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a b s t r a c t

For the valuation of reverse mortgages with tenure payments, this article proposes a specific analytic
valuation framework with mortality risk, interest rate risk, and housing price risk that helps determine
fair premiums when the present value of premiums equals the present value of contingent losses. The
analytic valuation of reverse mortgages with tenure payments is more complex than the valuation with a
lump sum payment. This study therefore proposes a dimension reduction technique to achieve a closed-
form solution for reverse annuity mortgage insurance, conditional on the evolution of interest rates. The
technique provides strong accuracy, offering important implications for lenders and insurers.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Demographic aging constitutes a significant global problem.
According to the Organization of Economic Cooperation and
Development, the average aged dependency ratio (i.e., the ratio
of the number of senior dependents over age 65 to the total
workforce) reached 20.9% in 2000 and is expected to increase
to 47% by 2050. Governments worldwide thus face increasing
fiscal burdens, including the pressing question of how to increase
the income of seniors effectively and inexpensively. Reverse
mortgages (RMs) offer one such answer.

Unlike with conventional mortgages, RM lenders provide a
lump sum or periodic payments to elderly homeowners, which
enable them to convert their home equity into cash to support
their retirement. In their assessment of the Connecticut Housing
Finance Authority’s reverse annuity mortgage (RAM) program,
Klein and Sirmans (1994) conclude that annuity payments exert
a demonstrable financial enhancement effect on borrowers, with
an 88% average annual income increase. Mitchell and Piggott
(2004) also explore the feasibility of RM markets in Japan and
suggest that RMs could relieve the fiscal burden of traditional,
state-funded retirement provision. Moreover, RMs can serve as an
alternative option for elderly homeowners, enhancing the liquidity
of their properties and improving their consumption,which in turn
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decreases financial pressures on governments (Hancock, 1998;
Rowlingson, 2006).

Six types of payment options are available through RMs: lump
sum, term, line of credit, modified term (which combines line of
credit and term payments), tenure, and modified tenure (which
combines tenure and line of credit). Of these, line of credit is
the most popular payment option because of its high flexibility.
However, RMs with tenure payments, such as the RAMs, offer
relief to social security systems. By providing regular cash flows
to the borrower, thesemortgages increase the income replacement
ratio for retirees. However, from financial institutions’ perspective,
issuing RMs is risky because of their non-recourse clauses—the
lender may not access any other assets to reclaim the loan value
except for the collateral housing property. In addition, compared
with a lump sum payment RM, RAM suffers greater longevity
risk and thus demands an insurance mechanism. In particular,
the lender faces a ‘‘crossover risk’’, in which the outstanding
balancemight accumulatemore quickly than the appreciation rate
of housing value. The guarantee insurance of the Home Equity
Conversion Mortgage (HECM) program, which is issued by the
Federal Housing Administration (FHA), covers losses due to the
non-recourse provision.

In this market, RAM lenders face three main types of risk:
housing price risk, interest rate risk, and longevity risk. Previous
research pertaining to housing pricemodels suggests two perspec-
tives. First, discrete time models assume that housing price re-
turns exhibit autocorrelation (Case and Shiller, 1989; Hosios and
Pesando, 1991; Ito and Hirono, 1993) and generalized autoregres-
sive conditional heteroskedasticity (e.g., Nothaft et al., 1995; Chin-
loy et al., 1997; Chen et al., 2010a; and Li et al., 2010). Second, con-
tinuous time models argue that housing prices follow traditional,
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geometric Brownianmotion (e.g., Kau et al., 1992, 1993, 1995; Szy-
manoski, 1994; Chinloy and Megbolugbe, 1994; Kau and Keenan,
1995, 1999; Hilliard and Reis, 1998; Yang et al., 1998; Bardhan
et al., 2006; Ma et al., 2007; Wang et al., 2007; and Huang et al.,
2011). However, housing prices have shifted substantially in re-
cent years. Using Chicago Mercantile Exchange futures price data,
Mizrach (2008) demonstrates that, on average, it requires approx-
imately 69 jump risks to reach significance in a 315-day sample.
Using the US national average new home price returns for single-
family mortgages from January 1986 to June 2008, Chen et al.
(2010b) identify 14 times that the monthly housing price changed
more than 10% per month. In turn, we employ a jump diffusion
model to capture the dynamics of the housing price.

As mortality rates continue to improve, longevity risks are
critical, and thus a wide range of mortality models has been
proposed. Among them, Lee and Carter (1992, hereinafter LC)
model is perhaps the most popular because it is easy to
implement and offers acceptable prediction errors (e.g., Koissi
et al., 2006, Melnikov and Romaniuk, 2006; and Wang et al.,
2011). Modifications of the LC model also allow for broader
interpretations (Milevsky and Promislow, 2001; Brouhns et al.,
2002; Renshaw and Haberman, 2003; Dahl, 2004; Cairns et al.,
2004, 2009; Yang et al., 2010).

Because of their complex frameworks, RMs, and in particular
RAMs, rarely appear in analytic studies. This research aims to
develop a framework for pricing RAMs by considering stochastic
mortality models, stochastic interest rates, and housing price
models simultaneously. As noted by Phillips and Gwin (1992),
a longer lifespan of RM, higher interest rates, or a real estate
depression all can impose greater crossover risk. Yet existing
efforts to price RM contracts tend to use periodic life tables,
thus neglecting the dynamics of mortality rates (see Weinrobe,
1988; Chinloy and Megbolugbe, 1994; Szymanoski, 1994; Tse,
1995; and Zhai, 2000), or else price HECM models with a constant
interest rate, thus ignoring the inherent dynamics of interest rates
(Chinloy and Megbolugbe, 1994; Szymanoski, 1994; Chen et al.,
2010a; Li et al., 2010). To fill the gap in extant research, we
assume instead that the underlying mortality process follows the
LCmodel and the interest rate follows themodel of Cox et al. (1985,
hereinafter CIR). In addition, after the subprime crisis, the jump
risk of housing prices has drawn substantial attention (Chen et al.,
2010b). We model housing prices as a jump diffusion process, and
the complexity of our pricing model precludes the development
of a closed-form solution. Conditional on the evolution of
interest rates, we provide a closed-form solution for pricing RAM
contracts. Using the closed-form solution, we can obtain a fair
value of the RAM numerically by simulating only the interest
rates. This dimension reduction algorithm can reduce simulation
error significantly. Finally, for model comparison, we employ
an autoregressive moving average–generalized autoregressive
conditional heteroskedastic (ARMA–GARCH) model for housing
price dynamics.

The contributions of this research are fourfold. First, we propose
a pricing approach for deriving a fair level of periodic payments
in the prevalent HECM program. Second, we consider the jump
effect on housing prices in our valuation of RAM and show
that unexpected shocks significantly affect the level of annuity
payments. Third, we integrate the interest rate dynamic into the
valuation of RAM; most research pertaining to HECM models
uses a constant interest rate environment. Fourth, the proposed
dimension reduction technique to achieve a closed-form solution
for RAM insurance, conditional on the evolution of interest rates,
provides an accurate approach.

The remainder of this article proceeds as follows. The next
section specifies the valuation framework, including the structure
of RAM insurance and the processes underlying interest rates,
housing prices, and mortality rates. The valuation methodology
appears in the third section. In Section 4, we use numerical results
to examine how the properties of the amount of annuity payments
change in response to various parameters;we also provide a robust
analysis of our approach. Finally, in Section 5 we draw conclusions
about our findings.

2. The model

In this section, we first describe the contract structure of RAMs
and RM insurance. We then specify the model for the interest rate,
housing prices, and mortality.

2.1. RAM contracts

We consider an RM with tenure payments and an insurance
mechanism analogous to the HECM insurance structure in the
United States. For example, RAMs constitute a home equity
conversion type that provides regular annuity payments to the
borrower, with no repayment of interest or principal due until the
deadline, which arises when the homeowner sells the property,
moves out permanently, or dies.When the loan is due and payable,
the property is sold to repay the loan. The non-recourse debtmeans
that the collateral property (i.e., house) is the only asset the lender
may use to reclaim the loan. The lender faces a loss if the loan
balance exceeds the value of the collateral property at thematurity
date. Many banks and insurers thus are unwilling to enter the
market, for fear of this non-recourse clause.

To encourage the financial industry to participate and offer RMs,
some form of insurance is needed to cover its potential contingent
losses. We investigate RMs with tenure payments, analogous to
the US HECM program.1 In this case, the insurer charges premiums
to the lender with an up-front premium equal to 100π0% of the
initial house value and an annual assessment equal to 100πm%
of the outstanding balance. These charges are transformed by the
borrower and accrued to the outstanding balance, along with the
interest rate on the loan. In the prevailing HECM program, the up-
front premium π0 is 2%, and the annual premium πm is 1.25%.2
Using this predetermined insurance premium structure, we can
evaluate the present value of expected claim losses and insurance
premiums, thus determining the annuity payment in a condition
in which the present value of expected claim losses equals the
value of insurance premiums. For simplicity, we assume that the
loan comes due and is payable only at the borrower’s death. At
this terminal date, the outstanding balance is payable, and the
remaining value belongs to the heirs, if the property value is
greater than the outstanding balance.

2.2. Interest rate model

Several models depict the local process for the short-term
interest rate. To avoid the problem of a negative nominal interest

1 In real-life RM contracts in theUnited States, lenders generally limit the amount
that can be borrowed to 40% of the value of the home, with a hard limit of
$625,000 for FHA/HUD (Housing and Urban Development) RMs. The costs of a
reverse mortgage vary, but in general people can expect to pay more than $6000,
which include the following items: origination fee (maximum cap of $6000: 2%
for the first $200,000, and 1% thereafter), mortgage insurance (2% of the real
estate valuation), title insurance (varies by state), and legal fees. In some cases, a
land/house survey, which costs around $400, is also required. These charges can be
added to the RM itself, so the only up-front cash borrowers need is the costs of the
real estate valuation, usually around $300. Regarding the interest rate, both fixed
and adjustable rate RMs are available.
2 A modification to the HECM program on October 4, 2010, raised annual

premiums for the HECM standard in the reverse mortgage program insured by
the FHA from 0.5% to 1.25%. The initial premium rate remained the same (2%).
The FHA asserts that the previous risk premium was underestimated before the
modification.
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rate, we assume that the time-t spot rate r(t) for a filtered
probability space (Ω, F , P, (Ft)Tt=0) follows the CIR model:

d r (t) = κr (θr − r (t)) dt + σr

r (t)dWr (t) , (1)

where Ft , t ∈ [0, T ], is the smallest sigma field, such that r(t) and
the housing price H(t) is known and measurable; P is the physical
(real-world) probability measure; (Ft)Tt=0 is the right-continuous
natural filtration, such that Ft ⊂ Fu, t ≤ u; θr is the long-term short
interest rate; κr is the speed of reversion; σr is the instantaneous
volatility; andWr(t) is a standard Brownian motion.

For the risk-neutral probabilitymeasureQ , the spot rate process
defined in Eq. (1) ensures that the discounted zero coupon bond
price follows a martingale, namely,

P (0, T ) = EQ


P (T , T )
B (T )


= EQ


exp


−

 T

0
r(u) du


, (2)

where B(t) is the money market account at time t , which satisfies

B (t) = exp
 t

0
r (u) du


. (3)

According to the CIR model (see also Svoboda, 2004), a standard
Brownian motion under the risk-neutral probability measure Q ,
WQ

r (t), can be specified as follows:

dWQ
r (t) = dWr (t)+

ϑr
√
r(t)
σr

dt, (4)

whereϑr is the risk-premiumparameter. Consequently, the time-t
spot rate r(t) becomes

d r (t) =

κQ − θQ r (t)


dt + σr


r (t)dWQ

r (t) , (5)

where κQ = κrθr and θQ = κr + ϑr .
In a discrete-time setup, we assume that the spot rate between

time t and t+∆t is fixed at r(t) butmay vary from one band to the
next. Consequently, the spot rate dynamic under the risk-neutral
measure Q is governed by

r (t +∆t)− r (t)

=

κQ − θQ r (t)


∆t + σr


r (t)∆WQ

r (t) . (6)

2.3. Housing price model

We assume that the housing price process follows a log-normal
diffusion process with jumps. Specifically, in a filtered probability
space (Ω, F , P, (Ft)Tt=0), the housing price process is given by

ln

H(t)
H(0)


=

 t

0
µH (s) ds −

1
2
σ 2
H t − ληt

+ σHWH (t)+

N(t)
i=1

Ji (7)

where µH(t) is the annual rate of return for the house; σH is the
volatility; WH(t) is a standard Brownian motion; N is a Poisson
process with intensity λ; {Ji} is a sequence of independent normal
random variables, with mean θJ and variance σ 2

J ; and η is an
adjustment term equal to the mean of exp(Ji) minus 1 (i.e., η =

exp

θJ + σ 2

J /2


− 1). In addition, the correlation coefficient
betweenWr(t) andWH(t) is ρHr t . The standard Brownian motions
(Wr(t) orWH(t)), the Poisson processN(t), and the normal random
variables {Ji} are assumed to be independent.
Regarding the housing price dynamics, Eq. (7) represents real-
world housing price dynamics. For the valuation of the RM, we
must obtain housing price dynamics for a risk-neutral measure.
To achieve this goal, we employ an equivalent martingale
measure using the conditional Esscher transform developed by
Bühlmann et al. (1996). The Esscher transform has been widely
applied to price financial and insurance securities in incomplete
markets (Siu et al., 2004; Li et al., 2010; Chen et al., 2010a;
Yang, 2011). We use the same conditional Esscher transform
technique to price RMs with regular tenure payments. That is,
we let {ξt |t = j∆t, j = 0, 1, . . . , T/∆t} be a Ft-adapted stochastic
process:

ξT =

T
t=∆t

exp (ϕY (t))
EP (exp (ϕY (t))| Ft−∆t)

, (8)

where Y (t) = ln(H(t)/H(t − ∆t)). It is straightforward to verify
that EP(ξT ) = 1 and EP(ξT |Ft) = ξt . Equivalently, {ξt} is a martin-
gale under P . We define a new martingale measure Q by

dQ
dP


FT

= ξT . (9)

Then, under the risk-neutralmeasureQ , the housing price dynamic
can be rewritten as

ln

H (t)
H (0)


=

 t

0
r (s) ds −


1
2
σ 2
H + λQηQ


t

+ σHW
Q
H (t)+

N(t)
i=1

JQi , (10)

whereWQ
H (t) is a standard Brownianmotion under Q and the cor-

relation coefficient between WQ
H (t) and WQ

r (t) equals ρHr t; N is a
Poisson process with intensity λQ = λ exp


θJϕ + ϕ2σ 2

J /2

; {JQi }

is a sequence of independent normal random variables, withmean
θ
Q
J = θJ + ϕσ 2

J and variance σ 2
J ; and ηQ = exp


θ
Q
J + σ 2

J /2


− 1.
The derivation of Eq. (10) based on the conditional Esscher trans-
form appears in Appendix A.

To adjust for rental income, similar to Chen et al. (2010a) and
Li et al. (2010), we can adjust the dynamics of the housing price
process under the risk-neutral measure Q as follows:

ln

H (t)
H (0)


=

 t

0
(r (s)− δ (s)) ds −


1
2
σ 2
H + λQηQ


t

+ σHW
Q
H (t)+

N(t)
i=1

JQi , (11)

where δ(t) is the rental rate (or maintenance yield) for the house.

2.4. Mortality model

We use the LC model to project the mortality process. The
Census Bureau population forecast similarly has used it as a
benchmark for long-term forecasts of US life expectancy. The two
most recent Social Security Technical Advisory Panels suggest that
trustees should adopt this method or tactics consistent with it (Lee
and Miller, 2001). For our study, the central death rate for age x at
time t , mx,t , follows the process

ln

mx, t


= αx + βxkt + ex,t , (12)

where αx refers to the average specific pattern of mortality for age
group x; βx describes the pattern of deviations for the age group
x when the parameter k varies; kt is a time-varying index that
explains the change in mortality over time t; and ex,t describes the
error term, which should be white noise with a zero mean and a
relatively small variance (Lee, 2000). We fit the model using the
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singular value decomposition approximation proposed by Lee and
Carter (1992).

We forecast the future values of kt with anARIMA(0, 1, 0)model,
as is used almost exclusively in practice. According to this model,
the dynamic of kt takes the form:

kt = kt−1 + z + εt , (13)

where z is the drift parameter, equal to the average first difference
in kt , and εt is a sequence of independent and identically normal
distributions with mean 0 and variance σ 2. Let the valuation date
equal t0; the values k1, . . . , kt0 are known and fitted by historical
data to forecast the future kt0+j. Thus, according to Eq. (13),

kt0+j = kt0 + jz +

j
i=1

εt0+i. (14)

Therefore, kt0+j follows a normal distribution with mean kt0 + jz
and variance jσ 2, conditional on the information up to time t0.

Let the age-specific mortality rates be constant within bands of
age and time, but they may vary from one band to the next. Given
any integer age x0 and calendar year t0, we assume that

m x0+υ,t0+ς = m x0,t0 , υ, ς ∈ [0, 1) . (15)

Then, let npx0,t0 denote the n-year survival probability that an x0-
aged person in calendar year t0 reaches age x0 + n, which is

npx0,t0 = exp


−

n−1
j=0

mx0+j,t0+j



= exp


−

n−1
j=0

exp

αx0+j + βx0+jkt0+j


. (16)

The distribution function of npx0,t0 under the real-world (physical)
probability measure P is given by

Fn (x) = Pr

npx0,t0 ≤ x


. (17)

To change the probabilitymeasure from the real-world to a risk-
neutral measure, Wang (2000) proposes a distortion operator:

F τn (x) = Φ

Φ−1 (Fn (x))+ τ


, (18)

where τ is a parameter called the ‘‘market price of risk’’, Φ is the
cumulative standard normal distribution function, and F τn is the
risk-neutral distribution function of npx0,t0 .

Denuit et al. (2007) employ the LC model to forecast mortality
and price a risky coupon survivor bond, applying the Wang (2000)
transform to consider themarket price of risk for bearingmortality
risk. According to Denuit et al. (2007), the expectation value of
npx0,t0 under the Wang risk measure is

S (tn) = EQ

npx0,t0


=

 1

0


1 − F τn (x)


dx

=

 1

0


1 − Φ


Φ−1 (Fn(x))+ τ


dx. (19)

Using Eq. (19), we can transform the physical survival distribution
of npx0,t0 into a risk-neutral version.

3. Pricing RAM contracts

In accordance with the principle that the present value of an
insurance premium equals the present value of the expected loss,
we can obtain the annuity payment for a RAM. The initial property
value H(0) serves to determine the annuity payment. An initial
charge equals 100π0% of the initial house value at the inception of
the contract, and the annual premium is 100πm%of the outstanding
balance. The mortgage rate on the loan is assumed to float, equal
to the short interest rate plus the spread πr .

Let x0 be the age of the borrower at the valuation date t0, which
we denote as 0 for simplicity, and let ω be the final age at which
all lives end. The borrower’s death occurs only at the end of each
year. The mortality process and financial asset prices (i.e., short
interest rate process and housing price process) also are assumed
to be independent. Let a be the annual annuity payment of the
RAM. We define BAL(tj) as the outstanding balance at the end of
year j, j = 1, . . . , ω − x0 + 1. The next year’s outstanding balance
is this year’s outstanding balance and the annual premium charge,
plus the annuity payment this year, with interest accrued. That is,

BAL

tj+1



=


(π0H (0)+ a) exp

 t1

0
[r (s)+ πr ] ds


, j = 0


BAL


tj

(1 + πm)+ a


exp

 tj+1

tj

[r (s)+ πr ] ds


,

j = 1, . . . , ω − x0.

(20)

Eq. (20) then can be rearranged as follows:

BAL(tj) =

j−1
i=0

a exp
 tj

ti

[r (s)+ πr ] ds

πi,j,

j = 1, . . . , ω − x0 + 1, (21)

where

πi,j =



1 + π0

H (t0)
a


(1 + πm)

j−1 , i = 0

(1 + πm)
j−1−i , i = 1, 2, . . . , j − 1.

(22)

Similar to credit default swaps, the lender, who buys RAM
insurance, makes a series of payments to the RAM insurer, who
sells RAM insurance. In exchange, it receives a payoff if the loan
balance of a RAM grows to exceed the property value in the event
of a borrower’s death.Without arbitrage opportunities, the present
value of the premium charges should equal the present value of the
total expected claim losses under the risk-neutral measure Q . The
present value of RAM insurance premiums can be expressed as

π0H (0)+

ω−x0
j=1

EQ


tjpx0,t0BAL


tj

πm

B

tj
 

. (23)

Through Eqs. (3) and (21), Eq. (23) becomes

π0H (0)+

ω−x0
j=1

S

tj
 j−1

i=0


a eπr(tj−ti)πi,jπmP (0, ti)


, (24)

where P(0, tj) is the price of a zero coupon bond that matures at
time ti.

In contrast, the present value of the expected losses from future
claims takes the form:
ω−x0+1

j=1

EQ


tj−1px0,t0 − tjpx0,t0

 
BAL


tj

− H


tj
+

B

tj
 

. (25)

Or equivalently,

ω−x0+1
j=1


S

tj−1


− S


tj


C

tj

, (26)

where C(tj) = EQ

[BAL(tj)− H(tj)]+/B(tj)


. We determine the

annuity payment a when the present value of the insurance
premiums, defined in Eq. (24), covers the present value of expected
losses from future claims, defined in Eq. (26).
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However, when the process for the short-term interest rate
follows the CIR process defined in Eq. (1), the closed-form solutions
of C(tj) are not available; rather, its value depends on the interest
rate and housing price distributions. A standard approach to derive
the value of C(tj) is to use a Monte Carlo simulation method, in
which each simulation generates two possible paths for future
interest rates and housing prices.

Instead, in Proposition 1 we offer a pricing method that can
calculate C(tj) more effectively. First, we derive the closed-form
solutions of C(tj), conditional on BAL(tj)/B(tj). Second,we generate
random numbers from BAL(tj)/B(tj) to calculate the fair values
of C(tj).

Proposition 1. Let M be the number of simulation paths. The closed-
form solutions of C(tj) can be obtained from

C

tj


= lim
M→∞

1
M

M
m=1


xmj

∞
k=0

Pk

λQ tj


Φ

−dj k


xmj


−H0e−
 tj
0 δ(s)ds

∞
k=0

Pk

λQ

1 + ηQ


tj


×Φ

−hj k


ymj
 

, (27)

where

Pk (λ) =
e−λ (λ)k

k!
, (28)

dj k

xmj


=

ln H(t0)
xmj

+ r̄jk −
1
2σ

2
k j

σk j
,

hj k

ymj


=

ln H(t0)
ymj

+ r̄jk +
1
2σ

2
k j

σk j
,

(29)

r̄jk = −

 tj

0
δ (s) ds − λQηQ tj + kθQJ +

1
2
kσ 2

J , and

σ 2
k j = σ 2

H tj + kσJ 2. (30)

The xmj and ymj values are the mth random numbers drawn from
the distribution of BAL(tj)/B(tj), with the probability measures Q
and R̃, respectively. The Radon–Nikodym derivative R satisfies

dR
dQ

= exp

σHW

Q
H (t)−

1
2
σ 2
H t

, (31)

and the Radon–Nikodym derivative R̃ (given N(t) = k) satisfies

dR̃
dR

= exp

σJ

√
kZ −

1
2
σ 2
J k

, (32)

with Z as the standard normal distribution.
Appendix B provides the proof of Proposition 1 and the simu-

lation procedure of xmj and ymj. According to this proposition, only
one random variable, BAL(tj)/B(tj), emergeswhenwe calculate the
value of C(tj). Because the distribution of BAL(tj)/B(tj) is deter-
mineduniquely by the interest rate process,we can successfully re-
duce the simulation dimensions from two to one, which enhances
the accuracy of the solution. We also can employ our approach for
different types of RMs. For example, if the annuity payment, a, is
zero except for the first payment, we can price RMs with a lump
sum payment.
Table 1
Parameter estimation of spot rate and housing price.

Panel A: spot rate

κQ θQ σr ϑr

0.0114 0.2137 0.0648 −0.0119
(5.5651) (5.0839) (13.4054) (−3.5501)

Panel B: housing price

σH θJ σJ λ ϕ

0.0739 −0.0045 0.0344 8.2223 2.0280
(8.3052) (−5.2842) (6.6075) (2.8926) (1.9227)

Values in parentheses denote t values.

4. Numerical results

For the numerical analyses of the impacts of longevity risk,
interest rate risk, and housing price risk on the valuation of
RAMs, we first describe the parameters for the dynamics of the
interest rate, housing price, and mortality rate. Then, we present
the numerical results for the annuity payments, as well as their
sensitivity analyses.

First, we employ the three-month Treasury yield rate from
January 1973 to December 2010, consistent with the period of
housing price data, as a proxy for the spot rate.3 Second, to test
housing price dynamics empirically, we employ monthly observa-
tions of the national average prices of previously occupied homes
for conventional single-family mortgages in the United States as
a proxy for housing prices, using data from the Federal Housing
Financial Board.4 Third, with maximum likelihood estimation, we
derive the corresponding parameters of the CIR model and the
jump diffusion model in Table 1. We also calculate the correla-
tion coefficient between spot rates and housing returns as equal
to 0.0252. Fourth, we turn to the fit of the LC model with US men’s
mortality data, for an observation period from 1970 to 2005.5 We
let the market price of mortality risk (τ ) equal −0.5.6

Using the estimated parameters in Table 1, we conduct a
numerical analysis to assess the impacts of spot rates and housing
prices on the RAM annuity payments. We illustrate the relevant
parameters for the base case subsequently. Consider a RAM for a
borrower aged 70 years. The interest rate spread (πr ) is 2%, and
the initial risk-free interest rate is 0.14%. The initial housing price
is assumed to be 100, so the annuity payment is a percentage of
the initial property value. The rental rate is 2%. According to the
modified HECM premium structure, the upfront premium (π0) is
2%, and the annual premium (πm) is 1.25%. Applying Proposition 1
with 10,000 simulation paths, the annual annuity payment based
on the parameters is equal to 2.25. In addition, we consider
the present value of total annuity payments by multiplying the
corresponding annuity factor, calculated by the interest rate term
structure and the mortality assumption, accompanied by market
price of premium. The present value of total annuity payments
therefore is 26.26.

3 See https://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/TextView.aspx?data=yieldAll.
4 Categories of homes include previously occupied, new, and all homes. Following

Huang et al. (2011), we choose previously occupied home prices as the proxy for
housing prices because a reverse mortgage loan gets repaid through the proceeds
of the sale of the property.
5 Data source: Human Mortality Database (https://www.mortality.org/).
6 Using the market price of an annuity sold to a 65-year-old man in Belgium,

Denuit et al. (2007) find that the market price of risk for men ranges from −0.4901
to −0.4449. We calculate the annuity payments in Table 4 by varying the market
price of risk for comparison.

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data%3DyieldAll
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data%3DyieldAll
https://www.mortality.org/
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Table 2
Annual annuity payments and present values (PVs) of annuity.

Age 62 65 70 75 80

Annual annuity payment 1.43 1.70 2.25 3.00 4.06
PV of annuity 20.94 22.98 26.26 29.18 31.62

Annual premium rate (πm) 0.005 0.00875 0.0125 0.01625 0.02

Annual annuity payment 1.98 2.13 2.25 2.36 2.45
PV of annuity 23.04 24.79 26.26 27.50 28.53

Interest rate spread (πr ) 0.01 0.015 0.02 0.025 0.03

Annual annuity payment 2.75 2.49 2.25 2.03 1.82
PV of annuity 32.03 29.05 26.26 23.65 21.22
4.1. Sensitivity analysis for base parameters

Table 2 contains the annual annuity payments and present
values of the total annuity for different ages,7 annual premium
rates, and interest rate spreads. All else being equal, the lower the
age, the lower are the annual annuity payment and the present
value of annuity. In economic terms, the present value of the house
is the sum of the present value of future rental incomes. According
to the RAM mechanism, the borrower uses the anticipated rental
income after his or her death in exchange for the annual annuity
payment at inception. An older borrower can borrowmoremoney,
because his or her expected death is sooner, and the present value
of the rental income after death is greater. As Table 2 shows, a
higher annual premium rate contributes to a higher annual annuity
payment and present value of annuity. After the subprime crisis,
the FHA claimed that the risk associated with the HECM program
had been underestimated and raised the annual premium while
also reducing the amount that could be borrowed. Finally, higher
interest rate spreads lead to a high mortgage rate on loans and,
thus, to lower annual annuity payments and present value of
annuity.

4.2. Sensitivity analysis for the parameters of interest rate and
housing prices

We examine the sensitivity of the annual annuity payments
and the present value of annuity by varying the parameters of
the interest rate and housing price model in Table 3. First, in
Panel A of Table 3, both higher correlation coefficients and higher
volatilities in the spot rate and housing returns contribute to a
higher risk profile in the RAM,which leads to lower annual annuity
payments and present value of annuity. In addition, housing price
volatility has the greatest impact, compared with correlation and
interest rate volatility, on annual annuity payments, which implies
that when pricing a RAM, it is crucial to estimate the volatility of
housing prices precisely.

Second, in Panel B of Table 3, higher frequency (greater λ)
and severity (lower θJ ) of housing price shocks may contribute to
lower housing prices and thus lower annual annuity payments and
present value of annuity. In addition, a higher level of σJ should
lead to greater uncertainty in housing prices, which contributes to
lower annual annuity payments and present value of annuity.

Finally, Eq. (5) can be rewritten as follows:

d r (t) = θQ


κQ

θQ
− r (t)


dt + σr


r (t)dWQ

r (t) . (5
′

)

In this case, θQ is the speed of reversion, and κQ /θQ is the long-term
interest rate under the risk-neutralmeasureQ. As Panel C of Table 3
shows, when κQ /θQ is fixed, the higher the speed of reversion, the

7 Note that 62 years is the minimum age requirement in the HECM program.
higher are the annual annuity payments and the present value of
annuity. Similarly, a higher long-term interest rate increases the
level of the interest rate on average, with a corresponding higher
annual annuity payment and present value of annuity.

4.3. Sensitivity analysis for mortality improvement and decrement
rate

In this subsection, we consider the effect of mortality improve-
ments and decrements.We first consider the effect of themortality
projection by replacing the LC model with the period life table for
2005. As Table 4 shows, changing the underlying mortality projec-
tion increases the annual annuity payment, which indicates that
it would be overestimated if we were to ignore the mortality im-
provement.

With Table 4, we also consider the sensitivity of the annual
annuity payments by varying the level of the market price of
risk. The higher the market price of risk (in absolute value), the
lower is the annual annuity payment. However, comparedwith the
volatility of housing returns or the parameters of the housing price
shock, the impact of the market price of risk is trivial.

Finally, although we only depict death as a decrement in
the base case, the decrement rate should be higher than that
in the base case because of the possibility that the borrower
will sell the property or move out. As a result, we examine the
impact of the decrement rate on the annual annuity payment
by increasing mortality rates. Table 4 reveals that the annuity
payment increases 13.33% (25.78%) if the mortality rate increases
25% (50%), which means that a higher decrement rate leads to
a higher annuity payment. Consequently, the annuity payment
would be underestimated if the RAM insurers were to ignore
the possibility that the borrower sells or moves away from the
property.

4.4. Robust analyses

4.4.1. Our method versus the pure Monte Carlo method
In this subsection, we discuss the efficiency of the proposed

approach by comparing it with the pure Monte Carlo method. To
obtain the present value of the expected losses (Eq. (26)), a pure
Monte Carlo approachmust generate two possible paths for future
interest rates and housing prices for each simulation. Unlike a
pure Monte Carlo approach, we propose a simulation method in
Proposition 1 to obtain the present value of the expected losses.
First, using Eq. (B.7), we simulate the jth random numbers xmj and
ymj from the distribution of BAL(tj)/B(tj) according to the interest
rate processes in Eqs. (B.8) and (B.15), respectively. Second, given
xmj and ymj for m = 1, . . . ,M , we can obtain the numerical
value of the expected loss C(tj) using the closed-form formula in
Eq. (27). Consequently, our method is more accurate than the pure
Monte Carlo approach because the simulated values xmj and ymj are
determined only by the interest rates.
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Table 3
Sensitivity analyses for parameters of interest rate and housing price.

Panel A: impacts of volatilities

σH 0.04 0.06 0.0739 0.08 0.10

Annual annuity payment 2.42 2.33 2.25 2.21 2.08
PV of annuity 28.17 27.15 26.26 25.83 24.27

σr 0.03 0.05 0.0648 0.07 0.09

Annual payment each year 2.27 2.26 2.25 2.25 2.24
PV of annuity 26.36 26.31 26.26 26.24 26.16

ρHr −0.5 −0.25 0.0252 0.25 0.5

Annual annuity payment 2.28 2.27 2.25 2.24 2.23
PV of annuity 26.59 26.44 26.26 26.12 25.96

Panel B: impacts of housing price shock

λ 0 4 8.2223 12 16

Annual annuity payment 2.70 2.47 2.25 2.09 1.93
PV of annuity 31.47 28.76 26.26 24.31 22.49

θj −0.04 −0.03 −0.02 −0.01 −0.0045

Annual annuity payment 1.91 2.06 2.18 2.24 2.25
PV of annuity 22.33 24.04 25.37 26.14 26.26

σj 0 0.02 0.0344 0.04 0.06

Annual annuity payment 2.69 2.53 2.25 2.12 1.63
PV of annuity 31.37 29.50 26.26 24.76 19.06

Panel C: impacts of spot rate

θQ 0.1 0.2 0.2137 0.3 0.4

Annual payment each year 2.03 2.23 2.25 2.34 2.41
PV of annuity 25.71 26.22 26.26 26.44 26.56

κQ /θQ 0.02 0.04 0.0535 0.06 0.08

Annual payment each year 1.83 2.08 2.25 2.33 2.59
PV of annuity 25.02 25.79 26.26 26.47 27.07
Table 4
Sensitivity analyses for the decrements.

Annual annuity payment

Period table for 2005 2.49
LC model with τ = 0 2.29
LC model with τ = −0.5 (base case) 2.25
LC model with τ = −1 2.22
1.25 times of mortality (τ = −0.5) 2.55
1.5 times of mortality (τ = −0.5) 2.83

To examine pricing efficiency, we depict 100 repeated, simu-
lated results of annuity payment in Fig. 1, each of which we obtain
using 10,000 simulation paths. The results of our pricing method
are more concentrated than those of a pure Monte Carlo approach.
The standard deviations of the 100 simulated results are 0.00036
for the proposed method and 0.01 for the pure Monte Carlo ap-
proach. Therefore, reducing the simulation dimensions from two
to one, our proposed approach seems to provide a more accurate
and credible solution.

4.4.2. Model comparison: Jump diffusionmodel versus ARMA–GARCH
model

We also fit an ARMA(s,m)–GARCH(p, q) model proposed by
Bollerslev (1986) to the housing price return data. Two specifica-
tions support the ARMA(s,m)–GARCH(p, q)model: the conditional
mean and the conditional variance. The conditional mean model
for the difference in the logarithm of housing prices on a filtered
probability space (Ω, F , P, (Ft)Tt=0) can be expressed as

Y (t) = ln


H (t)
H (t −∆t)


= µH (t)+ εH (t) , (33)

whereµH(t) = c+
s

i=1 τiY (t − i∆t)+
m

j=1 ζjεH(t − j∆t) is the
conditional mean function, given the time (t − ∆t) information
Fig. 1. Comparison of proposed method with the pure Monte Carlo method.

Ft−∆t ; s is the order of the autocorrelation terms; m is the order of
the moving average terms; τi is the ith-order autocorrelation coef-
ficient; and ζj is the jth-order moving average coefficient. In addi-
tion, εH(t) is a Gaussian innovation with conditional variance h(t),
given the information Ft−∆t , as follows:

h (t) = w +

q
i=1

αiε
2
H (t − i∆t)+

p
j=1

βjh (t − j∆t) , (34)

where p is the order of the GARCH terms; q is the order of the ARCH
term; αi is the ith-order ARCH coefficient; and βj is the jth-order
GARCH coefficient.
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Table 5
Parameter estimation of the ARMA(0,1)–GARCH(1,1) model.

c ζ1 w α1 β1

0.0052 −0.3971 1.93 × 10−5 0.9012 0.0844
(6.2844) (−8.4983) (2.4925) (58.1093) (5.3428)

Values in parentheses denote t values.

Table 6
Model comparison: jump diffusion model versus ARMA–GARCH model.

Age 62 65 70 75 80

Jump diffusion

Annual annuity payment 1.43 1.70 2.25 3.00 4.06
PV of annuity 20.94 22.98 26.26 29.18 31.62

ARMA–GARCH

Annual annuity payment 1.86 2.17 2.81 3.65 4.80
PV of annuity 27.21 29.42 32.76 35.46 37.38

To obtain the housing price dynamics under a risk-neutral
measure, we also employ an equivalent martingale measure
using the conditional Esscher transform developed by Bühlmann
et al. (1996). Let {ξt |t = j∆t, j = 0, 1, . . . , T/∆t} be an Ft-adapted
stochastic process, defined as

ξT =

T
t=∆t

exp (ϕ (t) Y (t))
EP (exp (ϕ (t) Y (t))| Ft−∆t)

. (35)

Then, we define a new martingale measure Qϕ by

dQϕ
dP


FT

= ξT . (36)

Under the risk-neutral measure Qϕ , the housing return becomes

Y (t) = ln


H (t)
H (t −∆t)


= r (t −∆t)∆t −

1
2
h (t)+ ε

Q
H (t) , (37)

where εQH (t) = εH(t) − ϕ (t) h (t) follows a normal distribution
with mean 0 and variance h(t) under the martingale measure Qϕ .
The correlation coefficient between εQH (t)/

√
h(t) andWQ

r (t)/
√
t is

equal to ρHr . Appendix C provides the derivation of Eq. (37), based
on the conditional Esscher transform. In addition, similar to the
modification of Eq. (11), Eq. (37) is also adjusted by the rental rate.

We fit the ARMA(0,1)–GARCH(1,1) model, the best model
according to the Bayesian information criterion, to the same
housing price data. Table 5 exhibits the corresponding calibrated
parameters. Table 6 presents the numerical results of the
ARMA(0,1)–GARCH(1,1) model, as well as those from the jump
diffusion model. Apparently, the annual annuity payments of the
ARMA(0,1)–GARCH(1,1) model are larger than those of the jump
diffusion model, which means that model risk is considerable
when pricing the fair annuity payment for RAM contracts.8

5. Conclusion

Demographic aging challenges economies worldwide and thus
cannot be neglected. As an effectivemethod to increase the income
of seniors, RMs can decrease the fiscal burden on social security

8 Li et al. (2010) employ an ARMA–EGARCH model and geometric Brownian
motion to capture the dynamics of housing prices and calculate the guaranteed cost
for a single-payment reverse mortgage. They also find that model risk is significant
when valuing the guaranteed cost.
systems. Among the various types of RMs, the RAM provides
regular cash flows and can provide superior benefits in terms of
enhancing social security.

However, the complexity of RAM pricing models precludes
a closed-form formula from solving the underlying problem;
annuity paymentsmust be calculatedwith traditional Monte Carlo
simulation methods. This article offers a closed-form solution,
conditional on the evolution of interest rates, to calculate a fair
RAM value. Using the closed-form solution, we can numerically
determine the fair RAM value, which depends solely on the
distribution of interest rates, by simulating interest rates. Our
alternative approach reduces the number of dimensions in the
simulation and thus increases solution accuracy.

This study simultaneously considers the dynamics of interest
rate, housing prices, and mortality rate in the valuation of RAM;
these considerations are rare in extant RM literature. From the
numerical results, we determine that the impacts of annual
premium rate, long-term interest rate, and the housing price shock
on fair annuity payments are significant. We examine the effects
of the mortality projection and decrement on RAM contracts. The
annual annuity payment will be overestimated if RAM insurers
ignore mortality improvements but underestimated if they ignore
the possibility that the borrower sells the property or moves out.
Finally, similar to Li et al. (2010), we find significant model risk
for pricing the fair RAM annuity payments. Thus, it is crucial for
lenders and insurers to model the housing price process suitably.
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Appendix A. Proof of Eq. (10)

When housing prices follow the jump diffusion process from
Eq. (7) (e.g., Matsuda, 2004), the moment-generating function of
ln(H(t)/H(0)) takes the form:

EP (exp (ω ln (H (t) /H (0))))

= exp

ω

 t

0
µH (s) ds


exp (tψH (ω)) , (A.1)

where

ψH (ω) = λ


exp


ωθJ +

ω2σ 2
J

2


− 1



−ω


1
2
σ 2
H + λη


+
ω2σ 2

H

2
. (A.2)

Because ln(H(t)/H(t −∆t)) and ln(H(t −∆t)/H(0)) are indepen-
dent, we have

EP (exp (ωY (t))) = EP


exp


ω ln


H (t)

H (t −∆t)


= exp


ω

 t

t−∆t
µH (s) ds


× exp (∆tψH(ω)) . (A.3)
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In addition, because the discount housing price under the martin-
gale measure Q is a martingale, we have

H (t −∆t) = EQ


B (t −∆t)

B (t)
H (t)

 Ft−∆t


= EQ


exp


−

 t

t−∆t
r (u) du


H (t)

 Ft−∆t


. (A.4)

We assume that the spot rate between t − ∆t and t is fixed at
r(t − ∆t) but may vary from one band to the next. Consequently,
B(t) = B(t − ∆t)er(t−∆t)∆t . According to Lemma 5.2.2 of Shreve
(2004), we obtain

H (t −∆t) = e−r(t−∆t)∆tEQ (H (t)| Ft−∆t)

= e−r(t−∆t)∆tEP


ξt

ξt−∆t
H (t)| Ft−∆t


= e−r(t−∆t)∆tEP


exp (ϕY (t))

EP (exp (ϕY (t)) | Ft−∆t)

× H (t −∆t) exp (Y (t))| Ft−∆t


= H (t −∆t) e−r(t−∆t)∆t

×
EP (exp ((ϕ + 1) Y (t))| Ft−∆t)

EP (exp (ϕY (t))| Ft−∆t)

= H (t −∆t) e
 t
t−∆t µH (s)ds−r(t−∆t)∆t

× exp (∆t (ψH (ϕ + 1)− ψH (ϕ))) . (A.5)

Or equivalently,

r (t −∆t)∆t

=

 t

t−∆t
µH (s) ds + (ψH (ϕ + 1)− ψH (ϕ))∆t

=

 t

t−∆t
µH (s) ds +


λQηQ − λη + ϕσ 2

H


∆t. (A.6)

In addition, the characteristic function of ln(H(t)/H(t−∆t))under
the risk-neutral measure is of the form:

EQ (exp (iωY (t))| Ft−∆t)

= EP


exp (ϕY (t))

EP (exp (ϕY (t))| Ft−∆t)
exp (iωY (t))

 Ft−∆t


= exp


iω
 t

t−∆t
µH (s) ds

+ △t (ψH (ϕ + iω)− ψH (ϕ))


, (A.7)

where

iω
 t

t−∆t
µH (s) ds +∆t (ψH (ϕ + iω)− ψH (ϕ))

= λ∆t eθJϕ+
ϕ2σ2J

2


eiω


θJ+ϕσ

2
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2ω
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+ iω
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1
2
σ 2
H + λη


∆t


+
σ 2
H

2
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1
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−
ω2σ 2

H
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
. (A.8)

In view of Eq. (A.8), because B(t) = B(t−∆t)er(t−∆t)∆t , the charac-
teristic function of Y (t) under the martingale measure Q governs
the following expression:

ln


H (t)
H (t −∆t)


=


r (t −∆t)−

1
2
σ 2
H − λQηQ


∆t

+ σH


WQ

H (t)− WQ
H (t −∆t)


+


N(t)
i=1

Ji −
N(t−∆t)

i=1

Ji



= ln


B (t)
B (t −∆t)


−


1
2
σ 2
H + λQηQ


∆t

+ σH


WQ

H (t)− WQ
H (t −∆t)


+


N(t)
i=1

Ji −
N(t−∆t)

i=1

Ji


. (A.9)

Or equivalently,

ln

H (t)
B (t)


= ln


H (t −∆t)
B (t −∆t)


−


1
2
σ 2
H + λQηQ


∆t

+ σH


WQ

H (t)− WQ
H (t −∆t)


+


N(t)
i=1

Ji −
N(t−∆t)

i=1

Ji


. (A.10)

Consequently, we can obtain Eq. (10) by iterating Eq. (A.10). This
completes the proof.

Appendix B. Proof of Proposition 1 and the simulation proce-
dure
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tj


= EQ
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 

, (B.1)

where D =

BAL


tj


≥ H

tj


. The first term of Eq. (B.1) can be
rewritten as:
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

B

tj
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
f BAL(tj)

B(tj)

(x) dx, (B.2)

where fBAL(tj)/B(tj)(x) is the probability density function of BAL(tj)/
B(tj). Let M be the total number of simulation paths. Eq. (B.2) can
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be rewritten as:
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
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tj
 = xmj


, (B.3)

where xmj is the mth random number drawn from the distribu-
tion of BAL(tj)/B(tj) under the probability measure Q . Using Ito’s
lemma, the housing price dynamic under Q takes the form:

H

tj


B
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Therefore,
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Recall that {Jn} is a sequence of independent normal random vari-
ables with mean θQJ = θJ + ϕσ 2

J and variance σ 2
J . Let Jn = θ

Q
J +

σJZn ∼ N

θ
Q
J , σ

2
J


, where Zn ∼ N (0, 1) and Zi is independent of

Zj (i ≠ j). Eq. (B.5) can be rewritten as:
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To describe the simulation procedure for generating the random
number xmj, we first rewrite BAL(tj)/B(tj) as follows:

BAL

tj


B

tj
 =

j−1
i=0
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

−

 ti

0
r (s) ds


. (B.7)

After generating the possible values of
 ti
0 r (s) ds for i = 1, . . . ,

j − 1, we can draw the random number xmj from the distribu-
tion of BAL(tj)/B(tj), according to Eq. (B.7). Because we assume
that the spot rate between t − ∆t and t is fixed at r(t − ∆t)
but may vary from one band to the next, we have

 ti
0 r (s) ds =ti/∆t

n=1 r ((n − 1)∆t)∆t . Applying Eq. (6), we can generate the
spot rate dynamic under the risk-neutral measure Q as follows:

r (n∆t) = r ((n − 1)∆t)+

κQ − θQ r ((n − 1)∆t)


∆t

+ σr

r ((n − 1)∆t)∆tεn, (B.8)

where εn is a standard normal random variable. Let εmn with n =

1, 2, . . . , (ω−x0+1
∆t − 1) and m = 1, . . . ,M be the nth stan-

dard normal random number in the mth simulation path. Using
{εmn

n = 1, 2, . . . , (ω−x0+1
∆t − 1) }, we can obtain the random val-

ues of
 ti
0 r (s) ds with Eq. (B.8) and obtain xmj with Eq. (B.7) for

j = 1, . . . , (ω − x0 + 1).
The second term of Eq. (B.1) can be rewritten, according to

Eq. (B.4), as:
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Then, we define
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By Girsanov’s theorem, dW R
H (t) = dWQ

H (t) − σHdt , and Eq. (B.9)
becomes
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Let dR̃/dR = exp

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√
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1
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2
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. Again, by Girsanov’s theorem,
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k and WR̃ (t) = WR (t). Eq. (B.11) thus can be

rewritten as:
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where ymj is themth random number drawn from the distribution
of BAL(tj)/B(tj)under the probabilitymeasure R̃. Using Ito’s lemma,
conditional onN


tj


= k, the housing price dynamic under R̃ takes
the form:

H

tj


B

tj
 N(tj)=k = H (0) e−

 tj
0 δ(s)ds−λQ ηQ tj+

1
2 σ

2
H tj+σHW R̃

H(tj)

× ekθ
Q
J +σJ

√
k(Z∗

+σJ
√
k). (B.13)

Using Eq. (B.13), we have
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Similarly, for the simulation procedure of ymj, the dynamic of r(t)
under R̃ takes the form:

r (n∆t)

= r ((n − 1)∆t)+


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where εR̃n is a standard normal random variable under R̃. Similarly,
let εm̃n with n = 1, 2, . . . , (ω−x0+1

∆t − 1) and m = 1, . . . ,M be
the nth standard normal random number in the mth simulation
path. Using


ε̃mn

n = 1, 2, . . . , (ω−x0+1
∆t − 1)


, we can obtain the

random values of
 ti
0 r (s) ds using Eq. (B.15) and can determine ymj

on the basis of Eq. (B.7) for j = 1, . . . , ω − x0 + 1.

Appendix C. Proof of Eq. (37)

We assume that the spot rate between t − ∆t and t is fixed at
r(t −∆t). Under the ARMA(s,m)–GARCH(p, q) process in Eqs. (33)
and (34), and following the procedure from Appendix A, we have

H(t −∆t) = e−r(t−∆t)∆tEQϕ (H (t)| Ft−∆t)
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. (C.1)

Or equivalently,
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. (C.2)

BecauseY (t) is normally distributedwithmeanµH(t) and variance
h(t), given the information Ft−∆t , we obtain
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Equivalently,µH (t) = r (t −∆t)∆t−

ϕ (t)+

1
2


h (t). Similarly,

the characteristic function of εH(t) under martingale measure Qϕ
is of the form:
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Consequently, εH(t) under the martingale measure Qϕ becomes
normally distributed, with mean ϕ(t)h(t) and variance h(t), given
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the information Ft−∆t . That is, given the information Ft−∆t , ε
Q
H (t) =

εH(t) − ϕ(t)h(t) follows a normal distribution with mean 0 and
variance h(t) under themartingalemeasureQϕ . As a result, Eq. (33)
can be rewritten as:

Y (t) = ln


H (t)
H (t −∆t)


= µH (t)+ εH (t)
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2
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+
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ε
Q
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
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1
2
h (t)+ ε

Q
H (t). (C.5)

This completes the proof of Appendix C.
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