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a b s t r a c t

This paper presents an optimization approach to analyze the problems of portfolio selection for long-
term investments, taking into consideration the specific target replacement ratio for defined-contribution
(DC) pension scheme; the purpose is to generate an effective multi-period asset allocation that reaches an
amount matching the target liability at retirement date and reduce the downside risk of the investment.
A multi-period asset liability simulation model was used to generate 4000 asset return predictions, and
an evolutionary algorithm, evolution strategies, was incorporated into the model to generate multi-period
asset allocations under four conditions, considering different weights for measuring the importance of
matching the target liability and different periods of downside risk measurement. Computational results
showed that the evolutionary algorithm, evolution strategies, is a very robust and effective approach to
generate promising asset allocations under all the four cases. In addition, computational results showed
that the promising asset allocations revealed valuable information, which is able to help fund managers
or investors achieve a higher average investment return or a lower level of volatility under different
conditions.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction The traditional single-period mean–variance (MV) approach
The core purpose of pension funds is to serve as an attractive form
of savings for employees with the ultimately goal of providing them
with benefit payments when they have ended their active income
earning careers. There are two types of pension plans: defined con-
tribution (DC) and defined benefit (DB). There has recently been a ra-
pid trend of employees around the world shifting from the DB
scheme to the DC scheme with an increasing number of the new
workforce joining defined contribution schemes. A DC pension plan
is relatively simple; each participant accumulates his contributions
and investment returns in a distinct personal pension account. Typ-
ically, a longer tenure is associated with a greater probability of
being better rewarded in a DB plan. Under the DC scheme, employers
transfer the pension fund investment risk to the employees. Such a
scheme usually performs very badly in periods of high inflation be-
cause wages and salaries rise as fast as or faster than prices, whereas
the value of funds often does not. No one knows if the DC plan will be
able to provide a good pension benefit when the day of retirement
arrives. Therefore, it is essential for the employees to choose optimal
investment strategies during the accumulation phase so that they
will have sufficient funds accumulated on retirement.
ll rights reserved.
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(Markowitz, 1959) has dominated the portfolio selection process
in the investment management profession for over a decade
(Sharpe & Tint, 1990; Wilkie, 1985; Wise, 1984a, 1984b, 1987a,
1987b; Sherris, 1992). The MV approach is applied to single period
investments and solves the problem of single-period asset alloca-
tion under a restrictive set of assumptions; however, this method
is not suitable for a long-term investments, where multi-period
asset allocation is more appropriate, since holding the same propor-
tions of assets for thirty years may have a lower average investment
return or a higher volatility than a so called ‘‘life cycle’’ or ‘‘top–
down’’ investment strategy. In addition, the MV approach has the
disadvantage of being a single-point forecast. A different mean
and variance of the forecast may result in very different asset alloca-
tions (Chopra & Ziemba, 1993; Koskosidis & Duarte, 1997).

Merton introduced a multi-period context of portfolio strategy
(Merton, 1971, 1990) and his dynamic programming (DP) technique
is widely applied to the financial optimization in a continuous-time
model (Basak & Shapiro, 2001; Battocchio & Menoncin, 2004; Cuoco
& Cvitanic, 1998; Devolder, Princep, & Fabian, 2003; Gerrard,
Haberman, & Vigna, 2004; Haberman & Sung, 2005; Haberman &
Vigna, 2002; Hipp & Taksar, 2000; Josa-Fombellida & Rincon-
Zapatero, 2004; Lioui & Poncet, 2001; Yiu, 2004). However, it is
sometimes difficult to apply this technique to realistic problems
because it generally needs very strong assumptions to obtain
closed-form solutions in a continuous-time model. For example, if,
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according to some regulations, the weight of a specific asset must be
lower than a specified proportion of the portfolio, say 50%, then the DP
technique will not be able to attain a closed-form solution. It is even
more difficult to consider more complicated constraints such as the
monitoring of downside risk. In addition, a multi-period context of
portfolio strategy in a discrete-time model normally leads to sets of
recursive equations (Huang & Cairns, 2004). The difficulty of applying
constraints further increases in discrete-time models and prevents
the DP technique from being applicable in realistic problems.

Simulation techniques, such as the dynamic financial analysis
system, have been a commonly used tool for financial analysis,
and it certainly is an appropriate tool to deal with the DC pension
plan problem. It allows users to take into consideration all kinds
of constraints to simulate real world problems and helps users make
appropriate decisions under different conditions. Although
simulation techniques are powerful, it usually generates decisions
by employing users’ professional knowledge and the trial-and-error
method and cannot guarantee promising solutions. Therefore, the
approach of integrating simulation techniques with optimization
methods is valuable for researchers and practitioners to conduct
financial analysis. Furthermore, since simulation models for
financial analysis can be very complicated, optimization methods
should be carefully chosen and properly applied so that promising
decisions can be obtained. Lately, evolutionary algorithms have be-
come the most important techniques for optimization problems.
The SCI and SSCI database contains more than ten thousand
technical papers developed in the past decade that have reported
successful applications of evolutionary algorithms in many differ-
ent research fields. Several of the papers applied genetic algorithms
to solve portfolio optimization problems: Abiyev and Menekay
(2007), Baglioni, Pereira, Sorbello, and Tettamanzi (2000), Chan,
Wong, Cheung, and Tang (2002), Chang, Meade, Beasley, and
Sharaiha (2000), Chang, Yang, and Chang (2009), Oh, Lim, and Min
(2005), Lin and Ko (2009) and Yang (2006). To our knowledge, the
papers of Baglioni et al. (2000), Chan et al. (2002) and Yang (2006)
were the only research papers considering simulation models for
multi-period asset allocation and applied basic genetic algorithms
to determine effective asset allocations. However, all the applica-
tions were in some ways preliminary; therefore, in this research
an evolutionary algorithm, evolution strategies, is chosen to be
integrated with simulation models for the thorough investigation
of the DC pension plan problem.

We developed a multi-period discrete-time asset liability simu-
lation model and integrated an evolution strategies algorithm with
the model to generate a DC pension plan that can match a target
liability and decrease the downside risk. For the purpose of
illustration, Wilkie’s investment model is adopted (Wilkie, 1995)
to simulate a representative set of equal-probability plausible sce-
narios of future returns. Each scenario represents one possible
uncertain return over the planning horizon. A large set of scenarios
is generated to adequately represent highly unlikely market swings,
and the proposed simulation optimized approach is applied to ob-
tain a promising investment strategies. In this research, 4000
equal-probability scenarios of returns in 40 years were generated
for the simulation model, and the proposed approach was applied
to generate investment strategies under conditions considering
different weights for measuring the importance of matching the tar-
get liability and the period to reduce downside risk. Computational
results showed that the proposed approach is effective for finding
promising investment strategies to match the target liability and
decrease the downside risk during the accumulation phase in a DC
plan. In addition, the investment strategies generated under differ-
ent conditions provide valuable information for fund managers or
investors to make proper decisions under different conditions.

The rest of this paper is organized as follows. Section 2 describes
our asset liability management models for pension funds. Section 3
introduces the evolution strategies algorithm and explains how the
algorithm is applied to generate promising multi-period asset alloca-
tions to achieve the objectives of the models. The computational re-
sults are discussed in Sections 4 and 5 concludes some findings in
this paper.
2. Asset liability management for pension funds

Generally speaking, the main goal of asset liability management
for pension funds is to find acceptable investment returns and con-
tributions that ensure that the fund is sufficient during the planning
horizon. In this paper, we investigate the investment allocation and
the downside risk faced by retiring members of DC plans. We assume
that each individual has a pre-specified target liability (a specific in-
come replacement ratio). Hence, achieving the asset–liability
matching is the major objective of the participants of DC plans. A
trade-off between investment returns and insolvency is an impor-
tant factor that must be considered. Usually, the solvency is evalu-
ated by the amounts of unfunded liabilities, which is the difference
between liabilities and assets. Generally speaking, when compared
with a single-period investment strategy, a multi-period asset allo-
cation strategy provides a larger allowance for temporary under-
funding, which allows investors to hold more equity at the
beginning of the term and possibly enhances investment returns
during the entire period. Therefore, a multi-period investment strat-
egy is more likely to provide a higher average return, subject to a cer-
tain allowance of risk, than a single period investment strategy. It is
then important to construct a model of a multi-period investment
strategy for a long-term liability.

The purpose of this paper is to establish an effective asset alloca-
tion to a long-term liability such as pension benefits. With the
asset allocation, fund managers or investors are able to follow their
schedules to meet their target obligations as long as the market is
consistent all the time. If the market changes after a period, fund
managers or investors need to simulate the new market information
and apply the model of the multi-period investment strategy to ob-
tain another effective asset allocation for the rest of the period of the
target liability. A pension fund has long-term obligations; and there-
fore, a long-term view of investment strategy is required because of
its long planning horizon. Thus, we use the standard asset classes
used by pension funds such as short-term bonds, consols, index-
linked gilts and equities.

In order to evaluate the asset value of the portfolio, we define.

Pkj : proportion held in asset type j at the kth year;

where j = 1 is for short-term bonds; j = 2 is for consols; j = 3 is for
ILGs; j = 4 is for equities.

A(0): total initial asset holding.
A(k): total asset value at the kth year.
A(n): total asset value at the end of the term.
c%: contribution rate, a percentage of an individual’s salary con-
tributed to his (or her) pension account each year in order to
reach a target liability.
S1: initial salary.
Sk: salary at the kth year.
Sn: salary at the last year of the term.
riðkÞ is the investment return of the ith asset at the kth year.

The value of the total asset at the time of the kth year is:

AðkÞ¼ðAðk�1Þþc%�SkÞ�
X4

j¼1

Pkj�ð1þrjðkÞÞ
" #

; j¼1; . . . ;4 ð1Þ

where k = 1, . . . ,n.
Thus, the value of the total asset at the maturity date is:
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AðnÞ ¼ ðAðn� 1Þ þ c%� SnÞ
X4

j¼1

Pnj � ð1þ rjðnÞÞ
" #

¼
Xn

t¼1

c%� St

Yn

i¼t

X4

j¼1

Pij � ð1þ rjðiÞÞ
" #

: ð2Þ

Maximizing investment surplus (positive tracking errors) is a
one of the main purposes for most investors. However, for most
pension plan sponsors, asset–liability matching is widely recog-
nized as a sensible goal because of its conservative property. The
income replacement rate is a popular index to judge the required
amount at retirement. Thus, we define the target liability at the
retirement date as follows:

LðnÞ ¼ 80%� Sx � a
::

x; ð3Þ

where Sx is the salary at age x and x is the retirement age. €ax is the
value of an annuity of 1 per annum payable annually in advance for
a life attaining age x. For the simplicity, €ax is calculated with a fixed
interest rate.

Although the final wealth at retirement date is important in
pension schemes, the investment performance during the accumu-
lation period should not be ignored. Therefore, we define the an-
nual minimum increase of the target liability as the larger value
between 5% and the inflation rate. In other words, we aim to have
a target annual minimum return of 5% or the inflation rate. The tar-
get liability at time Tk is as follows:

LðTkÞ ¼ ½LðTk � 1Þ þ c%� STk�1� �maxf1:05; rpiTk
g;

Lð0Þ ¼ 0; Tk ¼ 1; . . . ;n� 1; ð4Þ

where rpiTk
is the inflation rate at time Tk.

As mentioned previously, in this research, we not only consider
the minimization of the tracking error at the terminal date, but also
make an effort to reduce the downside risk by checking the down-
side risk regularly. If we check the value of the pension fund
against the target liability to determine its sufficiency every five
years, then we can define the objective function as follows:

Min h� E½ðAðnÞ � LðnÞÞ2� �
Xk¼n

5�1

k¼1

E½AðT5�kÞ � LðT5�kÞ�; ð5Þ

where h is a weight for adjusting the importance of asset–liability
matching at the retirement date (Haberman & Vigna (2002)). If
we check the sufficiency of the pension fund against the target lia-
bility every year, then we define the objective function as follows:

Min h� E½ðAðnÞ � LðnÞÞ2� �
Xk¼n

5�1

k¼1

E½AðTkÞ � LðTkÞ�: ð6Þ

Note that also, in this research, although the sufficiency of the
pension fund against the target liability can be checked every year,
the proportions of asset allocation are changed every five years.
This is because if the proportions are changed every year, the num-
ber of variables considered in the model increases significantly and
optimally solving the simulation model will become computation-
ally intractable.

3. Evolution strategies

Evolutionary algorithms (EAs) are randomized search methods
that incorporate the nature of evolution into its processes
(Michalewicz, 1999; Michalewicz & Fogel, 2002). Evolutionary
algorithms, unlike traditional optimization techniques, use
‘‘populations’’ instead of single points to search and solve complex
optimization problems. The population for the initial generation is
usually generated randomly. From the members (parents) in the
population, genetic operators are then used to produce offsprings,
and the favorable offsprings, based on the ‘‘survival of the fittest the-
ory’’ in the biological world, are chosen to constitute the population
for the next generation. The process continues for generations until a
termination criterion is satisfied and a superior solution is acquired.

Genetic algorithms (GA), genetic programming (GP), and evolu-
tion strategies (ES) are some of the commonly used evolutionary
algorithms. GA is the most popular one and is good for general
optimization problems; GP is appropriate for rule-based optimiza-
tion problems, ES is developed exclusively for continuous variable
problems (Rechenberg, 1973; Schwefel, 1981). Since the problem
at hand involves continuous variables, we choose to apply ES in
solving the candidate problem in this research. The steps of a
(l,k) ES algorithm are presented below (Back, 1996; Nissen &
Biethahn, 1995), where l is the number of parents in the current
population and k is the number of offspring produced by the par-
ents, and k is about seven times l. Back (1996) suggests a default
set of (l,k) to be (15,100), and it is used in this application.

Step 1: Generate a population for the initial generation. A popula-
tion of l solutions (members) is generated. Each solution
is usually represented by a row vector consisting of two
parts. The elements in the first part are the values of the
decision variables (xj) considered in a given application,
and the elements in the second part are the mutation step
sizes (rj) corresponding to the decision variables in the
first part. The decision variables in our application are
the contribution rate and the proportions of the four
asset allocations in every period. Note that in our simula-
tion model, the investment strategy is to change the pro-
portions of the asset allocations every five years and
then keep the same proportions over the said period.
Therefore, with a forty year simulation horizon we have
to determine the contribution rate and proportions of
the four asset allocations in each of the eight periods,
and there are a total of 33 decision variables included in
a solution. If the investment strategy is to change the pro-
portions of the asset allocations every year instead of
every five years, the number of decision variables
increases largely from 33 to 161. This will cause optimally
solving the simulation model computationally intractable.
We thus choose to change the proportions of the asset allo-
cations every five years in our simulation model. The con-
tribution rate and the proportions of the asset allocations
are real values in the range of [0,1], and the sum of the
proportions of the four asset allocations in a period is
equal to one. Therefore, for each solution we first ran-
domly generate the contribution rate and the proportions
of the first three asset allocations of the eight periods from
the uniform distribution with a range of [0,1]. A simple
method, denoted as the feasibility-keeping method, is then
applied to the generated proportions of the three
asset allocations for each period as follows. If the sum of
the three proportions is greater than one, then all the pro-
portions will be multiplied by 0.9 consecutively until their
sum is less than or equal to one; the proportion of the
fourth asset allocation is then obtained by subtracting
the sum from one. This feasibility-keeping method is able
to reduce the number of the decision variables, which are
needed to be determined by the ES, from forty to thirty-
two. In addition, in each solution, all the mutation step
sizes are set to 3.0 (Back, 1996).

Step 2: Apply recombination and mutation to the parents in the
current population to produce k offspring. A pair of par-
ents, A and B, is randomly chosen from the population,
and recombination and mutation are applied to A and B
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to produce a child C. Discrete recombination is used to
determine the first part, the decision variable values of
child C. The value of each decision variable in C is ran-
domly and equally chosen from the value of the same var-
iable in A and B. Intermediate recombination is used to
determine the second part, the mutation step sizes of C.
The jth mutation step size in C is simply determined by
the average of the jth mutation step size in A and B
(rj(C) = 0.5(rj(A + rj(B)).
The generated child C is then mutated by first modifying
its mutation step sizes and then adding these step sizes
to mutate the corresponding decision variables. Each
mutation step size rj(C) is modified by the following
equation:
r0jðCÞ ¼ rjðCÞexpðs0Nð0;1Þ þ sNjð0;1ÞÞ; ð7Þ

where N(0,1) is a standard-normally distributed random
variable, and the values of s and s0 are set to 1.0 with each
decision variable xj is mutated by the following equation:

x0jðCÞ ¼ xjðCÞ þ Nj 0;r0jðCÞ
� �

: ð8Þ

When child C is generated, the feasibility-keeping method is
applied to the asset allocations of each period to maintain
its feasibility. The reproduction procedure is repeated until
k offspring are produced.
Step 3: Evaluate the k offspring and choose the best l offspring to
constitute the population for the next generation. The
decision variables of a child are submitted to the simula-
tion model, and the result, the tracking error generated
by the model, is the fitness value of the child.

Step 4: Check the termination criterion. If the termination crite-
rion is satisfied, stop; otherwise go to Step 2. For all the
examples solved in this research, we plotted evolutionary
curves and found that the ES converged within 500 gener-
ations in all of the examples. Therefore, the termination
criterion used in this application is a maximum of 500
generations.

In order to verify the performance of the ES with the given
parameters, we coded the ES in C language and applied it in solving
the following complicated benchmark examples in Michalewicz
(1999), Michalewicz & Fogel (2002). For purposes of convenience,
the ES with the given parameters is denoted as BES (Basic ES):

Case 1:
Minimize f ðxÞ ¼ 100 x2 � x2
1

� �2 þ ð1� x1Þ2 þ 90 x4 � x2
3

� �2

þ ð1� x3Þ2 þ 10:1ððx2 � 1Þ2 þ ðx4 � 1Þ2Þ
þ 19:8ðx2 � 1Þðx4 � 1Þ

Subject to : �10:0 6 xi 6 10:0; i ¼ 1;2;3;4:
Case 2:
Minimize f ðx; yÞ ¼ 0:5þ ðsinðsqrtðx2 þ y2ÞÞ2 � 0:5Þ
=ð1:0þ 0:001ðx2 þ y2ÞÞ2

Subject to : �100:0 6 x; y 6 100:0:
For Case 1, Colville (1968) presented this problem in his study.
The global optimal solution for this problem is
x⁄ = (1.0,1.0,1.0,1.0) and f(x⁄) = 0. Michalewicz (1999) applied an
effective genetic algorithm, GENOCOP (Genetic algorithm for
Numerical Optimization for Constrained Problems), to the problem
and found a solution, x, close x⁄, such that f(x) = 10�8 in about
10,000 iterations. We applied BES to solve this problem 20 times
using different initial solutions. All the applications produced solu-
tions very close to x⁄, and their objective values were all less than
10�8 in about 6000 iterations. These solutions were improved to
make the objective values approach 10�15 in about 10,000 iterations.
As to Case 2, Dozier presented this question in his study (Dozier,
Homaifar, Tunstel, & Battle, 2001), and he noted that the algorithm
should find the optimum solution f(x,y) > 0.99754 within 4000
iterations. We also applied BES to solve this problem 20 times using
different initial solutions. All the applications found f(x,y) > 0.99754
within 100 iterations. These results demonstrate effectiveness, effi-
ciency, and robustness of BES. Robustness is especially important for
simulation models because the conditions generated by simulation
models, with the same parameters, may be different. Therefore, it
is believed that BES is an appropriate tool for the candidate problem.
4. Analysis of numerical results

In this section, Wilkie’s investment model (1995) is adopted to
simulate a representative set with 4000 equal-probability plausible
scenarios of asset return predictions. We assume that a new em-
ployee is twenty-five years old and he will contribute a percentage
of his salary, the contribution rate, into his pension account each
year in order to reach a target liability of 80% income replacement
when he retires at the age of sixty-five. Also, he will face 4000
equal-probability scenarios of asset return predictions every year
in the following 40 years. A pension manager must find an effective
investment strategy for the new employee. The investment strategy
is to determine the contribution rate and change the proportions of
asset allocation every five years. We integrated BES with the simu-
lation model to find effective investment strategies for the employ-
ee under different cases and observed the sharpe ratio and
distributions of surplus and deficit generated by the investment
strategies. Four cases, considering different weight h and different
frequency of downside risk measurement, were developed, and
for each case, BES was executed five times with randomly generated
initial populations. The BES was executed using a Linux platform, a
Gentoo Linux 2.6.11 operation system, and the CPU is Intel Xeon
CPU 3.00 GHz with 1024 KB cache size memory. The computation
in the simulation model was quite time consuming; it took BES
about 5,400 s to finish an execution for each case.

The first case investigates the asset allocation and contribution
rate on the condition where h = 1.0 and the downside risk is
checked every five years. The proportions of the asset allocations
and the contribution rate produced by BES for each period are pre-
sented in Table 1. The results show that we need to contribute
close to 16% of the annual salary to reach the 80% income replace-
ment rate. Also, the results illustrate that we should hold more as-
sets in consols, Pk2, at the start of the term and then gradually shift
them to index-linked gilts, Pk3. We should hold more short-bonds,
Pk1, in the last period in order to reduce liquidity risk. Furthermore,
it is found that the index-linked gilts is the most important asset
because it is most correlated to the concept of the target liability,
salary and inflation rate; conversely, equities, Pk4, is the least
important asset because it is least correlated to the target liability.

Case 2 investigates the condition where h = 1.0 and the down-
side risk is checked every year. The proportions of the asset alloca-
tions in Table 2 shows that index-linked gilts, Pk3, is still the most
important asset; however, we should hold more equities, Pk4, at the
start of the term for the purpose of increasing the fund value
quickly to avoid the downside risk every year. This, as expected, re-
veals a fact that when investors change their measurement of the
downside risk from every five years to every year, the portfolio
composition will change towards more risky investments (more
equities held in the portfolio) and the contribution rate will be
decreased.



Table 1
Optimal asset allocation and contribution rate for Case 1.

Time k 1 6 11 16 21 26 31 36

Pk1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0092 0.0303 0.2499
Pk2 1.0000 0.4227 0.3021 0.1783 0.1534 0.1208 0.0900 0.0000
Pk3 0.0000 0.5097 0.6848 0.8046 0.8466 0.8642 0.8797 0.7295
Pk4 0.0000 0.0675 0.0131 0.0171 0.0000 0.0057 0.0000 0.0255

Contribution rate = 0.1559 = 15.59 %

Table 2
Optimal asset allocation and contribution rate for Case 2.

Time k 1 6 11 16 21 26 31 36

Pk1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2411
Pk2 0.8182 0.3331 0.2333 0.1350 0.1294 0.0996 0.0858 0.0000
Pk3 0.0000 0.4466 0.6507 0.7811 0.8311 0.8649 0.9045 0.7361
Pk4 0.1818 0.2203 0.1160 0.0839 0.0395 0.0355 0.0097 0.0228

Contribution rate = 0.1494 = 14.94 %

Table 3
Optimal asset allocation and contribution rate for Case 3.

Time k 1 6 11 16 21 26 31 36

Pk1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2645
Pk2 0.6026 0.2705 0.1807 0.1008 0.1106 0.0786 0.0695 0.0000
Pk3 0.0000 0.3974 0.6310 0.7688 0.8239 0.8709 0.9245 0.7304
Pk4 0.3974 0.3321 0.1883 0.1304 0.0654 0.0506 0.0060 0.0051

Contribution rate = 0.1458 = 14.58 %

Table 4
Optimal asset allocation and contribution rate for Case 4.

Time k 1 6 11 16 21 26 31 36

Pk1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3417
Pk2 0.0000 0.0797 0.0000 0.0000 0.0260 0.0000 0.0000 0.0000
Pk3 0.0000 0.0000 0.2899 0.4956 0.6281 0.7907 0.9449 0.6583
Pk4 1.0000 0.9203 0.7101 0.5044 0.3458 0.2093 0.0551 0

Contribution rate = 0.1212 = 12.12 %
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Case 3 investigates the condition where h is reducing from 1.0
to 0.1 and the downside risk is checked every five years. Since
the importance of the asset–liability matching at the terminal date
is low, an appropriate investment strategy should hold more risky
assets in order to increase investment returns quickly to reduce the
downside risk during the accumulation period. The generated pro-
portions of the asset allocations in Table 3 confirm this expectation
that we should hold more equities, Pk4, in the first few periods of
the term.

Case 4 investigates the condition where the frequency of mea-
surement for the downside risk is reduced from every five years
to every year in the case of h = 0.1. This means that we focus almost
entirely on reducing the downside risk during the accumulation
period. Therefore, we must speed up the accumulation of the pen-
sion fund in order to reduce the downside risk. Table 4 presents the
generated proportions of the asset allocations and the contribution
rate. It shows that the majority of the assets held during the early
periods is in equities, Pk4, and they are switched to index-linked
gilts, Pk3, and short-bonds, Pk1, to reduce the volatility in the later
periods of the term.

In order to investigate the performance of the investment strat-
egies generated in the previous four cases, we calculate the annual
investment return, the Sharpe ratio, and the terminal residuals of
deficit and surplus for each strategy. The deficit residual includes
mean, standard deviation and conditional tail expectation at 5%
(CTE5%) of the shortfall between the pension fund value and the
targeted pension liability, and the surplus residual includes mean,
standard deviation and conditional tail expectation at 5% (CTE5%) of
the positive surplus between the pension fund value and the tar-
geted pension liability. Table 5 presents the calculated results for
the investment strategies generated under the four cases. As dis-
cussed above, we will engage in riskier investments if we measure
the level of the downside risk more frequently during the accumu-
lation period and lower the importance of the asset–liability
matching at the terminal date. This means that we will hold riskier
assets as we progress from the objective stated in Case 1 to that in
Case 4; Table 5 shows that riskier investments will increase the an-
nual average return (from 8.6% to 9.92%) and decrease the require-
ment of the contribution rate (from 15.59% to 12.12%). However,
Table 5 also shows that we will have larger deficits with risky
investment. For example, the value of deficit as represented by
CTE5% in Case 4 is much larger than those in the other cases. This
means that we may have a terminal fund that is much lower than
the target liability at retirement date. On the other hand, the value



Table 5
Performance of different investment strategies.

Case h Measurement of downside risk Contribution rate Annual average return Sharpe ratio Deficit residual Surplus residual

l r CTE5% l r CTE5%

1 1 Every 5 years 15.59% 8.60% 1.309 12.9 12.8 52.44 12.0 13.1 53.35
2 1 Every year 14.94% 8.90% 1.401 13.7 12.5 51.18 14.2 14.5 55.04
3 0.1 Every 5 years 14.58% 9.02% 1.454 14.0 12.6 51.54 15.3 16.0 59.19
4 0.1 Every year 12.12% 9.92% 1.787 18.7 16.7 68.96 32.0 37.9 118.21
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of surplus CTE5% (118.21) in Case 4 is much larger than those of the
other cases. This explains the better annual average return (9.92%)
and the lower required contribution rate (12.12%).
5. Summary

This paper proposed a simulation optimization approach to
analyze and solve the problems of portfolio selection by applying
multi-period asset allocation for a practical objective function, con-
sidering both asset–liability matching at the retirement date and
the frequency of checking downside risk. Computational results
showed that with the plausible simulation of future predictive re-
turns, this simulation optimization approach, using a powerful
optimization algorithm (evolution strategies), is able to find prom-
ising multi-period asset investment strategies that avoid the disad-
vantage of being highly sensitive to the single-point forecast. In
addition, computational results showed that the promising mul-
ti-period investment strategies revealed useful information, which
is able to help fund managers or investors achieve a higher average
investment return or a lower level of volatility under different con-
ditions. Furthermore, with regular monitoring of downside risk,
risk-seeking fund managers or investors are able to further en-
hance their investment performance.

Since simulation techniques have been a commonly used tool
for financial analysis, the proposed simulation optimization ap-
proach can be easily applied to solve other financial problems.
Computational burden may be a barrier for researchers and practi-
tioners to apply this simulation optimization approach, so finding a
way to improve efficiency of the approach is worthwhile.
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