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Abstract This paper proposes a novel ranking approach, cost-sensitive ordinal classifi-

cation via regression (COCR), which respects the discrete nature of ordinal ranks in real-

world data sets. In particular, COCR applies a theoretically sound method for reducing an

ordinal classification to binary and solves the binary classification sub-tasks with point-

wise regression. Furthermore, COCR allows us to specify mis-ranking costs to further

improve the ranking performance; this ability is exploited by deriving a corresponding cost

for a popular ranking criterion, expected reciprocal rank (ERR). The resulting ERR-tuned

COCR boosts the benefits of the efficiency of using point-wise regression and the accuracy

of top-rank prediction from the ERR criterion. Evaluations on four large-scale benchmark

data sets, i.e., ‘‘Yahoo! Learning to Rank Challenge’’ and ‘‘Microsoft Learning to Rank,’’

verify the significant superiority of COCR over commonly used regression approaches.

Keywords List-wise ranking � Cost-sensitive � Regression � Reduction

1 Introduction

In web-search engines and recommendation systems, there is a common practical need to

learn an effective ranking function for information retrieval. In particular, given a query,
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the ranking function can be used to order a list of related documents, web pages, or items

by relevance and display users the relevant items at the top of the ranking list to the users.

In recent years, the learning to rank has drawn much research attention in the information

retrieval and machine learning communities (Richardson et al. 2006; Liu 2009; Lv et al.

2011).

Three important characteristics of the learning problem will be considered in this paper.

First, the real-world data sets for ranking are usually huge—containing millions of doc-

uments or web pages. This paper focuses on such a large-scale ranking problem. Second,

many of the real-world benchmark data sets for learning to rank are labeled by humans

with ordinal ranks—that is, by using qualitative and discrete judgments, for example,

{highly irrelevant, irrelevant, neutral, relevant, highly rele-
vant}. We shall focus on learning to rank from such ordinal data sets. Third, the

effectiveness of the ranking function is often evaluated by the order of the items in the

resultant ranking list, with more emphasis on items featuring at the top of the ranking list.

Such list-wise evaluation criteria match users’ perception in using the ranking function for

information retrieval. We shall study learning to rank under the list-wise evaluation

criteria.

To tackle the large-scale ranking problem, many learning-based ranking algorithms are

based on a longstanding method in statistics and machine learning: regression. In partic-

ular, these algorithms treat the ordinal ranks as real-valued scores and learn a scoring

function for ranking through regression. Theoretical connections between regression and

list-wise ranking criteria have been studied by Cossock and Zhang (2006). The benefit of

regression is that there are some standard and mature tools that can efficiently deal with

large-scale data sets. Nevertheless, standard regression tools often require some metric

assumptions on the real-valued scores (e.g., rank 4 is twice as large as rank 2), while the

assumptions do not naturally fit the characteristics of the ordinal ranks. A few other studies,

therefore, try to resort to ordinal classification, which is more aligned with the qualitative

and discrete nature of ordinal ranks. Some theoretical connections between classification

and list-wise ranking criteria have been established by Li et al. (2007).

In this study, we improve and combine the regression and the classification approaches

to tackle the ranking problem. In particular, we connect the problem with cost-sensitive

ordinal classification, a more sophisticated setting than the usual ordinal classification.

Cost-sensitive classification penalizes different kinds of mis-predictions differently;

therefore, it can express the list-wise evaluation criteria much better. We study theoretical

guarantee that allows the use of cost-sensitive classification to embed a popular list-wise

ranking criterion—expected reciprocal rank (ERR; Chapelle et al. 2009). Furthermore, we

exploit an existing method to reduce the cost-sensitive ordinal classification problem to a

batch of binary classification tasks (Lin and Li 2012). The reduction method carries a

strong theoretical guarantee that respects the qualitative and discrete nature of the ordinal

ranks. Finally, we utilize the benefits of the regression tools by using them as soft learners

for the batch of binary classification tasks. We name the whole framework cost-sensitive

ordinal classification via regression (COCR). The framework not only enables us to use

the well-established regression tools without imposing unrealistic metric assumptions on

ordinal ranks, but also allows us to match the list-wise evaluation criteria better by

embedding them as costs.

Evaluations on four large-scale and real-world benchmark data sets, ‘‘Yahoo! Learning

to Rank Challenge’’ and ‘‘Microsoft Learning to Rank,’’ verify the superiority of COCR

over conventional regression approaches. Experimental results show that COCR can per-

form better than the simple regression approach using some common costs. The results
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demonstrate the importance of treating ordinal ranks as discrete rather than as continuous.

Moreover, after adding ERR-based costs, COCR can perform even better, thereby dem-

onstrating the advantages of connecting the top-ranking problem to cost-sensitive ordinal

classification.

While this paper builds upon the reduction method proposed by Lin and Li (2012) as

well as the ordinal classification work by Li et al. (2007), there are three major differences.

The reduction to regression instead of binary classification is a key idea that has not been

explored in the literature; the focus on the ERR criterion for the top-ranking problem

instead of the earlier studies on the discrete costs or the Normalized Discounted Cumu-

lative Gain (Lin and Li 2012) is a novel contribution on the theoretical side; the thorough

and fair comparison on four real-world benchmark data sets is an important contribution

on the empirical side.

This paper is organized as follows. We introduce the ranking problem and illustrate

related works in Sect. 2. We formulate the COCR framework in Sect. 3. Section 4 derives

the cost corresponding to the ERR criterion. We present the experimental results on some

large-scale data sets and conduct several comparisons in Sect. 5. We conclude in Sect. 6.

2 Setup and related work

We work on the following ranking problem. For a given query with index q, consider a set

of documents {xq, i}i=1
N(q), in which N(q) is the number of documents related to q and each

document xq, i is encoded as a vector in X � R
D. For the task, we attempt to order all xq, i

according to their relevance to q. In particular, each xq, i is assumed to be associated with

an ideal ordinal rank value yq;i 2 Y ¼ f0; 1; 2; . . .;Kg. We consider a data set that contains

Q queries with labeled document-relevance examples:

D ¼
�
ðxq;i; yq;iÞ: q ¼ 1; 2; . . .;Q; i ¼ 1; 2; . . .;NðqÞ

�
:

The goal of the ranking problem is to use D to obtain a scoring function (ranker)

rðxÞ:X ! R; which can obtain an ordering introduced by the predicted value of r(xq, i) that

is close to the ordering by the target value yq, i.

For simplicity, we use n to denote the abstract pair (q, i). Then, the data set D becomes

D ¼ fðxn; ynÞgN
n¼1; where N is the total number of documents. Learning-based approaches

for the ranking problem can be classified into the following three categories (Liu 2009):

• Point-wise The point-wise approach aims at directly predicting the score of x. In other

words, it learns r(xq, i) & yq, i to make the orderings introduced by r and y as close as

possible. When y is real-valued, this approach is similar to traditional regression; thus,

several well-established tools in regression can be applied directly. A representative

regression approach for point-wise ranking has been studied by Cossock and Zhang (2006).

When the target value y belongs to an ordinal set f0; 1; . . .;Kg; the ranking problem can be

reduced to an ordinal regression (also called ordinal classification). The ordinal regression

can then be solved by the binary decomposition approach (Frank and Hall 2001; Crammer

and Singer 2002; Li et al. 2007) with theoretical justification (Lin and Li 2012).

• Pair-wise In this category, the ranking problem is transformed into a binary

classification that decides whether xq, i is preferred over xq, j. In other words, the

aim is to learn a ranker r such that

sign
�
rðxq;iÞ � rðxq;jÞ

�
� sign

�
yq;i � yq;j

�
;
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which captures the local comparison nature of ranking. Approaches for pair-wise ranking

usually construct pairs (xq, i, xq, j) between examples with different y and feed the pairs to

binary classification tools to obtain the ranker. Nevertheless, given a query with N(q)

documents, the number of pairs can be as many as X
�
NðqÞ2

�
; which makes the pair-wise

approach inefficient for large-scale data sets. Representative approaches in this category

include RankSVM (Joachims 2002), RankBoost (Freund et al. 2003), and RankNet

(Burges et al. 2005). When the target value y belongs to an ordinal set f0; 1; . . .;Kg; the

ranking problem is called multipartite ranking, which is closely related to ordinal

regression, as discussed by Fürnkranz et al. (2009).

• List-wise While point-wise ranking considers scoring each instance xq,i by itself and

pair-wise ranking tries to predict the local ordering of the pair (xq, i, xq,j), list-wise

ranking targets the complete ordering of {xq,i}i=1
N(q) introduced by the ranker r. This

approach attempts to find the best ranker r by optimizing some objective function that

can evaluate the effectiveness of different permutations or orderings introduced by

different rankers. The objective function is called a list-wise ranking criterion, and the

direct optimization allows the learning process to take into account the structure of all

{xq,i}. However, since there are
�
NðqÞ

�
! possible permutations over N(q) documents,

list-wise ranking can be computationally more expensive than pair-wise ranking. One

possible solution is to cast list-wise ranking as a special case of learning structured

output spaces (Tsochantaridis et al. 2005; Shivaswamy and Joachims 2002), and apply

the efficient tools in structured learning (Yue and Finley 2007). Other possible

solutions include LambdaRank (Burges et al. 2006), BoltzRank (Volkovs and Zemel

2009), and NDCGBoost (Valizadegan et al. 1999), which are generally based on

designing a special procedure that optimizes the (possibly) non-convex and non-smooth

listwise ranking criterion for a particular learning model.

This study focuses on improving the point-wise ranking by incorporating structural

information. In specific, we propose to transform the list-wise ranking criterion as the

costs, and introduce it into the reduction process for ordinal ranking. The proposed

approach not only inherits the benefit of point-wise ranking in terms of dealing with large-

scale data sets, but also possesses the advantage of list-wise ranking that takes the structure

of the entire ranking list into account.

3 Cost-sensitive ordinal classification via regression

In this section, we formulate the framework of cost-sensitive ordinal classification via

regression (COCR). We first describe how to reduce a ranking problem from cost-sensitive

ordinal classification to binary classification based on the work of Lin and Li (2012). Then,

we discuss how the reduction method can be extended to pair with regression algorithms

instead of binary classification ones.

3.1 Reduction to binary classification

We first introduce the reduction method by Lin and Li (2012), which is a point-wise

ranking approach and solves the ordinal classification problem. Consider a data set D ¼
fðxn; ynÞgN

n¼1 and possible ordinal ranks Y ¼ f0; 1; . . .;Kg; the reduction method learns a

ranker r:X ! Y from D such that r(x) is close to y 2 Y. The task of learning a ranker r is
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decomposed to K simpler sub-tasks, and each sub-task learns a binary classifier gk:X !
f0; 1g; where k ¼ 1; 2; . . .;K. In specific, the k th sub-task is to answer the following

question:

‘‘Is x ranked higher than or equal to rank k ?’’

Each binary classifier gk is learned from the transformed data set:

DðkÞ ¼ xn; b
ðkÞ
n

� �n oN

n¼1
;

where

bðkÞn ¼ yn� k½ �½ � ð1Þ

encodes the desired answer for each xn on the associated question. If all binary classifiers

gk answer most of the associated questions correctly, it has been theoretically proved by

Lin and Li (2012) that a simple ‘‘counting’’ ranker:

rgðxÞ ¼
XK

k¼1

gkðxÞ ð2Þ

can also predict rank y closely.

In addition to reducing from the ordinal classification task to binary classification ones,

the method allows us to specify costs for different kinds of mis-ranking errors. In par-

ticular, each example (xn, yn) can be coupled with a cost vector cn whose k th component

cn[k] denotes the penalty for scoring xn as k. The value of cn[k] reflects the extent of the

difference between yn and k. Thus, it is common to assume that cn[k] = 0 when k = yn. In

addition, the cost cn[k] is assumed to be larger when k is further away from yn. Two

common functions satisfy the requirements and have been widely used in practice:

• Absolute cost vectors

cn½k� ¼ yn � kj j: ð3Þ

• Squared cost vectors

cn½k� ¼ ðyn � kÞ2: ð4Þ

For instance, suppose that the highest rank value K = 4. Given an example (xn, yn) with

yn = 3, the absolute cost is (3, 2, 1, 0, 1) and the squared cost is (9, 4, 1, 0, 1). Note that

the squared cost charges more than the absolute cost when k is further away from yn. The

cost vectors give the learning algorithm some additional information about the preferred

ranking criterion and can be used to boost ranking performance if they are chosen or

designed carefully.

The reduction method transforms the cost vector cn to the weight of each binary

example xn; b
ðkÞ
n

� �
to indicate its importance. The weight is defined as

wðkÞn ¼
���cn½k� � cn½k � 1�

���: ð5Þ

Intuitively, when the difference between the k th and the (k - 1) th costs is large, a ranker

will attempt to answer the question associated with the k th rank correctly. The theoretical
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justification for using the weights is shown by Lin and Li (2012). The weights wn
(k) are

included as an additional piece of information when training gk. Many existing binary

classification approaches can take the weights into account by some simple changes in the

algorithm or by sampling (Zadrozny et al. 2003).

In summary, the reduction method starts from a cost-sensitive data set D ¼
fðxn; yn; cnÞgN

n¼1 and transforms it to weighted binary classification data sets DðkÞ ¼
xn; b

ðkÞ
n ;wðkÞn

� �� �N

n¼1
; each of which is used to learn a binary classifier gk that will be

combined to get the ranker rg in (2). Note that the absolute cost simply results in wn
(k) = 1

(equal weights) and leads to the simple weight-less version mentioned earlier in this

section. Many existing approaches (Li et al. 2007; Mohan et al. 2011) also decompose the

ordinal classification problem to a batch of binary classification sub-tasks in a weight-less

manner and thus implicitly consider only the absolute cost. The reduction method, on the

other hand, provides the opportunity to use a broader range of costs in a principled manner.

3.2 Replacing binary classification with regression

The reduction method learns a hard ranker rg from X to Y ¼ f0; 1; 2; . . .;Kg; that is, many

different instances xq, i can be mapped to a same rank. While such a ranker carries a strong

theoretical guarantee, it results in ties of ordering, and is, therefore, usually not preferred in

practice. Next, we discuss how we can obtain a soft ranker from X to R instead.

The basic idea is that we replace gk:X ! f0; 1g with soft binary classifiers hk:X !
½0; 1�; where hkðxÞ� 0:5½ �½ � is the hard classifier gk(x) in the prediction, while the value

hkðxÞ � 0:5j j represents the confidence of the prediction. Note that the hard ranker rg in the

reduction method is composed of a batch of hard binary classifiers gk. To use the detailed

confidence information after getting hk, we propose to keep Eq. (2) unchanged. That is, the

soft ranker will be constructed as

rhðxÞ ¼
XK

k¼1

hkðxÞ: ð6Þ

Below we show that rh can be a reasonable ranker by using the above equation. The

common way to learn the soft binary classifiers hk is to use regression. Traditional least

squares regression, when applied to the binary classification problem from x to some

binary label b 2 f0; 1g; can be viewed as learning an estimator of the posterior probability

P(b = 1 | x). Following the same argument, each soft binary classifier hk(x) in our pro-

posed approach estimates the posterior probability P(y C k | x). Let us first assume that

each hk is perfectly accurate with regard to the estimation. That is, let Pk = P(y = k | x),

P1 þ P2 þ � � � þ PK ¼ h1ðxÞ
P2 þ � � � þ PK ¼ h2ðxÞ

� � � ¼ � � �
PK ¼ hKðxÞ:

Taking a summation on both sides of the equations,

P1 þ 2P2 þ � � � þ KPK ¼
XK

k¼1

hkðxÞ ¼ rhðxÞ:
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Note that the left-hand-side is the expected rank:

EðyjxÞ ¼
XK

k¼0

k � Pðy ¼ kjxÞ:

In other words, when all soft binary classifiers hk(x) perfectly estimate P(y C k | x), the

soft ranker rh(x) can also perfectly estimate the expected rank given x.

Note that (6) has been similarly derived by Fürnkranz et al. (2009) to combine the scoring

functions (i.e. soft binary classifiers) that come from the naı̈ve binary decomposition

approach of Frank and Hall (2001), which is a precursor of the reduction method (Lin and

Li 2012). Both the derivations of Fürnkranz et al. (2009) and our discussions above

assume perfect estimates of P(y C k | x). In practice, however, soft binary classifiers hk(x)

may not be perfect and can make errors in estimating P(y C k | x). In such a case, the

next theorem shows that rh(x) is however guaranteed to be close to the expected rank

given x.

Theorem 1 Consider any binary classifiers hk:X ! R for k ¼ 0; 1; . . .;K. Assume that

XK

k¼1

�
hkðxÞ � Pðy� kjxÞ

�2

� �2:

Then,

�
rhðxÞ � EðyjxÞ

�2�K�2:

Proof.

�
rhðxÞ � EðyjxÞ

�2

¼
XK

k¼1

hkðxÞ �
XK

k¼1

Pðy� kjxÞ
 !2

�
XK

k¼1

12

 !
XK

k¼1

�
hkðxÞ � Pðy� kjxÞ

�2

 !

�K�2:

ð7Þ

Note that Inequality (7) is based on the Cauchy–Schwarz inequality, which states that the

inner product between two vectors is no more than the length-multiplication of the vectors:

XK

k¼1

akbk �
XK

k¼1

a2
k

 !1=2 XK

k¼1

b2
k

 !1=2

:

Theorem 1 shows that when soft binary classifiers hk can estimate the posterior

probability P(y C k | x) correctly, the soft ranker rh will also obtain the expected rank of

x closely. According to the theorem, we propose to replace the binary classification

algorithm in the reduction method with a base regression algorithm Ar. The base

regression algorithm attempts to learn soft binary classifiers hk and obtain a soft

ranker rh by using Eq. (6). Algorithm 1 summarizes the process of the proposed COCR

framework. h
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4 Costs of the criterion of expected reciprocal rank

In this section, we embed a list-wise ranking criterion, expected reciprocal rank, as the

costs in the COCR framework. The criterion has been used as the major evaluation metric

in the Yahoo! Learning to Rank Challenge.1

4.1 Expected reciprocal rank

Expected reciprocal rank (ERR; Chapelle et al. 2009) is an evaluation criterion for mul-

tiple relevance judgments. Consider a ranker r that defines an ordering:

p: f1; 2; . . .;NðqÞg ! f1; 2; . . .;NðqÞg;

where p(i) is the position of example (xq,i, yq,i) in the ordering introduced by r, with the

largest r(xq,i) having p(i) = 1. Note that the ordering is a bijective function. For simplicity,

we use r(j) to denote the inverse function p-1(j); then, the ERR criterion can be defined as

follows:

ERRðr; qÞ ¼
XNðqÞ

i¼1

1

i
R
�
yq;rðiÞ

�Yi�1

j¼1

�
1� R

�
yq;rðjÞ

��
;

with RðyÞ ¼ 2y � 1

2K
; y 2 f0; 1; . . .;Kg:

ð8Þ

The continued product term is defined to be 1 when i = 1. An intuitive explanation of ERR is

ERRðr; qÞ ¼
XNðqÞ

i¼1

1

i
Pðuser stops at position i when ordered by rÞ;

where higher values indicate better performance. The function R(y) maps the ordinal rank y

to a probability term that models whether the user would stop at the associated document x.

When y is large (highly relevant), R(y) is close to 1; in contrast, when y is small (highly

irrelevant), R(y) is close to 0. Top-ranked (small i) documents are associated with a shorter

product term, which corresponds to the focus on the top-ranked documents.

1 http://learningtorankchallenge.yahoo.com/index.php
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As suggested by Chapelle et al. (2009), ERR reflects users’ search behaviors and can be

used to quantify users’ satisfaction. The main difference between ERR and other position-

based metrics such as RBP (Moffat and Zobel 2008) and NDCG (Järvelin and Kekäläinen

2002) is that the discount term:

1

i

Yi�1

j¼1

�
1� R

�
yq;rðjÞ

��

of ERR depends not only on the position information 1
i
; but also on whether highly relevant

instances appear before position i.

Next, we derive an error bound on the ERR criterion. To simplify the derivation, we

work on a single query and remove the query index q from the notation. In addition, given

that ERR depends only on the permutation p introduced by r, we denote ERR(r, q) by

ERR(p). Then, we can permute the index in (8) with p and get an equivalent definition of

ERR as:

ERRðpÞ ¼
XN

i¼1

1

pðiÞRðyiÞ
YpðiÞ�1

j¼1

�
1� RðyrðjÞÞ

�
: ð9Þ

4.2 An error bound on ERR

Some related studies work on optimizing non-differentiable ranking metrics, such as

NDCG (Valizadegan et al. 1999) and Average Precision (Yue and Finley 2007). Fur-

thermore, the NDCG criterion is shown to be bounded by some regression loss functions

(Cossock and Zhang 2006) and a scaled error rate in multi-class classification (Li et al.

2007). Inspired by the two studies, we derive a bound for ERR in order to find suitable

costs for COCR. Note that Mohan et al. (2011) make a similar attempt with some different

derivation steps and shows that ERR is bounded by a scaled error rate in multi-class

classification. Our bound, on the other hand, will reveal that ERR is approximately

bounded by some costs in cost-sensitive ordinal classification.

For any vector ~y of length N, any permutation ~p: f1; 2; . . .;Ng ! f1; 2; . . .;Ng and its

inverse permutation ~r; we define

Fið~p; ~yÞ ¼ R
�

~y
	
i

� Y~pðiÞ�1

j¼1

1� R
�

~y
	
~rðjÞ


�� �
:

The term Fi represents the probability of a user stopping at position i when the documents

are ordered by ~p while having ranks ~y. The definition simplifies the ERR criterion (9) to

ERRðpÞ ¼
XN

i¼1

b½pðiÞ� � Fiðp; yÞ; ð10Þ

where b is a vector with b½i� ¼ 1
i

and y is a vector with y[i] = yi.

Let ŷ be a length-N vector with ŷ½i� ¼ rðxiÞ. We now use the above definitions to derive

the upper-bound of the difference between ERR(p) and the ERR of a perfect ranker.

Theorem 2 For a given set of examples ðxi; yiÞf gN
i¼1; consider a perfect ordering q such

that yq(i) is a non-increasing sequence. Then,

Inf Retrieval (2014) 17:1–20 9
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ERRðpÞ � ERRðqÞ

�
XN

i¼1

�
b
	
qðiÞ



� b
	
pðiÞ


�2
 !1

2 XN

i¼1

�
Fiðq; yÞ � Fiðp; ŷÞ

�2

 !1
2

:

Proof. From the definition in Eq. (10),

ERRðpÞ

¼
XN

i¼1

b½pðiÞ� � Fiðp; yÞ

¼
XN

i¼1

b½pðiÞ� � Fiðp; ŷÞ þ
XN

i¼1

b½pðiÞ� �
�

Fiðp; yÞ � Fiðp; ŷÞ
�
:

Note that p is the ordering constructed by ŷ. Thus, the sequence Fiðp; ŷÞ is non-decreasing

with b½pðiÞ�. By the rearrangement inequality,

XN

i¼1

b½pðiÞ� � Fiðp; ŷÞ�
XN

i¼1

b½qðiÞ� � Fiðp; ŷÞ: ð11Þ

In addition, q is the ordering constructed by y. Thus, for all i,

Fiðp; yÞ�Fiðq; yÞ: ð12Þ

From (11) and (12),

ERRðpÞ

�
XN

i¼1

b
	
qðiÞ



� Fiðp; ŷÞ þ

XN

i¼1

b
	
pðiÞ



�
�

Fiðq; yÞ � Fiðp; ŷÞ
�
;

�
XN

i¼1

b
	
qðiÞ



� Fiðq; yÞþ

XN

i¼1

�
b
	
pðiÞ



� b
	
qðiÞ


�
�
�

Fiðq; yÞ � Fiðp; ŷÞ
�
;

¼ERRðqÞ þ
XN

i¼1

�
b
	
pðiÞ



� b
	
qðiÞ


�
�
�

Fiðq; yÞ � Fiðp; ŷÞ
�
:

Then, by the Cauchy–Schwarz inequality,

ERRðpÞ � ERRðqÞ

�
XN

i¼1

�
b
	
qðiÞ



� b
	
pðiÞ


�2
 !1

2 XN

i¼1

�
Fiðq; yÞ � Fiðp; ŷÞ

�2

 !1
2

:

h
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4.3 Optimistic ERR cost

Next, we use the bound in Theorem 2 to derive the costs for the ERR criterion. In specific,

we attempt to minimize the right-hand side of the bound with respect to r. The term

XN

i¼1

�
b½qðiÞ� � b½pðiÞ�

�2

in the bound depends on the total ordering introduced by r and is difficult to calculate in a

point-wise manner by COCR. Thus, we minimize the term

�
Fiðq; yÞ � Fiðp; ŷÞ

�2

¼
 

2y½i� � 1

2K

YqðiÞ�1

j¼1

1� 2y½wðjÞ� � 1

2K

� �

� 2ŷ½i� � 1

2K

YpðiÞ�1

j¼1

1� 2ŷ½rðjÞ� � 1

2K

� �!2

:

Here r(i) is used to denote p-1(i) and w(i) is used to denote q-1(i) .Assume that we are

optimistic and consider only ‘‘strong’’ rankers. That is, r(xi) & yi. Then, the ordering p
introduced by r will be close to the ordering q introduced by the prefect ranker p. Thus,

YqðiÞ�1

j¼1

1� 2y½wðjÞ� � 1

2K

� �
�
YpðiÞ�1

j¼1

1� 2ŷ½rðjÞ� � 1

2K

� �
:

If the ranker predicts r(xi) = k,

�
Fiðq; yÞ � Fiðp; ŷÞ

�2

� 2y½i� � 1

2K
� 22K � 1

2K

 !

�
YpðiÞ�1

j¼1

1� 2ŷ½rðjÞ� � 1

2K

� � !2

/ 2yi � 2k
� �2

:

Therefore, if we are optimistic about the performance of the rankers, the optimistic ERR

(oERR) cost vector

ci½k� ¼ 2yi � 2k
� �2 ð13Þ

can be used to minimize the bound in Theorem 2. In particular, when the optimistic ERR

cost is minimized, each

�
Fiðq; yÞ � Fiðp; ŷÞ

�2

is approximately minimized and the right-hand side of the bound in Theorem 2 is small.

ERR(p) would then be close to the ideal ERR of the perfect ranker. For K = 4, given an

example (xn, yn) with yn = 3, the squared cost is (9, 4, 1, 0, 1) and the oERR cost is

(49, 36, 16, 0, 64). We see that, when normalized by the largest component in the cost, the

oERR vector penalizes for mis-ranking errors more than the squared cost.
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The optimistic assumption allows using a point-wise (cost-sensitive) criterion to

approximate a list-wise (ERR) one, and is arguably realistic only when the rankers being

considered are strong enough. Otherwise, the oERR cost may not reflect the full picture of

the ERR criterion of interest. Nevertheless, as to be demonstrated in the experiments with

real-world data sets, using the approximation (oERR) leads to better performance than not

using the approximation (say, with the absolute cost only). In other words, the oERR cost

captures some properties of the ERR criterion and can hence be an effective choice when

integrated within the COCR framework.

5 Experiments

We carry out several experiments to verify the following claims:

1. For large-scale, list-wise ranking problems with ordinal ranks, with a same base

regression approach, the proposed COCR framework can outperform a direct use of

regression (Cossock and Zhang 2006).

2. The derived oERR cost in (13) can be coupled with COCR to boost the quality of

ranking in terms of the ERR criterion.

We first introduce the data sets and the base regression algorithms used in our exper-

iments. Furthermore, we will compare COCR with different costs and discuss the results.

5.1 Data sets

Four benchmark, real-world, human labeled, and large-scale data sets are used in our

experiments. The statistics of the benchmark data sets are described below.

• Yahoo! Learning To Rank Challenge Data Sets2: In 2010, Yahoo! held the Learning to

Rank Challenge for improving the ranking quality in web-search systems. There were

two data sets in the competition: the larger set is used for track 1 and is named LTRC1

in our experiments; the smaller set (LTRC2) is used for track 2. Both LTRC1 and

LTRC2 are divided into three parts—training, validation, and test. For training,

validation, and test respectively,

• LTRC1 contains Q = 19,944/2,994/6,983 queries and N = 473,134/71,083/165,660

examples

• LTRC2 contains Q = 1,266/1,266/3,798 queries and N = 4,815/34,881/103,174

examples

In both data sets, the number of features D is 700 and all of the features have been

scaled to [0,1]. The rank values yn range from 0 to K = 4, where 0 means ‘‘irrelevant’’

and 4 means ‘‘highly relevant.’’

• Microsoft Learning to Rank Data Sets:3 The data sets were released by Microsoft

Research in 2010. There are two data sets MS10K and MS30K.

• MS10K contains Q = 10,000 queries and N = 1,200,192 examples.

• MS30K contains Q = 31,531 queries and N = 3,771,125 examples.

2 http://learningtorankchallenge.yahoo.com/datasets.php
3 http://research.microsoft.com/en-us/projects/mslr/default.aspx
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The MS10K data set is constructed by a random sampling of 10,000 queries from

MS30K. There are D = 136 features and we normalize the features to [0, 1]. Each data

set is divided into five standard parts for cross-validation. The ordinal rank values in the

data sets also range from 0 to 4.

5.2 Base regression algorithms

Three base regression algorithms are considered in our experiments, including linear

regression (Hastie et al. 2003), M5’0decision tree (M5P; Wang and Witten 1997) to

Gradient Boosted Regression Trees (GBRT; Friedman 2001). In the experiments, we use

WEKA (Hall et al. 2009) for the linear regression and M5P, and use RT-Rank (Mohan

et al. 2011) implementation for GBRT.

• Linear regression is arguably one of the most widely-used algorithm for regression. It

learns a simple linear model that combines the numerical features in x to make the

predictions. We take the standard least-squares formulation of linear regression (Hastie

et al. 2003) as the baseline algorithm in our experiments.

• M5P is a decision tree algorithm based on an earlier M5 (Quinlan 1992) algorithm.

M5P produces a regression tree such that each leaf node consists of a linear model for

combining the numerical features. M5P can perform nonlinear regression with the

partitions provided by the internal nodes and is thus more powerful than linear

regression. We will consider a single M5P tree as well as multiple M5P trees combined

by the popular bootstrap aggregation (bagging) method (Breiman 1996).

• GBRT aggregates multiple decision trees with gradient boosting to improve the regression

performance (Friedman 2001). The aggregation procedure generates diverse decision trees

by taking the regression errors (residuals) into account, and can thus produce a more

powerful regressor than bagging-M5P. GBRT is a leading algorithm in the Yahoo!

Learning to Rank Challenge (Mohan et al. 2011) and is thus taken into our comparisons.

In the following section, we conduct several comparisons using the above mentioned

base regression algorithms under the COCR framework with different costs.

5.3 Comparison using linear regression

Table 1 shows the average test ERR of direct regression and three COCR settings for the

four data sets when using linear regression as the base algorithm. Bold-faced numbers

indicate that the COCR setting significantly outperforms direct regression at the 95 %

confidence level using a two-tailed t test. The corresponding p values are also listed in the

table for reference. First, we see that COCR with the squared cost is better than direct

regression on all the data sets. COCR with the absolute cost, which is similar to the

McRank approach (Li et al. 2007), can also achieve a higher ERR over direct regression on

some data sets. The results verify that it is important to respect the discrete nature of the

ordinal-valued yn instead of directly treating them as real values for regression. In par-

ticular, the reduction method within COCR takes the discrete nature into account properly

and should thus be preferred over direct regression on the data sets with ordinal ranks.

Table 1 shows that COCR with the oERR cost is not only better than direct regression,

but can also further boost the ranking performance over the absolute and the squared costs

to reach the best ERR for all data sets, except the smallest data set LTRC2. On larger data

sets like MS10K and MS30K, the difference is especially large and significant. We further
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compare COCR with different costs to COCR with the oERR cost using a two-tailed t test

and list the corresponding p values in Table 3a. The results show that COCR with the

oERR cost is definitely the best choice within the three COCR settings on LTRC1, MS10K

and MS30K. The results justify the usefulness of the proposed oERR cost over the com-

monly-used absolute or square costs.

Another metric for list-wise ranking is normalized DCG (NDCG; Järvelin and

Kekäläinen 2002). In order to verify if COCR can also enhance NDCG, we list the

NDCG@10 results in Table 2. Note that higher NDCG values indicate better performance.

For NDCG@10, COCR with the squared cost is better than the direct regression on all data

sets. In addition, COCR with the squared cost is better than COCR with the absolute cost

on MS10K and MS30K, and better than COCR with the oERR cost on LTRC1 and

LTRC2. The findings suggest that COCR with the squared cost is the best of the three

settings. On the other hand, COCR with the oERR cost is weaker in terms of the NDCG

criterion. Thus, the flexibility of COCR in plugging in different costs is important. More

specifically, the flexibility allows us to obtain better rankers toward the application needs

(NDCG or ERR) by tuning the costs appropriately (Table 3).

The oERR cost is known to be equivalent to an NDCG-targeted cost derived for discrete

ordinal classification (Lin and Li 2012). The observation that the oERR cost does not lead

to the best NDCG performance for list-wise ranking suggest an interesting future research

direction to see if better costs for NDCG can be derived.

5.4 Comparison using M5P

The M5P decision tree comes with a parameter M, which stands for the minimum number

of instances per leaf when constructing the tree. A smaller M results in a more complex

Table 1 ERR Comparison using linear regression

Data set Direct regression COCR

Absolute, p value Squared, p value oERR, p value

LTRC1 0.4470 0.4484, 6.00 9 10-4 0.4490, 4.46 9 10-5 0.4505, 7.30 9 10-6

LTRC2 0.4440 0.4465, 6.00 9 10-4 0.4472, 2.00 9 10-4 04461, 2.84 9 10-2

MS10K 0.2643 0.2642, 1.13 9 10-1 0.2697, 4.50 9 10-20 0.2792, 2.24 9 10-35

MS30K 0.2748 0.2748, 5.76 9 10-1 0.2828, 4.76 9 10-116 0.2942, 2.18 9 10-161

Bold-faced numbers indicate that the COCR setting significantly outperforms direct regression at the 95 %
confidence level using a two-tailed t test

Table 2 NDCG@10 comparison using linear regression

Data set Direct regression COCR

Absolute, p value Squared, p value oERR, p value

LTRC1 0.7638 0.7652, 1.07 9 10-4 0.7652, 2.40 9 10-3 0.7636, 8.10 9 10-1

LTRC2 0.7519 0.7552, 1.19 9 10-5 0.7562, 6.02 9 10-6 0.7518, 9.48 9 10-1

MS10K 0.3916 0.3915, 6.04 9 10-1 0.3945, 3.80 9 10-11 0.3931, 1.16 9 10-1

MS30K 0.4025 0.4026, 4.66 9 10-1 0.4061, 2.88 9 10-49 0.4060, 6.80 9 10-11

Bold-faced numbers indicate that the COCR setting significantly outperforms direct regression at the 95 %
confidence level using a two-tailed t test
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(possibly deeper) tree while a larger M results in a simpler one. Figure 1 shows the results

of tuning M when applying M5P in direct regression and COCR with the oERR cost on the

LTRC1 data set. The M values of 4, 256, 512, 1,024, and 2,048 are examined. The

default value of M in WEKA is 4.

Figure 1a shows that direct regression with M5P can reach the best test performance on

the default value of M = 4. However, as shown in Fig. 1b, COCR with the oERR cost can

overfit when M = 4. Its training ERR is considerably high, but the test ERR is extremely

low. The findings suggest a careful selection of the M parameter. We conduct a fair

selection scheme using the validation ERR. In particular, we check the models constructed

by M = 4, 256, 512, 1,024, and 2,048, pick the model that comes with the highest

validation ERR, and report its corresponding test ERR.4 The results for LTRC1 are listed

in Table 4. The first five rows show the validation results of different algorithms, and the

last row shows the test result when using the best model in validation. The results
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Fig. 1 Effects of tuning the parameter M of M5P on LTRC1. a Direct regression. b COCR with oERR cost

Table 3 Two-tailed test that
compare the oERR cost to other
costs

Bold-faced numbers indicate that
the COCR setting significantly
outperforms direct regression at
the 95 % confidence level using a
two-tailed t test

Data set Absolute Squared

(a) Linear regression

LTRC1 5.40 9 10-3 3.02 9 10-2

LTRC2 6.24 9 10-1 1.50 9 10-1

MS10K 3.70 9 10-36 1.55 9 10-21

MS30K 1.62 9 10-160 7.02 9 10-81

(b) M5P

LTRC1 5.60 9 10-1 1.21 9 10-1

LTRC2 2.06 9 10-5 3.24 9 10-1

MS10K 1.62 9 10-2 9.12 9 10-8

MS30K 7.70 9 10-2 2.74 9 10-5

4 We also check M = 2 but find that the parameter leads to worse performance for all algorithms.
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demonstrate that when M is carefully selected, all COCR settings significantly outperform

direct regression on LTRC1 and COCR with the oERR achieves the best ERR of the three

settings.

With the parameter selection scheme above, Table 5 lists the test ERR on the four data

sets. The results in the table further confirm that almost all COCR settings are significantly

better than direct regression on all data sets, except COCR with the absolute cost on the

smallest LTRC2. Furthermore, COCR with oERR cost achieves the best ERR performance

Table 4 ERR results of tuning the parameter M of M5P on LTRC1

Parameter M Direct regression COCR

Absolute Squared oERR

4 (validation) 0.4432* 0.4381 0.4381 0.4393

256 (validation) 0.4365 0.4410 0.4425 0.4432

512 (validation) 0.4382 0.4426 0.4437 0.4438

1,024 (validation) 0.4408 0.4445* 0.4453* 0.4453*

2,048 (validation) 0.4400 0.4426 0.4431 0.4447

Test by best validation 0.4499 0.4526 0.4521 0.4530

p value 5.20 9 10-3 2.10 9 10-2 1.60 9 10-3

* Represents the best validation result

Bold-faced numbers indicate that the COCR setting significantly outperforms direct regression at the 95 %
confidence level using a two-tailed t test

Table 5 ERR comparison using M5P

Data set Direct regression COCR

Absolute, p value Squared, p value oERR, p value

LTRC1 0.4499 0.4526, 5.20 9 10-3 0.4521, 2.10 9 10-2 0.4530, 1.60 9 10-3

LTRC2 0.4489 0.4499, 4.52 9 10-1 0.4533, 1.40 9 10-3 0.4538, 4.00 9 10-4

MS10K 0.3014 0.3129, 6.22 9 10-13 0.3101, 6.08 9 10-8 0.3156, 6.76 9 10-17

MS30K 0.3298 0.3438, 8.64 9 10-54 0.3423, 8.46 9 10-43 0.3451, 3.48-59

Bold-faced numbers indicate that the COCR setting significantly outperforms direct regression at the 95 %
confidence level using a two-tailed t test

Table 6 NDCG@10 comparison using M5P

Data set Direct regression COCR

Absolute, p value Squared, p value oERR, p value

LTRC1 0.7680 0.7695, 1.80 9 10-1 0.7698, 2.52 9 10-2 0.7698, 7.26 9 10-2

LTRC2 0.7535 0.7519, 4.52 9 10-1 0.7565, 1.50 9 10-1 0.7567, 1.28 9 10-1

MS10K 0.4233 0.4327, 1.61 9 10-10 0.4295, 2.62 9 10-5 0.4284, 8.00 9 10-4

MS30K 0.4545 0.4645, 1.06 9 10-33 0.4614, 1.36 9 10-17 0.4589, 2.40 9 10-7

Bold-faced numbers indicate that the COCR setting significantly outperforms direct regression at the 95 %
confidence level using a two-tailed t test
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on all data sets. After comparing COCR with the oERR cost to COCR with other costs

using a two-tailed t test, as shown in Table 3b, we verify that the differences are mostly

significant, especially on MS30K and MS10K. The results again confirm that the oERR

cost is a competitive choice in the COCR settings.

Table 6 shows the test NDCG results. Both COCR with the squared and the oERR costs

perform better than direct regression on all data sets. In addition, COCR with the absolute

cost performs better than direct regression on all data sets except the smallest LTRC2. The

finding echoes the results in Table 2 regarding the benefit of COCR on improving NDCG

with a carefully chosen cost.

5.5 Comparison using bagging-M5P

One concern about the comparison using M5P is that the COCR framework appears to be

combining K decision trees while direct regression only uses a single tree. To understand

more about the effect on different number of trees, we couple the bagging algorithm

(Breiman 1996) with M5P. In particular, we run T rounds of bagging. In each round, a

bootstrapped 10 % of the training data set is used to obtain a M5P decision tree. After

T rounds, the trees are averaged to form the final prediction. Then, bagging-M5P for direct

regression generates T decision trees and bagging-M5P for COCR generates TK trees.

Figure 2a compares direct bagging-M5P to COCR-bagging-M5P with the oERR cost under

the same T. That is, for the same horizontal value, the corresponding point on the COCR

curve uses K times more trees than the point on the direct regression curve. The figure shows

that the whole performance curve of COCR is always better than direct regression. On the

other hand, Fig. 2b compares the two algorithms under the same total number of trees. That

is, COCR with T rounds of bagging-M5P is compared to direct regression with TK rounds of

bagging-M5P. The figure suggests that COCR with the oERR cost continues to perform

better than direct regression. The results demonstrate that COCR with the oERR cost is

consistently a better choice than direct regression using bagging-M5P, regardless of whether

we compare under the same number of bagging rounds or the same number of M5P trees.
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Fig. 2 Effects of number-of-rounds and number-of-trees in bagging-M5P. a Comparison under the same
number-of-rounds. b Comparison under the same number-of-trees
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5.6 Comparison using GBRT

Next, we compare COCR settings with direct regression using GBRT (Friedman 2001) as

the base regression algorithm. We follow the award-winning setting (Mohan et al. 2011)

for the parameters of GBRT—the number of iterations is set to 1000; the depth of every

decision tree is set to 4; and the step size of each GBRT iteration is set to either

0.1, 0.05, or 0.02. The setting makes GBRT more time-consuming to train than bagging-

M5P, M5P, or linear regression, and thus we can only afford to conduct the experiments on

the data sets LTRC1 and LTRC2. Tables 7 and 8 show the ERR results on LTRC1 and

LTRC2 respectively. In Table 7, COCR with any type of costs performs significantly better

than direct regression with GBRT in most cases. In Table 8, when using a larger step size

of 0.1 or 0.05, COCR with the squared or the oERR costs performs significantly better than

direct regression with GBRT; COCR with the absolute cost is similar to direct regression

with GBRT. When using a smaller step size 0.02, however, all four algorithms in Table 8

can reach similar ERR on the small data set. Because COCR with the oERR cost setting

always enjoys a similar or better performance than direct regression or COCR with other

costs, it can be a useful first-hand choice for a sophisticated base regression algorithm like

GBRT.

6 Conclusions

We propose a novel COCR framework for ranking. The framework consists of three main

components: decomposing the ordinal ranks to binary classification labels to respect the

discrete nature of the ranks; allowing different costs to express the desired ranking

Table 7 ERR comparison using GBRT (LTRC1)

Step size Direct regression COCR

Absolute, p value Squared, p value oERR, p value

0.1 0.4590 0.4595, 3.48 9 10-1 0.4602, 2.84 9 10-2 0.4603, 4.76 9 10-2

0.05 0.4576 0.4587, 5.64 9 10-2 0.4596, 4.92 9 10-4 0.4602, 4.04 9 10-4

0.02 0.4547 0.4566, 9.74 9 10-5 0.4575, 4.32 9 10-8 0.4583, 1.39 9 10-6

Bold-faced numbers indicate that the COCR setting significantly outperforms direct regression at the 95 %
confidence level using a two-tailed t test

Table 8 ERR comparison using GBRT (LTRC2)

Step size Direct regression COCR

Absolute, p value Squared, p value oERR, p value

0.1 0.4563 0.4571, 4.52 9 10-1 0.4579, 1.37 9 10-1 0.4597, 1.80 9 10-3

0.05 0.4584 0.4586, 7.44 9 10-1 0.4599, 7.94 9 10-2 0.4598, 1.06 9 10-1

0.02 0.4601 0.4603, 7.18 9 10-1 0.4599, 9.34 9 10-1 0.4600, 9.50 9 10-1

Bold-faced numbers indicate that the COCR setting significantly outperforms direct regression at the 95 %
confidence level using a two-tailed t test
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criterion; using mature regression tools to not only deal with large-scale data sets, but also

provide good estimates of the expected rank. In addition to the sound theoretical guarantee

of the proposed COCR, a series of empirical results with different base regression algo-

rithms demonstrate the effectiveness of COCR. In particular, COCR with the squared cost

can usually do perform better than direct regression a commonly used baseline on both the

ERR criterion and the NDCG criterion.

Furthermore, we prove an upper bound of the ERR criterion and derive the optimistic

ERR cost from the bound. Experimental results suggest that COCR with the optimistic

ERR cost not only outperforms direct regression but often also obtains better ERR than

COCR with the absolute or the squared costs. Possible future directions includes coupling

the proposed COCR framework with other well-known regression algorithms, deriving

costs that correspond to other relevant pair-wise or list-wise ranking criteria, and studying

the potential of the proposed framework for ensemble learning.
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