormal durations. A further inference
from the above results is that life insurers may even be unable to perform macrohedg-
ing because the duration of the policy reserve liability on a life insurer’s balance sheet
is a weighted average of individual reserve durations and thus may have an abnormal
value as well. This inference, nonetheless, ignores a feature of the reserve duration:
abnormal duration values are coupled with small reserves. Because the underlying
reserves of abnormal durations account for only a small percentage of the aggregate
reserves, these abnormal values are immaterial in calculating the aggregate reserve
duration. The duration of aggregate reserves therefore has a normal value even when
the component reserves have abnormal values. For instance, the duration of the aggre-
gate reserves resulting from equal numbers of endowment policies sold in different
years can have a duration of less than 8 even though some policies have reserve

7Little (1984) and Kalotay (1984) also found that the duration might be longer than the bond’s
maturity when some of the cash flows are negative.
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durations larger than 80. Further analyses show that growing/declining businesses
lead to larger/smaller aggregate reserve durations because younger/older policies
tend to have larger/smaller figures of reserve duration.

The remainder of this article is organized as follows. The next section specifies the
expected cash flows of the endowment policies that are sold in different years. It
also describes how the modified duration and effective duration of the policy reserve
are calculated in this article. The section “The Term Structure of Modified Dura-
tions” reports the results of the modified duration, describes its term structure, and
provides a rationale for the pattern of the term structure. The section “The Term Struc-
ture of Effective Durations” states the results for the effective duration and confirms
the pattern of the term structure identified in the previous section. It further analyzes
the differences between the modified durations and effective durations. The section
“The Durations of Aggregate Reserves” calculates the effective duration of the ag-
gregate reserves based on the results of individual reserve durations in the previous
section. The durations of the aggregate reserves resulting from growing or declining
underwriting businesses are also analyzed in this section. Finally, in the last section,
the article is summarized and conclusions are drawn.

SPECIFICATIONS OF POLICY CASH FLOWS AND FORMULAS FOR RESERVE DURATIONS

Cash Flow Specifications
A 20-year endowment product is used as the analyzed policy. It is issued to 30-year-
old males in different years. The death benefit and surrender value are assumed to
be paid at the end of the year while the level premium and expenses are incurred at
the beginning of the year. The expected net cash outflow at time t for the policy at the
beginning of its policy year n (i.e., sold n − 1 years ago) after the nth net premium has
been collected, where t ∈ N, 1 ≤ t < 20 − n + 1, and 1 ≤ n < 20, is then defined as8

E(CFt | n) = [(
t−1 p(τ )

30+n−1 × q (d)
30+n−1+t−1 × F

) + (
t−1 p(τ )

30+n−1 × q (s)
t × Sn−1+t

)]
− t p(τ )

30+n−1 × [P − (CMRn+t × P) − FExpn+t − (VarCost × P)], (1)

where t p(τ )
30+n−1 is the probability that the policy for an insured, age of 30 + n − 1,

remains valid for t years,9 q (d)
30+n−1+t−1 is the probability of the insured, age

30 + n − 1 + t − 1, dying within 1 year, F denotes the death benefit paid at the

end of the year in which the insured dies, q (s)
t is the probability that the policy is

surrendered in year t,10 Sn−1+t denotes the cash surrender value paid at the end of

8Note that the insured is at age 30 + n – 1 when the policy is at the beginning of policy year n.
9Note that 0 p(τ )

30+n−1 = 1. The upper script (τ ) is used to indicate a function referring to all causes
or total force of decrement. Two causes of decrement, death and surrender, are considered in
this article and are denoted as the upper scripts (d) and (s), respectively.

10Note that 1 – q (d)
30+n−1+t−1 – q (s)

t = 1 p(τ )
30+n−1+t−1 because a policy that is not terminated in 1 year

due to either death or surrender is the policy that remains valid for 1 year. Furthermore,

t−1 p(τ )
30+n−1 × 1 p(τ )

30+n−1+t−1 = t p(τ )
30+n−1, that is, the probability of a policy with an insured age
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policy year n − 1 + t,11 P denotes the level premium received at the beginning of each
surviving year, CMRn+t represents the commission rate for the commission paid at
the beginning of policy year n + t, FExpn+t represents the fixed expense paid at the
beginning of policy year n + t, and VarCost stands for the variable cost rate.

The first bracket term in Equation (1) represents the sum of the expected death benefit
and surrender payment paid at the end of 1 year. The second term of Equation (1)
denotes the expected net premium (net of the expected expenses) received at the
beginning of the following year. The expected net premium received at time t equals
the net premium [P − (CMRn+t × P) − FExpn+t − (VarCost × P)] times the probability

that the policy is valid at the time (t p(τ )
30+n−1). The expected death benefit equals the

death benefit (F) times the probability that the policy remains valid for t − 1 year

(t−1 p(τ )
30+n−1) and then the insured dies within an year (q (d)

30+n−1+t−1). Similarly, the
expected surrender payment at time t equals the cash surrender value of policy year
n − 1 + t (Sn−1+t) times the probability that the policy remains valid for t − 1 year

(t−1 p(τ )
30+n−1) and then the insured surrenders the policy in year t (q (s)

t ). The time line
regarding the above cash flows is plotted in the Appendix for further clarification.

At t = 20 − n + 1, where 1 ≤ n ≤ 20, no more premiums will be collected because the
insured has paid 20 premiums. Therefore, neither commissions nor variable costs are
paid at t = 20 − n + 1. It is further assumed that no fixed expenses are incurred at
maturity. The expected net cash outflow at the maturity of the policy then does not
have the second term of Equation (1). Instead, it has a term for the surviving benefit.
The expected cash outflow is therefore as follows:

E(CF20−n+1 | n) = [(
20−n p(τ )

30+n−1 × q (d)
49 × F

) + (
20−n p(τ )

30+n−1 × q (s)
20−n+1 × Sed

20
)]

+ 20−n+1 p(τ )
30+n−1 × F . (2)

The actuarial assumptions about some of the above variables are shown in Table 1.

The present value of the expected cash flows from a policy right after its nth net
premium is received, Ln, can then be expressed as

20−n+1∑
t=1

[E(C Ft | n) × vt], (3)

where vt = 1
(1+r1)(1+r2)...(1+rt)

and rt is the 1-year interest rate prevailing in year t. The
random variable Ln represents the present value of the liability (i.e., the policy reserve)
associated with the policy immediately after the first n net premiums are collected.

30 + n – 1 being valid for t years equals the probability of the policy being valid for t – 1 years
times the probability of the policy with the insured age 30 + n – 1 + t – 1 remaining valid for
1 more year.

11We can also say that the cash surrender value is paid at the end of year t.
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TABLE 1
Actuarial Assumptions About the Endowment Producta

Insured’s Mortality Rate At the Beginning Cash Surrender Commission Fixed Expense
Age a of Age a q (d)

a of Policy Year n Value Sn−1 Rate CMRn FExpn

30 0.0009790 1 N/A 62.40% 4,530
31 0.0010055 2 8,160.77 27.00% 1,359
32 0.0010481 3 39,789.39 20.60% 1,359
33 0.0011075 4 73,766.54 14.00% 1,359
34 0.0011826 5 110,191.76 13.00% 1,359
35 0.0012712 6 149,173.28 12.00% 1,359

36 0.0013711 7 190,830.52 10.00% 1,359
37 0.0014807 8 235,294.26 10.00% 1,359
38 0.0015989 9 282,706.96 10.00% 1,359
39 0.0017291 10 333,222.85 10.00% 1,359
40 0.0018749 11 387,003.56 7.00% 1,359

41 0.0020407 12 437,654.83 7.00% 1,359
42 0.0022297 13 490,341.50 7.00% 1,359
43 0.0024446 14 545,162.55 7.00% 1,359
44 0.0026795 15 602,227.49 7.00% 1,359
45 0.0029268 16 661,664.40 7.00% 1,359

46 0.0031784 17 723,620.17 7.00% 1,359
47 0.0034268 18 788,259.03 7.00% 1,359
48 0.0036671 19 855,759.96 7.00% 1,359
49 0.0039091 20 926,313.67 7.00% 1,359
50 N/A 20∗ 1,000,000 N/A N/A

aThese assumptions are made based on a life insurance policy once sold in Taiwan.
Notes: The death benefit is $1,000,000 and the annual premium is $45,300.
Variable cost rate is 0.1% that mainly consists of the guarantee fund contribution.
Mortality rates are 54% of those in the 1989 Taiwan Standard Ordinary Tables of Mortality
(1989 TSO) and 54% is derived from the experiences of the life insurance industry in Taiwan.
We denote q (d)

50 , CMR20∗, and FExp20∗ (where 20∗ denote the end of policy year 20) as “N/A”
because the policy matures at this time and neither mortality nor expenses apply any more.
Here, S0 is denoted as “N/A” because no cash value will be paid at the beginning of policy
year 1.

The interest rate sensitivity of Ln (or the interest rate sensitivity of Ln’s mean) will be
calculated for various levels of interest rates.12

In calculating the modified duration, rt and q (s)
t are set as constants. To calculate the

effective duration, the cointegrated VAR model established in Tsai, Kuo, and Chen

12Please note that what we will calculate is the duration of the policy reserve liability, not the
surplus duration for a block of policies. Some readers may view expected premiums as assets
and payments as liabilities and thus regard our calculation as surplus duration or DGAP.
This view is inconsistent with the definition of the policy reserve that includes expected
premiums to be a part of the reserve liability (see Black and Skipper, 2000, pp. 737, 741;
Bowers et al., 1997, p. 205; SFAS 60, paragraph 21). Our calculations in the sections “The Term
Structure of Modified Duration” and “The Term Structure of Effective Duration” are for the
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(2002) is employed to simulate the surrender rates and the 1-year interest rates.13

Their VAR model is as follows:

[
�q (s)

t

�rt

]
=

⎡
⎢⎣

−0.243∗∗∗
(−5.193)

−0.199
(−0.890)

⎤
⎥⎦ [

1 −1.053∗∗∗
(−9.819)

−0.008
(−1.148)

] ⎡
⎢⎢⎣

q (s)
t−1

rt−1

1

⎤
⎥⎥⎦

+

⎡
⎢⎣

0.240
(1.650)

−0.046
(−0.881)

−0.146
(−0.210)

0.149
(0.597)

⎤
⎥⎦

⎡
⎣�q (s)

t−1
�rt−1

⎤
⎦

+

⎡
⎢⎣

−0.012
(−0.094)

−0.151∗∗∗
(−2.934)

−0.642
(−1.037)

−0.514∗
(−2.085)

⎤
⎥⎦

⎡
⎣�q (s)

t−2
�rt−2

⎤
⎦ +

[
εs

t

εr
t

]
, (4)

where q (s)
t denotes the surrender rate in year t, rt denotes the 1-year interest rate

in year t, � represents the first-order difference operator, E = [ εs
t εr

t ]′ ∼ N(0,�̂), and

�̂ = [ 7.28 × 10−6 8.09 × 10−6

8.09 × 10−6 1.67 × 10−4 ].14 The initial value of the 1-year rate is chosen among

0 percent, 2 percent, 4 percent, 6 percent, and 8 percent.15 The initial value for the

durations of individual policy reserves, that is, the durations of specific liabilities considered
in microhedging. These durations are then used in the section “The Durations of Aggregate
Reserves” as the building blocks to calculate the duration of aggregate reserves, the duration
used along with the duration of total assets in obtaining the DGAP of a life insurer and in
performing macrohedging.

13Cointegration modeling is designed to identify potential long-term relations between vari-
ables of interest. The intuition behind cointegration analysis is that even though a group of
nonstationary variables might individually wander extensively, they may wander in such a
way that they do not drift too far apart from one another. More specifically, a particular linear
combination of variables may be stationary even though individually they are time series
with unit roots. Such variables are said to be cointegrated. Cointegration analysis has become
a popular method for economists to study the long-term relations between various economic
variables, such as consumption and income, short- and long-term interest rates, and stock
prices and dividends, since the seminal work of Engle and Granger (1987).

14The lapse rate equation in Equation (4) suggests that changes in the lapse rate result from
two sources: changes in the lagged variables and the levels of the lagged variables. The
impact from the lagged variable levels can be represented by the cointegration vector
ECMt = Lt − 1.053It − 0.008. The cointegrated vector implies a long-term relation between
the lapse rate and interest rate that can be expressed as Lt = 0.008 + 1.053It, and any deviation
from the long-term equilibrium relation will cause the lapse rate to change. The lapse rate is
also affected by changes in the interest rate two periods ago. The only significant coefficient
in the interest rate equation is �I t−2, which suggests that the interest rate process is like an
AR(2).

15The initial of the interest rate is chosen to center around the 4 percent pricing rate of the
policy.
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surrender rate is at 7 percent, approximately the average termination rate in the
United States during the sampling period of Tsai, Kuo, and Chen (2002).16

Duration Formulas
Modified duration (denoted as MD) has received a great deal of attention and is used
quite often to measure and manage the interest rate risk (Tuckman, 1996, p. 139). It
refers to the percentage price changes with respect to changes in the interest rate.
More specifically,

MD =
−∂ P

P
∂r

, (5)

where P is the value of an asset or liability and ∂ P
∂r is the partial derivative of P with

respect to the interest rate r. In calculating the modified duration of P, the differential
of r is specified as one basis point (0.01 percent) and the difference between the
resulting value and the starting value is used as the differential of P.

Equation (5) implies that the yield curve is flat and shifts in a parallel fashion, which
is not consistent with the observations from the bond markets. In addition, modified
duration is usually used when cash flows of the asset or liability are insensitive to
interest rate fluctuations. Tsai, Kuo, and Chen (2002) and Kuo, Tsai, and Chen (2003),
however, showed that the cash flows associated with the policy reserve correlate
with the interest rates.17 Effective duration (ED) that takes into account the interest-
sensitive cash flows and term structure behaviors is therefore a better measure for the
interest rate risk of reserves. In this article, the effective duration of the policy reserve
is defined as follows:

ED =
−∂ mean reserve

mean reserve
∂r0

, (6)

where r0 denotes the initial value of the 1-year rate in the VAR model. The economic
meaning of the effective duration is the percentage change of the mean reserve with
respect to a change in the initial 1-year rate. In calculating the effective duration, the
differential of r0 is specified as 1 basis point and the difference between the resulted
mean reserve and the starting mean reserve is used as the differential of mean reserve
in simulation.

16The values of the 1-year rates and surrender rates in year –1 and year –2 are assumed to be
the same as the initial values. In other words, the changes in the 1-year rates and surrender
rates at time 0 and –1 are set as zero in simulation.

17This article does not adopt the model developed in Kuo, Tsai, and Chen (2003) because the
average simulated interest rate rises from 6 percent to 11 percent in 20 years. The increasing
mean of interest rates has significant impacts on the distribution of the policy reserve and
will bring unnecessary complication to the analysis on reserve durations.
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FIGURE 2
Term Structures of Policy Reserves Calculated Using Various Levels of Constant Interest
Rates
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THE TERM STRUCTURE OF MODIFIED DURATIONS

The Term Structure
To calculate the modified duration, Ln is first calculated using constant interest rates
while assuming that the surrender rate remains at 7 percent for years to come. The
policy reserves immediately after the first n net premiums are collected (Ln) are plotted
in Figure 2.

Equation (5) is then applied, and the modified durations of the reserves for the
endowment policies that are at the beginning of policy year 1 through 20 are obtained.
The results are shown in Table 2.

Table 2 has two characteristics. First, the modified durations of several policy reserves
are negative. For instance, the policies with maturities longer than 18 years have
negative durations when the interest rate is 6 percent or 8 percent. Second, many
policies have modified durations that are larger than their maturities. For example,
the policies with maturities longer than 12 years have durations that are larger than the
maturities when the interest rate is 0 percent or 2 percent. Some modified durations
have very large figures such as 246.66 (the policy with 18 years to go and the interest
rate is 6 percent) and 163.38 (the policy with 19 years to maturity at an interest rate of
4 percent). In Figure 3, the graph of the reserve’s modified duration as a function of
the policy’s time to maturity reveals an interesting pattern.

Figure 3 contains three pairs of curves separated by implicit vertical asymptotes.
These vertical asymptotes intersect the maturity axis at the times to maturities when
the reserves are zero. This intercept is therefore called the break-even maturity in this
article, and the vertical asymptote is called the zero-reserve line. The curve on the
left-hand side of an asymptote is located in the positive domain whereas the right-
hand-side curve is in the negative domain. More specifically, the modified duration
is positive and increases without bound as the time to maturity approaches the
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TABLE 2
The Term Structures of Modified Durations at Various Levels of Constant Interest Rates

Year(s) to Maturity 0% 2% 4% 6% 8%

1 1.00 0.98 0.96 0.94 0.93
2 1.97 1.93 1.89 1.85 1.82
3 2.91 2.85 2.79 2.74 2.69
4 3.84 3.76 3.68 3.61 3.53
5 4.77 4.66 4.56 4.46 4.37

6 5.70 5.57 5.44 5.32 5.20
7 6.64 6.49 6.34 6.19 6.05
8 7.62 7.44 7.27 7.10 6.94
9 8.63 8.44 8.25 8.07 7.89

10 9.71 9.51 9.32 9.13 8.96

11 10.88 10.69 10.52 10.36 10.21
12 12.14 12.00 11.88 11.79 11.74
13 13.58 13.53 13.54 13.64 13.83
14 15.26 15.41 15.71 16.22 17.03
15 17.28 17.83 18.75 20.26 22.86

16 19.77 21.08 23.35 27.60 37.13
17 23.02 25.88 31.64 46.64 147.13
18 27.53 33.97 52.04 246.66 −53.61
19 33.87 49.38 163.38 −63.79 −19.90
20 43.63 92.23 −121.25 −25.44 −10.78

break-even maturity from the left;18 it is negative and decreases without bound as
the maturity approaches the break-even maturity from the right. In short, Figure 3
shows the term structure of modified durations and is new to the literature.

The Rationale
The pattern of Figure 3 originates from the change of the policy reserve over time and
the change is driven by the evolutions of the two cash flow streams underlying the
reserve. The reserve of a life insurance policy is the difference between two cash flow
streams. Life insurance policy reserves, except for the reserves of single-premium
policies, consist of not only expected cash outflows but also expected cash inflows.
Death/survival benefits, surrender payments, policyholder dividends, commissions,
and other expenses are the expected cash outflows; future premiums from policy-
holders are the expected cash inflows to life insurance companies. In contrast, a bond
generates only cash outflows for the bond issuer after the bond is sold.19

More specifically, the policy reserve equals the present value of expected cash outflows
minus the present value of expected cash inflows. Furthermore, it has the opposite

18The reserves in the cases of 0 percent and 2 percent are positive for all maturities, and
the implied break-even maturities are larger than 20 years. Therefore, the durations are all
positive and increase with the time to maturity.

19A sold, single-premium life insurance policy produces only cash outflows in the future as
well. Therefore, its reserve has regular duration features as a bond.



430 THE JOURNAL OF RISK AND INSURANCE

FIGURE 3
Term Structures of Modified Durations at Various Levels of Interest Rates
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sign to the net present value (NPV) of a policy, which is the difference between
the present value of future cash inflows and that of future outflows. A policy that
is profitable to the life insurer should have a positive NPV and thus a negative
reserve.20 Newly sold multipremium policies should be profitable as long as they are
priced correctly.21 The profit of a 2- or 3-year-old policy will be smaller than that of
a brand new policy because fewer premiums are to be collected while the mortality
rate increases. A correctly priced policy will become breakeven some time after it is
sold. Old policies have positive reserves because there are few premiums left to be
collected and the present value of future benefits is large due to the short maturities.
The policy to be matured in a year has the largest reserve that equal to the policy’s
face amount divided by (1 + the 1-year interest rate). Therefore, the NPV/reserve
of a policy is an increasing/decreasing function with respect to the policy’s time to
maturity as Figure 2 shows.22

It is this pattern of the reserve that determines the pattern of the modified duration
with respect to the policy’s time to maturity. When the policy reserve is negative,
its modified duration is negative as well. When the maturity is close to the break-
even maturity and thus the magnitude of the reserve is small, the modified duration
has a large value. At the break-even time to maturity, the policy reserve is zero and
the modified duration has the magnitude of infinity.23 In short, the newly identified

20Although negative reserves are not admissible in accounting and regulation, the valuation of
an insurance company done by practitioners certainly takes the expected profits of in-force
policies into account.

21In contrast, the NPV of a single-premium policy after receiving the premium is always
negative because no more premiums can be collected.

22This feature holds for endowment and whole life insurance. It also holds for term life insurance
except during the period close to the expiration date.

23Readers can observe that the maturities with zero reserves in Figure 2 correspond to the
break-even maturities in Figure 3.
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pattern displayed in Figure 3 is driven by the pattern of the policy reserve that is in
the denominator when calculating the modified duration.24

For instance, the policy with 19 years to maturity has a reserve of $12,837 at 4 per-
cent interest rate whereas the present value of expected cash outflows and that of
expected premiums are $341,272 and $328,435, respectively.25 If the interest rate rises
1 percent, the present values of expected cash outflows and premiums will decrease
by $38,756 ($341,272 – $302,516) and $19,893 ($328,435 – $308,542), respectively. The
policy reserve will decrease by $18,863 accordingly ($38,756 – $19,893). Because the
net change from a 1 percent rise of the interest rate is larger than the policy reserves,
the percentage change in values is more than 100 percent and results in a three-digit
modified duration.26 The modified duration of the policy reserve therefore may have
a large figure when the reserve is small relative to the present values of individual
cash flow streams.

A negative modified duration of the policy reserve can be justified from two other
aspects. First, the implication about whether a rise in the interest rate increases or
decreases the policy reserve is correct. A negative duration coupled with a negative
reserve implies that increases in the interest rate will decrease the policy reserve,
which is inferred from Equation (5):

�P ≈ −MD × P × �r = (−) × (−) × (−) × (+) < 0.

where �P and �r are the increments of P and r. The downward shift of the reserve
curve in Figure 2 caused by increases in the interest rate confirms this implication.

Second, it generates a good approximation of the change in policy reserve resulting
from a change in the interest rate. For instance, the reserve of a policy with a maturity
of 20 years decreases by $186 to $–15,514 from $–15,328 when the interest rate increases
from 4 percent to 4.01 percent.27 The predicted change using the modified duration is

�P ≈ −(−121.25) × (−15,328) × 0.0001 = −186.

Indeed, the rationale for a negative reserve duration is obvious once we realize that a
sold policy may be an asset rather than a liability to the insurance company. Imagine
a situation in which an asset with a positive duration is treated as a negative liability.
This negative liability then should have a negative duration so that the value changes
with respect to changes in the interest rate are consistent, no matter how the asset is
treated. Therefore, a policy with a negative reserve should have a negative duration
because it is a de facto asset with a positive duration.

24Whole life insurance has the same reserve pattern as endowment. The reserve duration of a
whole life insurance policy therefore has the same pattern as Figure 1.

25The amounts of $341,272 and $328,435 are obtained from the spreadsheet resulting in policy
reserves ($341,272 – $328,435 = $12,837).

26A more accurate calculation for the modified duration is
− 12,626.80−12,836.53

12,836.53
0.01% = 163.38 that is the

number shown in Table 2.
27Both amounts are taken from the spreadsheet used to calculate policy reserves.
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TABLE 3
The Term Structures of Effective Durations With Various Initial Interest Rates

Year(s) to Maturity 0% 2% 4% 6% 8%

1 0.97 0.96 0.95 0.94 0.92
2 1.93 1.92 1.89 1.84 1.79
3 2.90 2.87 2.81 2.72 2.61
4 3.88 3.84 3.73 3.57 3.39
5 4.90 4.83 4.66 4.42 4.13
6 5.96 5.86 5.61 5.26 4.85
7 7.09 6.94 6.60 6.12 5.56
8 8.30 8.10 7.65 7.01 6.28
9 9.64 9.38 8.79 7.96 7.02

10 11.14 10.81 10.06 9.01 7.83
11 12.87 12.46 11.53 10.21 8.74
12 14.89 14.38 13.25 11.63 9.81
13 17.36 16.76 15.42 13.46 11.22
14 20.52 19.84 18.33 16.03 13.26
15 24.77 24.09 22.61 20.08 16.68
16 30.73 30.33 29.54 27.54 23.60
17 40.03 40.82 43.57 47.43 47.80
18 56.93 62.99 90.12 321.64 −150.05
19 94.23 134.10 −770.17 −57.47 −24.17
20 260.76 −897.89 −67.29 −23.74 −11.29

THE TERM STRUCTURE OF EFFECTIVE DURATIONS

The Term Structure
The calculations to obtain modified durations ignore two important facts: interest
rates are stochastic and surrender rates depend upon interest rates. To incorporate
interest-sensitive surrender rates and stochastic interest rates, this article draws on
the cointegration model of Equation (4) to simulate surrender rates and the 1-year
interest rates using various pairs of initial values. Then the simulated interest rates
and surrender rates are substituted into Equations (1)–(3) to generate the reserve
distributions for policies that are sold in different years. Equation (6) is then used to
obtain the effective durations of reserves for the endowment policies with different
times to maturity. The effective durations calculated using the initial surrender rate
of 7 percent are reported in Table 3.28

Table 3 confirms the findings from Table 2. First, several effective durations of policy
reserves are negative. For instance, the policies with maturities longer than 18 years
have negative durations when the interest rate is higher than 2 percent. Second, many
effective durations are larger than the time to maturity of the policies. Some of them

28We tried other initial values (e.g., 0 percent, 4 percent, 10 percent, and 14 percent) for the
surrender rate to couple with the initial short rate of 4 percent. The results show that the
initial value of the surrender rate has little impact on the effective durations and are thus
omitted.
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FIGURE 4
Term Structures of Effective Durations With Various Initial Interest Rates
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have very large figures, such as 321.64 (the policy with 18 years to maturity when the
initial interest rate is 6 percent) and 260.76 (the policy with 20 years to maturity when
the initial interest rate is 0 percent).

More important, the term structure of effective durations exhibits the pattern as shown
in Figure 1. The term structure for a given initial interest rate consists of two curves
separated by a vertical asymptote as can be detected from Figure 4. The effective
duration is positive, increases with the time to maturity of the policy, and approaches
infinity when the policy’s maturity approaches the break-even maturity. The other
curve is in the negative domain and decreases without bound as the maturity of the
policy decreases to the break-even maturity. In other words, the findings from the
deterministic cases in the section “The Term Structure” hold in the cases of stochastic
interest rates and interest-dependent surrenders. This is reasonable because the ratio-
nale stated in the section “The Rationale” is entirely independent from the behaviors
of interest rates and surrenders and consequently should apply to effective durations
as well.

Effective Dollar Duration
To further demonstrate the validity of the above results, the effective dollar duration
(EDD) is calculated. The EDD measures changes in the mean reserves with respect to
the initial 1-year rate changes. Specifically,

EDD = −∂ mean reserves
∂r0

. (7)

The EDD can be deemed as the slope of the policy reserve—interest rate curve with
the opposite sign. Its magnitude should decrease with the initial interest rate due to
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FIGURE 5
Effective Dollar Durations Corresponding to the Effective Durations in Figure 4

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

1 3 5 7 9 11 13 15 17 19

Year(s) to Maturity

E
ff

ec
ti

ve
 D

ol
la

r 
D

ur
at

io
n

0%

2%

4%

6%

8%

the convexity of the present value function.29 More specifically, the absolute value
of the function’s slope (i.e., the value of EDD) decreases with the interest rate because
the present value function is convex with respect to the interest rate. The EDDs of
reserves for policies with different times to maturity under different initial interest
rates are plotted in Figure 5.30

Figure 5 shows a clean pattern where the EDD decreases with the initial interest rate.
The term structure of EDDs shifts downwards as the initial interest rate rises. This
check further confirms the robustness of the calculations in this study.

The EDD of reserves is not monotonic with respect to the time to maturity because
the two factors determining the EDD interfere with each other. All other things being
equal, a longer maturity generates a larger EDD and so does a larger policy reserve.
The policy reserve however decreases with the time to maturity. The policy with the
longest time to maturity has the smallest reserve whereas the one with the shortest
time to maturity has the largest reserve. Therefore, the function of the EDD with
respect to the time to maturity is not monotonic.31

Effective Duration Versus Modified Duration
The comparison between Table 3 and Table 2 shows that many effective durations are
larger than the corresponding modified durations. This is contrary to the arguments
of Babbel (1995) and Santomero and Babbel (1997). Through Equation (11.3) in his
paper, Babbel demonstrates that the positive correlation between cash flows and

29Note that the VAR model of Equation (4) has the property of partial adjustments in both
interest rate and surrender rate. A higher initial interest rate/surrender rate will therefore
result in a higher average interest rate/surrender rate.

30We calculated EDD using the equation that EDD = ED × the starting mean reserve.
31We also calculated the modified dollar durations of reserves and found term structures similar

to Figure 5.
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interest rates generates a positive second term of the partial derivative of P with
respect to interest rate r. The generated second term will result in a smaller duration.

Babbel’s equation cannot be directly applied here because the reserves calculated
using the VAR model differ from the reserves calculated by the deterministic way
described in the section “The Term Structure.” The deterministic method using a low
interest rate (e.g., 0 percent, 2 percent, or 4 percent) overestimates the reserve because
it assumes that the interest rate will remain at this low level for 20 years. On the
other hand, the average interest rates generated by the VAR model with low initial
interest rates increases gradually with time and thus generate smaller reserves. The
deterministic method using a high interest rate (e.g., 8 percent) underestimates the
reserve due to the convexity of the present value function with respect to the interest
rate. In particular, the decrease in the present value due to an increase in the interest
rate is smaller than the increase in the present value for an equivalent amount of
decrease in the interest rate. The reserve calculated using the deterministic method
with a high interest rate is hence smaller than the stochastic reserve even though
the average interest rates are similar. Because the reserves calculated in the section
“The Term Structure of Modified Duration” and the section “The Term Structure of
Effective Duration” are different, one cannot simply apply Babbel’s equation to assert
that the effective duration of the policy reserve will be smaller than the modified
duration.

The newly identified pattern of Figure 1 provides a graphical explanation of why
the effective duration of the policy reserve is larger than the modified duration in
some cases yet is smaller in other cases. It is apparent that the break-even maturities
in Figure 3 are larger than those in Figure 4. For instance, the break-even maturity
in Figure 3 when the interest rate is 4 percent is between 19 and 20 years while the
break-even maturity is between 18 and 19 years when the initial interest rate is 4
percent in Figure 4. The modified duration has a larger break-even maturity because
the deterministic method using low interest rates results in larger reserves than the
stochastic way does. The larger break-even maturity means that the zero-reserve
line of the modified duration at 4 percent interest rate is on the right-hand side of
the line of the effective duration with 4 percent initial interest rate. The modified
duration therefore increases more slowly as the time to maturity approaches the
larger break-even maturity from the left, which causes the modified duration to be
smaller than the effective duration. On the other hand, the larger break-even maturity
makes the modified duration decrease more rapidly in the negative domain as the
maturity approaches the zero-reserve line from the right. The modified duration is
thus smaller as well. The cases in which the modified duration is larger can also
be explained using similar reasoning from the relative position of the zero-reserve
lines. In short, the pattern of Figure 1 explains the difference in magnitude between
modified duration and effective duration.

THE DURATIONS OF AGGREGATE RESERVES

The abnormal durations including negative durations and extreme durations found in
the previous sections imply that a life insurer might have great difficulties in finding
assets to match individual policies. For instance, how can managers find an asset
with a negative duration of 67.29 or a very large duration of 321.64? One may further
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infer the difficulties in hedging the insurer’s DGAP. The inference is invalid, however,
because it misses the underlying reason for the bizarre durations: irregular durations
originate from the reserves being small and/or negative. The reserve liability of a
life insurer, resulting from policies that are sold in different years, will have a normal
duration figure because abnormal durations are weighted out by the normal duration
figures that come with large reserves. We shall illustrate this statement using a pool
consisting of the endowment policies that are analyzed in the above sections.

Let us assume that a life insurer’s in-force policies contain equal numbers of 20-year
endowment policies with the time to maturity ranging from 1 to 20 years. More
specifically, the insurer has 1,000 20-year endowment policies in force from which
the first premiums were just collected. The insurer also just collected the second
premiums from the 1,000 20-year policies that are at the beginning of their second
policy year. The 3rd, 4th, 5th, . . . , 20th premiums are collected at the same time from
the 1,000 20-year policies that are at the beginning of the 3rd, 4th, 5th, . . ., 20th policy
years, respectively. Therefore, the aggregate reserves are equal to

∑20
1 1,000 × Ln.

The effective duration of the aggregate reserves will then be a weighted average of
the durations calculated in the section “The Term Structure of Effective Duration.”32

The effective durations of the aggregate reserves calculated using five initial interest
rates are listed in Table 4. The effective duration ranges from 9.32 to 5.29 with initial
interest rates ranging from 0 percent to 8 percent, which is feasible for the asset-
liability management. The negative durations and huge duration figures of some
policy reserves do not result in an abnormal portfolio duration because these individ-
ual reserves are small. The roles they play are immaterial in determining the duration
of the aggregate reserves. For instance, the reserve of the policy with 20 years to
maturity calculated using the VAR model with the initial interest rate of 0 percent
is $16,120 with an effective duration of 260.76. This policy contributes little to the
portfolio duration even though its reserve duration is huge because the policy’s re-
serve accounts for only 0.19 percent of the aggregate reserves. Similarly, the policies
with negative reserve durations have only a trivial impact on the portfolio duration
because their reserves are all small relative to the aggregate reserves. For example, the
aggregate magnitudes of the weights associated with negative durations are smaller
than 1.5 percent when the initial interest rate is 8 percent. The policies sold 17 years
ago or earlier account for about 40 percent of the aggregate reserves, but their reserve
durations are smaller than 3. Therefore, the duration of the aggregate reserves as a
weighted average of the individual reserve durations is within a normal range despite
the presence of abnormal component durations.

The portfolio durations reported in Table 4 are consistent with those in Santomero
and Babbel (1997). More specifically, the effective duration of the liabilities of the
endowment policies is 8.5 in Santomero and Babbel (1997). Their figure is close to
the case with the initial interest rate of 2 percent in Table 4. Albeit of the similarity
in the final result, this article provides readers with detailed descriptions on how

32Similarly, the modified duration of the aggregate reserves is a weighted average of the
durations calculated in the section “The Term Structure of Modified Duration.” We do not
report the results about the modified duration because the effective duration is a better
measure.
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the figure is obtained. Table 4 further shows how the effective duration of aggregate
reserves may change with the initial interest rate, which is useful for insurers to
manage their interest rate risk dynamically.

This article further analyzes the durations of the aggregate reserves coming from a
thriving and a declining insurer. Suppose that the number of in-force policies with
m years to maturity (m ∈N and 1 ≤ m ≤ 20) is 5 percent smaller than the number
of policies with m − 1 years to maturity. This in-force policy pool implies that the
businesses of these insurers have been declining for two decades and that the effective
duration of aggregate reserves of this pool ranges from 7.25 to 4.39 with initial interest
rates ranging from 0 percent to 8 percent. The decreases in the portfolio durations
when compared with Table 4 are due to the fact that old policies that have small
durations but large reserves account for a higher portion of the aggregate reserves
when the business has been declining. If the policies with the m-year maturity are
10 percent more than the policies with m − 1 years to maturity, then the duration of
the aggregate reserves would range from 15.28 to 8.13. These results imply that the
policy reserve liability of a life insurance company with declining/growing businesses
is less/more sensitive to changes in the interest rate and demands smaller/larger
duration assets in the asset–liability management.

CONCLUSIONS

Life insurance businesses are significantly exposed to changes in interest rates because
the contracts usually last for long periods and have guaranteed minimal credit rates.
High leverage ratios of life insurance companies aggravate the threat from interest
rate variations. To measure/manage the interest rate risk, a life insurer usually has
to calculate its DGAP that in turn demands the calculations of asset durations and
liability durations. The durations of various assets have been studied extensively in
the literature, but the durations of life insurance liabilities received limited attention
and remained obscure. This article analyzes the liability duration in detail to fill the
hole of the literature and the results have meaningful implications to the asset-liability
management of life insurers.

In calculating the modified duration of the policy reserves for an endowment life
insurance, this study identified features of policy reserve duration not previously
recognized in the literature. The modified duration may be negative, be larger than
the policy’s maturity, and/or have extreme figures. This study further identified an
interesting term structure of modified duration with respect to time to maturity. The
term structure consists of a pair of curves separated by a zero-reserve line. One curve
is in the positive domain and the duration increases with the maturity to infinity;
the other is in the negative domain and the duration decreases with the maturity to
negative infinity.

This pattern of duration is derived from the definition and pattern of the policy
reserve. The reserve of a life insurance policy is the difference between the present
value of expected cash outflows (e.g., death/survival benefits, surrender payments,
interest rate dividends, commissions, and expenses) and that of expected cash inflows
(premiums paid by the policyholder in the future). It changes with the time to maturity
and can be negative, zero, or positive. When the reserve is negative, its duration is
negative. If the reserve is close to zero, its duration will be a large figure.
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The effective duration of the policy reserve has the same pattern of term structure.
Using a model capturing the relation between the surrender rate and interest rate, this
article calculated the effective duration of policy reserves for policies with different
maturities. It was found that some effective durations are negative and some have
extreme figures. In addition, it was found that the modified duration of policy re-
serve is not necessarily larger than the effective duration. This newly identified term
structure of the duration helps to explain the irregular differences between modified
duration and effective duration.

The above results may seem alarming to life insurance companies and regulators as
they imply that the interest rate risk of a life insurance company may not be man-
ageable. Life insurers would have tremendous difficulties in finding assets to match
liabilities with negative and/or huge durations. The concern is true at the micro level
but not at the macro level. Our further analyses on the durations of aggregate reserves
indicate that the duration of an insurer’s policy reserve liability may still be within a
feasible range. It was found that the aggregate reserve comprising the policy reserves
of the endowment policies in different policy years have durations smaller than 15
under reasonable growth/declining assumptions. The dramatic changes result from
the fact that the policy reserves with large duration values are small and account for
a small percentage of the aggregate reserve. Therefore, the interest rate risk of a life
insurance company can still be managed even when some individual policy reserves
exhibit abnormal sensitivities to fluctuations in interest rates. Finally, it was found
that a company with a higher growth rate in underwriting life insurance should seek
longer-duration assets to match their liabilities.

APPENDIX

The expected net cash outflow of the endowment policy at time t (1 ≤ t < 20 − n + 1)
for the policy that is at the beginning of its policy year n (or equivalently at the
insured’s age of 30 + n − 1; 1 ≤ n < 20) after the nth net premium has been received,
E(CFt|n), is defined based on the following time line:

30 31 32 30+n-2 30+n-1 30+n 30+n-1+t-1  30+n-1+t  30+n+t 

Time -1 0 1 t-1 t t+1

Insured 
Age 

Policy Year 1 2 n-1 n  n-1+t   n+t
t

First bracket term of Equation (1) (at the end of policy year n −1 + t)
Death benefit (based on t−1 p(τ )

30+n−1 × q (d)
30+n−1+t−1) F

Surrender value (based on t−1 p(τ )
30+n−1 × q (s)

t ) Sn−1+t

Second term of Equation (1) (at the beginning of policy year n + t)
Premium (based on t p(τ )

30+n−1) P
Commission (based on t p(τ )

30+n−1) CMRn+t × P
Fixed expense (based on t p(τ )

30+n−1) FExpn+t

Variable cost (based on t p(τ )
30+n−1) VarCost × P
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