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In the classical Lee-Carter model, the mortality indices that are assumed to be a random walk
model with drift are normally distributed. However, for the long-term mortality data, the
error terms of the Lee-Carter model and the mortality indices have tails thicker than those of
a normal distribution and appear to be skewed. This study therefore adopts five non-
Gaussian distributions—Student’s t-distribution and its skew extension (i.e., generalised
hyperbolic skew Student’s t-distribution), one finite-activity Lévy model (jump diffusion
distribution), and two infinite-activity or pure jump models (variance gamma and normal
inverse Gaussian)—to model the error terms of the Lee-Carter model. With mortality
data from six countries over the period 1900–2007, both in-sample model selection criteria
(e.g., Bayesian information criterion, Kolmogorov–Smirnov test, Anderson–Darling test,
Cramér–von-Mises test) and out-of-sample projection errors indicate a preference for
modelling the Lee-Carter model with non-Gaussian innovations.
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Introduction

The relatively recent recognition that mortality is a stochastic process means that
traditional valuation methods that rely on deterministic mortality models likely con-
tribute to mispricing problems. Suitable mortality models instead use mortality risk
management tactics to quantify mortality and longevity risks, and provide a founda-
tion for pricing and reserving.

Among all the stochastic mortality models that are available, the Lee-Carter model,
proposed by Lee and Carter in 1992, is perhaps the most popular choice, because of its ease
of implementation and acceptable prediction errors, as demonstrated by various empirical
studies across countries. Several modifications of the Lee-Carter model have been
proposed by Brouhns et al.,1 Renshaw and Haberman,2 and Denuit et al.3 and further

1 Brouhns et al. (2002).
2 Renshaw and Haberman (2003).
3 Denuit et al. (2007).
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revisited by Li and Chan,4 who attempt to provide a broader interpretation. Cairns et al.5

propose a two-factor stochastic mortality model, denoted the CBD model, in which the
first factor affects mortality at all ages, whereas the second factor affects mortality at higher
ages much more than at lower ages. Furthermore, Cairns et al.6 classify and compare eight
stochastic mortality models, including extensions of the CBD model, using mortality data
from England and Wales and from the United States. Haberman and Renshaw7 also
extend the Lee-Carter model to forecast age–period–cohort mortality rates and test for
robustness. However, short-term catastrophe mortality shocks, such as the influenza
pandemic in 1918 or the tsunami in December 2004, may lead to much higher mortality
rates. It is crucial to address such mortality jumps in modelling mortality dynamics.

To take mortality jumps into account, Biffis8 uses affine jump diffusions and models
asset prices and mortality dynamics, in the context of risk analysis and market valuation
in life insurance contracts. Luciano and Vigna9 find, with Italian mortality data, that
introducing a jump component provides a better fit than does a diffusion component for
stochastic mortality processes. Cox et al.10 combine geometric Brownian motion with
a compound Poisson process to model the age-adjusted mortality rates for the United
States and United Kingdom, using an evaluation of the first pure mortality security, the
Swiss Re Vita bond. In addition, Lin and Cox11 combine Brownian motion with a
discrete Markov chain and log-normal jump size distribution to price mortality-based
securities in an incomplete market framework. Chen and Cox12 incorporate a jump
process into the Lee-Carter model and use it to forecast mortality rates and analyse
mortality securitisation. These studies all use diffusion processes with jump components
(JD) and finite-activity Lévy processes to describe the dynamics of morality rates.

However, non-normal innovations can be generated by heavy-tailed distribu-
tions. An alternative set of distributions thus involves infinite-activity, or pure
jump, Lévy processes, such as the normal inverse Gaussian (NIG) distributions that
appear repeatedly in financial applications as unconditional return distributions13 or
the variance gamma (VG) distributions of Madan and Seneta.14 Another method
relies on Student’s t-distribution (T) and its skew extensions, such as the genera-
lised hyperbolic skew Student’s t-distribution (GHST), as described by Prause,15

Barndorff-Nielsen and Shephard,16 Jones and Faddy,17 Mencia and Sentana,18

4 Li and Chan (2007).
5 Cairns et al. (2006).
6 Cairns et al. (2009).
7 Haberman and Renshaw (2009).
8 Biffis (2005).
9 Luciano and Vigna (2005).

10 Cox et al. (2006).
11 Lin and Cox (2008).
12 Chen and Cox (2009).
13 Eberlein and Keller (1995), Prause (1997), Rydberg (1997), B�lviken and Benth (2000), Lillest�l (2000).
14 Madan and Seneta (1987, 1990).
15 Prause (1999).
16 Barndorff-Nielsen and Shephard (2001).
17 Jones and Faddy (2003).
18 Mencia and Sentana (2004).
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Demarta and McNeil,19 and Aas and Haff.20 Therefore, this study aims to examine
whether mortality indices can be described by jump models, such as JD, NIG and VG,
or by the Student’s t family, including the T and GHST distributions.

To the best of our knowledge, Hainaut and Devolder21 were the first to apply
a-stable subordinators (infinite-activity, strictly positive, Lévy processes) to model
mortality hazard rates. However, in the Lee-Carter model, the first difference of mortality
indices may be negative, to reflect mortality improvements. Giacometti et al.22 consider
both the error distributions of the Lee-Carter model and its mortality index, using the
NIG distribution, to model mortality for different age groups. They observe that the NIG
distributional assumption for the residuals of the Lee-Carter model is better than the
Gaussian one for some age groups. Therefore, in line with their work, this study
incorporates the normal, t, JD, NIG, VG and GHST distributions into the original Lee-
Carter model, in an attempt to fit and forecast mortality rates. We rely on mortality data
from six countries—Finland, France, the Netherlands, Sweden, Switzerland and the
United States—from 1900 to 2007. We fit the model to mortality rates from 1900 to 1999
using the normal, t, JD, VG, NIG, and GHST distributions, then forecast the develop-
ment of the mortality curve for the subsequent eight years. According to the Jarque–Bera
(JB) test statistics, we must largely reject the assumptions of normality for the residuals of
the Lee-Carter model and the mortality indices. The results of the Kolmogorov–Smirnov
(KS), Anderson–Darling (AD) and Cramér–von-Mises (CvM) tests provide powerful
evidence to support the rationality of using heavy-tailed distributions for the residuals of
the Lee-Carter model and the first difference of mortality indices. Finally, according to the
mean absolute percentage errors (MAPE) in the mortality projection, our empirical results
indicate that the GHST distribution is the most appropriate choice for modelling long-
term mortality indices for most countries.

The remainder of this paper is organised as follows. In the next section, we illustrate
the Lee-Carter model with t, JD, VG, NIG and GHST innovations, as well as provide
the dynamics of the mortality indices. The subsequent section empirically tests the
goodness of fit of the stochastic mortality models with normal, t, JD, VG, NIG, and
GHST distributions; it also offers mortality projections. The last section draws some
conclusions about our findings.

The Lee-Carter model with heavy-tailed innovations

In this section, we first review the classical Lee-Carter model, under which the
mortality index follows an ARIMA model with normal innovations. Using the
mortality data of six countries, we find that all the residuals of the Lee-Carter model
and the mortality indices exhibit non-zero skewness and excess kurtosis. Therefore, we
use the Lee-Carter model with five non-Gaussian distributions—t, JD, VG, NIG and
GHST—to model both the residuals and the dynamics of the mortality indices.

19 Demarta and McNeil (2005).
20 Aas and Haff (2006).
21 Hainaut and Devolder (2008).
22 Giacometti et al. (2009).
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The Lee-Carter model

We analyse the changes in mortality as a function of both age x and time t. The
mortality forecast relies on the classical Lee-Carter model, namely,

lnðmx;tÞ ¼ ax þ bxkt þ ex;t; ð1Þ

where mx, t is the central death rate for age x in calendar year t, defined as the span
from time t to time tþ 1. This structure is designed to capture age–period effects; ax
describes the average pattern of mortality for the age group; bx represents the age-
specific patterns of mortality change, indicating the sensitivity of the logarithm of the
force of mortality at age x to variations in the time index kt; kt explains the time trend
of the general mortality level; and ex, t represents the deviation of the model from the
observed log-central death rates, which should be a normal distribution with zero
mean and a relatively small variance.23

We use approximation to fit the three parameters. According to two constraint
conditions,

P
tkt¼0 and

P
xbx¼1, âx is simply the average value over time of ln(mx, t),

and k̂t is the sum over various ages of ln(mx, t)�âx. Using ln(mx, t)�âx as the dependent
variable and k̂t as the explanatory variable, we can obtain b̂x by using a simple
regression model without an intercept parameter. Finally, we re-estimate the k̂t by
iteration, using actual number of deaths, population, âx and b̂x, such that the actual
number of deaths is close to the estimated number of deaths, and the adjusted k̂t is
denoted as k̂t

*.
To forecast future mortality dynamics, Lee and Carter24 assume that ax and bx

remain constant over time and therefore forecast the dynamics of adjusting the
mortality index kt

* using an ARIMA(0,1,0) model, as follows:

k�t � k�t�1 ¼ gþ et; ð2Þ

where g is a drift term, and et is a sequence of independent and identically Gaussian
random variables with mean 0 and variance s2.

Normality tests for the residuals and mortality indices

In this subsection, we apply the JB25 test to determine empirically the normality of the
mortality data of six countries (Finland, France, Netherlands, Sweden, Switzerland,
U.S.) from 1900 to 2007. The mortality data for the first five countries come from the
Human Mortality Database website,26 whereas the U.S. data come from the National
Center Health Statistics website.27

23 Lee (2000).
24 Lee and Carter (1992).
25 Jarque and Bera (1980).
26 www.mortality.org/.
27 www.cdc.gov/nchs/nvss/mortality_tables.htm. Death rate files: HIST290 and GMWK290R. Death files:

HIST290A and GMWK23F.
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First, we examine the normality test for the residuals in Eq. (1). Figure 1 depicts the
probability density function of the standardised residuals. Clearly, the empirical
residuals peak around the mean and fatter tails; that is, the residuals are non-normally
distributed. Second, Figure 2 reveals the patterns of mortality indices, offering
evidence of mortality improvements. We also find a lot of jump points. Chen and
Cox12 attribute jump points in the U.S. mortality rate to influenza epidemics, and
argue against the naı̈ve belief that a pandemic is a one-time event that cannot happen
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Figure 1. The probability density functions of standardised residuals.
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again. We thus cannot just ignore such extreme events. In addition, as we show in
Figure 3, the probability density functions of the first differences in the mortality
indices exhibit higher central peaks and larger tails than does a normal distribution.
Therefore, we can fit the mortality indices to the non-Gaussian distributions.
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Figure 2. The pattern of mortality indices.
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To examine the assumption of normality of mortality rates in the Lee-Carter model,
we also use the JB test statistic, a goodness-of-fit measure of the departure from
normality:

JB ¼ n
s2

6
þ k� 3ð Þ2

24

" #
; ð3Þ
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Figure 3. The probability density functions of the first difference in mortality indices.
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where n is the sample size, s is sample skewness and k is sample kurtosis. Table 1
provides the results of the JB test, together with the skewness and excess kurtosis
values, for the residual of the Lee-Carter model and the first difference of the six
countries’ mortality indices from 1900 to 1999. The skewness is significantly different
from zero, and the excess kurtosis is large. The JB statistics also are significantly large,
which means we must reject the assumption of normality. In turn, we use the heavy-
tailed distributions—t, JD, VG, NIG and GHST—to model the non-Gaussian
property of the error terms in Eqs. (1) and (2).

The Lee-Carter model with non-Gaussian distributions

Because the residuals of the Lee-Carter model and the mortality indices are non-
normally distributed, we model the error terms, ex, t and et, using the five heavy-tailed
distributions: t, JD, VG, NIG and GHST.

If a random variable X adheres to a JD distribution, then

X ¼ aþ szþ
XN
i¼1

Yi; ð4Þ

where N follows the Poisson distribution with intensity l; z is a standard normal
random variable; and each Yi, independent of z and N, is a normal distribution

Table 1 Skewness, excess Kurtosis and the Jarque–Bera test

Country Finland France Netherlands Sweden Switzerland U.S.

Panel A: The residuals of the Lee-Carter modela

Skewness 0.394 0.950 �0.298 �0.100 0.273 0.444

(0.053) (0.053) (0.053) (0.053) (0.053) (0.074)

Excess Kurtosis 6.813 7.168 6.058 3.071 4.925 4.018

(0.107) (0.107) (0.107) (0.107) (0.107) (0.148)

JB test 4,116 4,811 3,242 829 2,148 776

[o0.001] [o0.001] [o0.001] [o0.001] [o0.001] [o0.001]

Panel B: The first difference in mortality indicesb

Skewness 0.665 0.441 �2.525 0.470 0.827 �0.661
(0.246) (0.246) (0.246) (0.246) (0.246) (0.246)

Excess Kurtosis 4.439 5.339 18.396 4.601 11.446 13.476

(0.492) (0.492) (0.492) (0.492) (0.492) (0.492)

JB Test 89 121 1,501 91 552 756

[o0.001] [o0.001] [o0.001] [o0.001] [o0.001] [o0.001]

aThe panel presents the skewness and excess kurtosis of the standardised residuals of the Lee-Carter model.

Standard errors of the skewness and excess kurtosis given in the parentheses are calculated as
ffiffiffiffiffiffiffiffi
6=n

p
andffiffiffiffiffiffiffiffiffiffi

24=n
p

, respectively. n denotes the number of observations. The p-values of Jarque–Bera (JB) test are given

in brackets.
bThe panel presents the skewness and excess kurtosis of the first difference in mortality indices. Standard errors

of the skewness and excess kurtosis given in the parentheses are calculated as
ffiffiffiffiffiffiffiffi
6=n

p
and

ffiffiffiffiffiffiffiffiffiffi
24=n

p
, respectively. n

denotes the number of observations. The p-values of Jarque–Bera (JB) test are given in brackets.
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with mean m and variance d2. Therefore, the probability density function takes the
form:

fJDðxja; s; l; m; dÞ ¼
X1
n¼0

FðaþNm; s2 þNd2 N ¼ nj ÞProbðN ¼ nÞ;

¼
X1
n¼0

lne�l

n!
Fðaþ nm; s2 þ nd2Þ;

ð5Þ

where F(m, s2) is a normal probability density function with mean ~m and variance ~s2.
The t, VG, NIG and GHST distributions are the special cases of the generalised

hyperbolic (GH) model proposed by Barndorff-Nielsen28 and offer flexible tools for
modelling the empirical distribution of financial data that exhibit skewness,
leptokurtosis and fat tails.29 The generalised hyperbolic probability density function is

fGH xja; b; d; g; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
a2�b2
p

d

� �g

ffiffiffiffiffiffi
2p
p

Kg d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q� �� � eb x�yð Þ
Kg�1

2
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� yð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2þ x�yð Þ2
p

a

� �1
2�g

; ð6Þ

where Kg is the modified Bessel function of the second kind with index g; d is the scale
parameter; y is the shift parameter; and g, a and b determine the shape of the GH
distribution. The parameters must fulfil the following constraints:

dX; a4 bj j if g40:

d40; a4 bj j if g ¼ 0:

d40; aX bj j if go0:

ð7Þ

When g¼�0.5, realising that K1=2ðxÞ ¼
ffiffiffiffiffiffiffiffi
p=2

p
x�1=2e�x and K�g(x)¼Kg(x), we obtain

the NIG distribution with the following density function:

fNIG xja; b; d; yð Þ ¼ ad
p
exp d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
þ bðx� yÞ

� �K1 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx� yÞ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx� yÞ2

q ð8Þ

This distribution is one of the most promising versions of the GH distribution for
asset returns, because it possesses several attractive theoretical properties and

28 Barndorff-Nielsen (1977, 1978).
29 In the empirical analyses, we also use the GH distribution to fit the mortality data of our six countries.

However, the calibration results of the GH distribution always reduce to those of the GHST distribution,

so we focus on this special case instead of the broader GH distribution.
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analytical tractability. It therefore appears frequently in financial applications as an
unconditional return distribution13 and for stochastic mortality modelling.22

If we let d¼0 in Eq. (6), we can obtain the VG distribution, with the following
density function:

fVGðxja; b; g; yÞ ¼
ða2 � b2Þg x� yj jg�0:5Kg�0:5ða x� yj jÞffiffiffi

p
p
ð2aÞg�0:5GðgÞ

expðbðx� yÞÞ: ð9Þ

Note that when a¼(GþM)/2, b¼(G�M)/2 and g¼C, we obtain the VG distribution,
which is a special case of the CGMY distribution defined by Carr et al.30

If instead we let l¼�v/2 and a-|b| in Eq. (6), and we realise that
Kl(x)BG(l)2l�1x�l as x-0, we can obtain the density of the GH skew Student’s
t-distribution (GHST), proposed by Aas and Haff,20 as follows:

fGHSTðxjb; v; d; yÞ ¼
dv bj j

vþ1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx� yÞ2

q� ��vþ1
2

ebðx�yÞ

ffiffiffi
p
p

2
v�1
2 Gðv=2Þ

Kvþ1
2

bj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx� yÞ2

q� �
:

ð10Þ

Similarly, letting d ¼
ffiffiffi
v
p

and a¼b¼0 in Eq. (10), we obtain the Student’s
t-distribution with v degrees of freedom. Therefore, the GHST distribution is one of
the skew extensions of Student’s t-distribution.

For mortality data at age x¼1,y, g and time period t¼1,y,T, the calibrated
parameters of the Lee-Carter model can be obtained by maximising the sample log-
likelihood function (LLF),

LLF ¼
Xg
x¼1

XT
t¼1

lnðfðextjYÞÞ; ð11Þ

with respect to Y, which satisfies two constraint conditions,
P

tkt¼0 and
P

xbx¼1.31
As suggested by Lee and Carter,24 we re-estimate the kt factors by iteration, given the
values of ax and bx we obtained in the maximum likelihood estimation, such that the
implied number of deaths equals the actual number of deaths, or

Dt ¼
X
x

Nx;t expðax þ bxktÞ; t ¼ 1; :::;T; ð12Þ

30 Carr et al. (2002).
31 Let a¼�lm in the JD model and y ¼ �bdKlþ1ðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
Klðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
ÞÞ in the special

cases of the GH model. Thus, we ensure that the mean of error terms equals 0.
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where Dt is the total number of deaths in year t, and Nx, t is the total population of age
group x at time t. Using the re-estimated mortality indices, we can calculate the
parameters of Eq. (2) by maximising LLF, as follows:

XT
t¼1

lnðfðetÞÞ: ð13Þ

Empirical analysis

In this section, we illustrate the mortality data and investigate the goodness-of-fit
distributions for the residuals of the Lee-Carter model and the first difference of
mortality indices. Using the mortality data from 1900 to 1999, we first fit the residuals
of the Lee-Carter model with our six distributions: normal, t, JD, VG, NIG and
GHST. We then fit the first difference of kt from the best goodness-of-fit model,
according to the Bayesian information criterion (BIC), to the same six distributions
and project the subsequent eight-year mortality rates.

Model comparison

For the sake of comparison, we use the LLF, Akaike information criterion (AIC),32

BIC,33 KS test,34 AD test,35 and CvM test36 as goodness-of-fit measures. The AIC is
defined as

AIC ¼ �LLFþNPS; ð14Þ

where NPS is the effective number of parameters being estimated. The BIC is
defined as

BIC ¼ �LLFþ 0:5�NPS� logðNOSÞ; ð15Þ

where NOS is the number of observations. For these criteria, a higher value of LLF
and a smaller value of AIC and BIC indicate a better goodness of fit for the mortality
model.

For the KS test, the null hypothesis isH0:G(x)¼F(x;Y) for all sample data x and the
parameters Y of the distribution, where G(x) represents the empirical distribution

32 Akaike (1974).
33 Schwarz (1978).
34 Kolmogorov (1933).
35 Stephens (1974).
36 Anderson (1962).
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function of the sample mortality index and F(x;Y) is the hypothesised cumulative
density distribution (CDF). The test statistic is defined as

KS ¼ sup
xf g

Fðx;YÞ � GðxÞj j: ð16Þ

Thus a higher p-value in the KS test means a better goodness of fit for the mortality
model.

The AD test is a modification of the KS test, which also determines whether a
sample of data comes from a specific distribution. However, unlike the KS test, the
AD test focuses on the weight of the tail. Its null hypothesis is that the data follow a
specific distribution. The AD test statistic is defined as

AD2 ¼ �NOS� S; ð17Þ

where

S ¼
XNOS

i¼1

ð2i� 1Þ
NOS

lnFðyi;YÞ þ lnð1� FðyNOSþ1�i;YÞÞ½ �; ð18Þ

F is a cumulative distribution function of the specified distribution; and yi are the
observed values in increasing order. A lower value of the test statistic indicates a
higher possibility that the mortality data come from the distribution F.

The CvM test, an alternative to the KS test, is a criterion used to judge the goodness
of fit of a probability distribution, compared with a given empirical distribution
function. The test statistic CvM is defined as

CvM ¼ 1

12NOS
þ
XNOS

i¼1

2i� 1

2NOS
� Fðyi;YÞ

� �2
: ð19Þ

A lower value of this test statistic indicates a higher possibility that the mortality data
come from the distribution F. Each test offers some benefits. That is, the KS test is
known for the independence of its critical values from the tested distribution.
Compared with the KS test, the main advantage of the AD test is that it assigns more
weight to the tails of the distribution. Similarly, the CvM test incorporates information
about the total sample and is insensitive to a slight dislocation of the empirical CDF.
However, a major disadvantage of the CvM and AD tests is that the critical values
depend on the analysed distribution.37

37 We obtain the critical values through a Monte Carlo simulation with the estimated parameters (see

Chernobai et al., 2007, p. 219).
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Table 2 Goodness-of-fit measures for the residuals of the Lee-Carter model

Model LLF AIC BIC LLF rank AIC rank BIC rank

Panel A: The Finland mortality data

Normal 789.78 �646.78 �242.82 6 6 6

t 1,088.73 �944.72 �537.95 4 4 3

JD 1,094.23 �948.23 �535.80 3 3 4

VG 1,073.33 �928.33 �518.73 5 5 5

NIG 1,105.54 �960.54 �550.94 1 1 1

GHST 1,097.20 �952.20 �542.59 2 2 2

Panel B: The France mortality data

Normal 826.85 �683.85 �279.90 6 6 6

t 1,279.79 �1,135.79 �729.02 4 4 4

JD 1,344.31 �1,198.31 �785.88 1 1 1

VG 1,277.39 �1,132.39 �722.78 5 5 5

NIG 1,336.77 �1,191.77 �782.17 2 2 2

GHST 1,296.69 �1,151.69 �742.08 3 3 3

Panel C: The Netherlands mortality data

Normal 1,878.08 �1,735.08 �1,331.13 6 6 6

t 2,094.57 �1,950.57 �1,543.79 5 5 4

JD 2,103.27 �1,957.27 �1,544.84 2 3 3

VG 2,102.66 �1,957.66 �1,548.06 3 2 2

NIG 2,118.45 �1,973.45 �1,563.85 1 1 1

GHST 2,095.81 �1,950.81 �1,541.21 4 4 5

Panel D: The Sweden mortality data

Normal 1,856.17 �1,713.17 �1,309.21 6 6 6

t 1,918.32 �1,774.32 �1,367.54 5 5 2

JD 1,920.62 �1,774.64 �1,362.22 2 4 5

VG 1,922.51 �1,777.51 �1,367.91 1 1 1

NIG 1,919.66 �1,774.66 �1,365.06 4 3 4

GHST 1,920.00 �1,775.00 �1,365.40 3 2 3

Panel E: The Switzerland mortality data

Normal 1,612.69 �1,469.69 �1,065.74 6 6 6

t 1,806.21 �1,662.21 �1,255.43 5 4 4

JD 1,815.79 �1,669.79 �1,257.36 3 3 3

VG 1,826.48 �1,681.48 �1,271.88 2 2 2

NIG 1,843.55 �1,698.55 �1,288.95 1 1 1

GHST 1,806.74 �1,661.74 �1,252.14 4 5 5

Panel F: The U.S. mortality data

Normal 1,199.95 �1,074.95 �756.82 6 6 6

t 1,273.77 �1,147.77 �827.09 4 3 1

JD 1,277.47 �1,149.47 �823.71 1 1 4

VG 1,271.16 �1,144.16 �820.94 5 5 5

NIG 1,274.83 �1,147.83 �824.61 2 2 2

GHST 1,274.19 �1,147.19 �823.97 3 4 3
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In-sample goodness of fit

Using mortality data from Finland, France, the Netherlands, Sweden, Switzerland and
the United States, Table 2 provides the LLF, AIC and BIC results, together with their
corresponding ranks. All three criteria indicate that the normal distribution is the
worst model for all our mortality data. However, the JD model is the best model for
the French mortality data; the NIG model is the best for the mortality data of Finland,
the Netherlands and Switzerland; and the VG model is the best option for Sweden.
For the U.S. mortality data, the JD model offers the best fit according to the LLF and
AIC values, but the t model is the best according to the BIC.

In Table 3 we report the results for the KS, AD and CvM tests, together with their
critical values for all six countries. For each country, the three test statistics are greater

Table 3 Goodness-of-fit tests for the residuals of the Lee-Carter model

Model KS AD CvM

Statistic Critical value Statistic Critical value Statistic Critical value

5% 1% 5% 1% 5% 1%

Panel A: The Finland mortality data

Normal 0.061** 0.029 0.035 21.681** 2.443 3.914 3.365** 0.458 0.746

t 0.031* 0.029 0.035 2.624* 2.486 3.868 0.423 0.463 0.737

JD 0.024 0.029 0.035 1.769 2.491 3.799 0.252 0.452 0.716

VG 0.022 0.029 0.035 1.352 2.473 3.909 0.190 0.466 0.747

NIG 0.016 0.030 0.035 1.028 2.516 3.906 0.104 0.464 0.753

GHST 0.024 0.029 0.036 1.590 2.494 4.098 0.188 0.457 0.786

Panel B: The France mortality data

Normal 0.094** 0.029 0.035 35.657** 2.443 3.914 5.671** 0.458 0.746

t 0.041** 0.029 0.035 7.765** 2.516 3.829 0.970** 0.463 0.724

JD 0.021 0.029 0.035 1.329 2.465 3.780 0.176 0.456 0.716

VG 0.040** 0.029 0.036 4.513** 2.467 3.852 0.462* 0.459 0.727

NIG 0.026 0.029 0.035 2.420 2.511 3.951 0.275 0.461 0.754

GHST 0.031* 0.029 0.035 4.020* 2.511 4.026 0.425 0.456 0.772

Panel C: The Netherlands mortality data

Normal 0.062** 0.029 0.035 18.743** 2.443 3.914 3.118** 0.458 0.746

t 0.023 0.029 0.035 1.705 2.533 3.807 0.210 0.466 0.726

JD 0.018 0.029 0.035 0.858 2.473 3.762 0.130 0.458 0.710

VG 0.024 0.029 0.035 2.336 2.448 3.742 0.272 0.454 0.727

NIG 0.013 0.030 0.035 0.335 2.547 3.899 0.038 0.470 0.741

GHST 0.019 0.029 0.035 1.692 2.483 3.897 0.194 0.460 0.758

Panel D: The Sweden mortality data

Normal 0.031* 0.029 0.035 3.721* 2.443 3.914 0.590* 0.458 0.746

t 0.015 0.029 0.035 0.571 2.488 3.881 0.084 0.466 0.751

JD 0.014 0.029 0.035 0.429 2.472 3.857 0.060 0.452 0.736

VG 0.024 0.029 0.035 1.805 2.477 3.909 0.282 0.466 0.747

NIG 0.014 0.029 0.035 0.379 2.495 3.893 0.047 0.461 0.740

GHST 0.013 0.029 0.035 0.370 2.488 3.879 0.043 0.468 0.732
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than the 5 per cent critical value, so the empirical distribution of the residuals does not
follow a normal distribution. For the Netherlands and Sweden, no test results reject
the null hypothesis that the residuals come from non-Gaussian distributions. In
addition, except for the U.S. mortality data, the results of the three tests support the
null hypothesis that the residuals come from the best BIC models. For the U.S.
mortality data though, the KS statistic rejects the t model, which is the best model
according to the BIC, at a 1 per cent significance level. Thus the difference between the
theoretical and empirical CDF appears significant. However, if we ignore the
dislocation of the empirical CDF, the t model offers better goodness of fit for the U.S.
residuals, from the standpoint of the AD and CvM tests. Because the AD and CvM
test results do not reject the claim that the error terms in Eq. (1) come from the best
models, according to the BIC, we use the mortality indices obtained from the best BIC
model to investigate the pattern of innovations in Eq. (2).

Table 4 contains the results for the LLF, AIC and BIC and their corresponding
ranks in terms of the normal, t, JD, VG, NIG, and GHST distributions for the first
difference of mortality indices. The Gaussian model is the worst, according to the
LLF, AIC and BIC. The LLF criterion also indicates that the best goodness of fit
derives from the NIG model for the Netherlands but from the JD model for the five
other countries. Because it introduces a penalty term for the effective number of
parameters, the best in-sample goodness of fit changes for the t distribution, except for
France and the Netherlands. According to the BIC, the NIG model again is the best fit
for the Netherlands, the JD model is the best for France and the tmodel is the best one
for Finland, Sweden, Switzerland and the United States. Table 5 lists the results for the
KS, AD and CvM tests, together with their critical values, pertaining to the error

Table 3 (continued )

Model KS AD CvM

Statistic Critical value Statistic Critical value Statistic Critical value

5% 1% 5% 1% 5% 1%

Panel E: The Switzerland mortality data

Normal 0.058** 0.029 0.035 17.921** 2.443 3.914 3.033** 0.458 0.746

t 0.025 0.029 0.035 2.720* 2.470 3.948 0.327 0.460 0.742

JD 0.027 0.029 0.035 2.621* 2.483 3.714 0.421 0.454 0.719

VG 0.016 0.029 0.035 0.865 2.456 3.805 0.108 0.454 0.730

NIG 0.017 0.030 0.036 0.699 2.579 3.978 0.081 0.473 0.756

GHST 0.025 0.029 0.035 2.677* 2.514 3.885 0.323 0.464 0.746

Panel F: The U.S. mortality data

Normal 0.050** 0.039 0.046 7.501** 2.491 3.902 1.229** 0.464 0.748

t 0.047** 0.039 0.047 1.711 2.551 4.045 0.296 0.473 0.763

JD 0.047** 0.039 0.047 1.346 2.459 3.933 0.234 0.461 0.757

VG 0.038 0.039 0.046 2.291 2.488 3.880 0.361 0.460 0.745

NIG 0.038 0.039 0.046 1.430 2.479 4.001 0.246 0.455 0.756

GHST 0.039* 0.039 0.046 1.523 2.541 3.868 0.249 0.474 0.744

* and ** denote significance at the 5% and 1% level, respectively.
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Table 4 Goodness-of-fit tests for the first difference in mortality indices

Model LLF AIC BIC LLF rank AIC rank BIC rank

Panel A: The Finland mortality index

Normal �208.78 210.78 213.38 6 6 6

t �195.83 198.83 202.72 4 2 1

JD �192.28 197.28 203.77 1 1 2

VG �197.68 201.68 206.87 5 5 5

NIG �195.34 199.34 204.53 2 3 3

GHST �195.63 199.63 204.82 3 4 4

Panel B: The France mortality index

Normal �222.77 224.77 227.36 6 6 6

t �204.48 207.48 211.38 4 4 3

JD �195.99 200.99 207.48 1 1 1

VG �204.51 208.51 213.70 5 5 5

NIG �198.66 202.66 207.85 2 2 2

GHST �202.81 206.81 212.01 3 3 4

Panel C: The Netherlands mortality index

Normal �209.29 211.29 213.88 6 6 6

t �184.02 187.02 190.91 5 5 3

JD �181.28 186.28 192.77 2 4 5

VG �181.98 185.98 191.17 4 3 4

NIG �179.93 183.93 189.12 1 1 1

GHST �181.40 185.40 190.59 3 2 2

Panel D: The Sweden mortality index

Normal �183.24 185.24 187.84 6 6 6

t �175.64 178.64 182.53 3 1 1

JD �174.79 179.79 186.28 1 4 5

VG �176.59 180.59 185.78 5 5 4

NIG �175.65 179.65 184.84 4 3 3

GHST �175.49 179.49 184.68 2 2 2

Panel E: The Switzerland mortality index

Normal �168.78 170.78 173.37 6 6 6

t �150.54 153.54 157.43 3 2 1

JD �147.09 152.09 158.58 1 1 2

VG �153.58 157.58 162.77 5 5 5

NIG �151.70 155.70 160.89 4 4 4

GHST �150.37 154.37 159.56 2 3 3

Panel F: The U.S. mortality index

Normal �92.74 94.74 97.34 6 6 6

t �69.39 72.39 76.28 3 2 1

JD �65.90 70.90 77.38 1 1 2

VG �70.89 74.89 80.08 5 5 5

NIG �70.73 74.73 79.92 4 4 4

GHST �69.35 73.35 78.54 2 3 3
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Table 5 Goodness-of-fit tests for the first difference in mortality indices

Model KS AD CvM

Statistic Critical value Statistic Critical value Statistic Critical value

5% 1% 5% 1% 5% 1%

Panel A: The Finland mortality index

Normal 0.122 0.130 0.158 2.351 2.477 3.933 0.329 0.461 0.737

t 0.052 0.131 0.158 0.364 2.502 3.944 0.043 0.462 0.746

JD 0.053 0.130 0.159 0.218 2.529 3.941 0.037 0.457 0.753

VG 0.063 0.130 0.159 0.555 2.481 3.994 0.068 0.465 0.769

NIG 0.053 0.130 0.158 0.355 2.470 3.700 0.051 0.457 0.707

GHST 0.054 0.131 0.157 0.313 2.509 3.923 0.038 0.459 0.728

Panel B: The France mortality index

Normal 0.156* 0.130 0.158 4.333** 2.477 3.933 0.720* 0.461 0.737

t 0.104 0.131 0.158 1.438 2.476 3.932 0.233 0.458 0.735

JD 0.065 0.131 0.158 0.411 2.513 3.980 0.077 0.459 0.762

VG 0.106 0.131 0.158 1.275 2.532 3.961 0.224 0.469 0.768

NIG 0.064 0.130 0.157 0.458 2.484 3.845 0.073 0.457 0.724

GHST 0.077 0.131 0.157 0.754 2.509 3.923 0.093 0.459 0.728

Panel C: The Netherlands mortality index

Normal 0.144* 0.130 0.158 4.236** 2.477 3.933 0.720* 0.461 0.737

t 0.092 0.131 0.157 1.226 2.509 3.887 0.206 0.464 0.735

JD 0.069 0.131 0.159 0.361 2.551 3.899 0.070 0.469 0.760

VG 0.064 0.131 0.157 0.640 2.480 3.881 0.077 0.455 0.744

NIG 0.052 0.131 0.157 0.218 2.481 3.884 0.027 0.459 0.749

GHST 0.058 0.130 0.156 0.348 2.508 3.825 0.046 0.456 0.728

Panel D: The Sweden mortality index

Normal 0.093 0.130 0.158 1.192 2.477 3.933 0.164 0.461 0.737

t 0.054 0.131 0.158 0.289 2.503 3.944 0.036 0.462 0.746

JD 0.062 0.131 0.158 0.215 2.493 3.935 0.034 0.469 0.739

VG 0.058 0.131 0.160 0.302 2.500 3.893 0.041 0.469 0.758

NIG 0.058 0.130 0.156 0.254 2.487 3.916 0.038 0.454 0.726

GHST 0.054 0.131 0.157 0.238 2.509 3.924 0.034 0.459 0.728

Panel E: The Switzerland mortality index

Normal 0.104 0.130 0.158 2.244 2.477 3.933 0.310 0.461 0.737

t 0.060 0.131 0.157 0.345 2.511 3.887 0.052 0.467 0.735

JD 0.063 0.130 0.158 0.243 2.515 3.902 0.047 0.464 0.746

VG 0.066 0.131 0.157 0.552 2.521 3.940 0.073 0.465 0.761

NIG 0.064 0.131 0.157 0.411 2.443 3.830 0.061 0.457 0.733

GHST 0.061 0.130 0.156 0.323 2.507 3.825 0.055 0.456 0.728

Panel F: The U.S. mortality index

Normal 0.140* 0.130 0.158 3.123* 2.477 3.933 0.456 0.461 0.737

t 0.077 0.131 0.157 0.508 2.508 3.887 0.083 0.466 0.733

JD 0.094 0.130 0.158 0.484 2.510 4.052 0.098 0.461 0.757

VG 0.109 0.132 0.159 0.926 2.552 4.004 0.136 0.474 0.767

NIG 0.076 0.130 0.157 0.546 2.477 3.867 0.076 0.460 0.743

GHST 0.076 0.130 0.156 0.493 2.507 3.824 0.081 0.456 0.728

* and ** denote significance at the 5% and 1% level, respectively.
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terms of the mortality indices. The results reject the notion that the error terms of the
mortality indices for France, the Netherlands and the United States come from a
normal distribution. All three test results confirm that the error terms of the mortality
indices come from non-Gaussian distributions. Therefore, the goodness-of-fit tests
consistently indicate that non-Gaussian distributions provide better in-sample
goodness-of-fit for the error terms of the mortality indices.

Mortality projection

For out-of-sample performance, we apply the parameters estimated from 1900 to 1999
and obtain the mortality projection with 1,000,000 simulation paths. For each path,
we can calculate MAPE as follows:

MAPE ¼ 100%� 1

n

Xn
i¼1

Ai � Fi

Ai

����
����; ð20Þ

where Ai is the historical mortality rate and Fi is the forecast mortality rate. When we
apply the calibrated parameters of the Lee-Carter model with the best BIC goodness-
of-fit innovations, we find the impacts on different distributions of the mortality
projection for the mean, 90th percentile, and 95th percentile of MAPE from 2000 to
2007, as we show in Table 6. Lower values indicate better predictive power for the

Table 6 Percentile of MAPE of mortality projection

Model Mean 90% 95% Mean rank 90% rank 95% rank Average rank

Panel A: The Finland mortality data (Unit: %)

NIG–Normal 8.273 10.406 11.132 2 6 6 4.67

NIG–t 8.356 10.270 11.016 6 5 4 5.00

NIG–JD 8.301 10.195 11.047 5 2 5 4.00

NIG–VG 8.259 10.240 10.987 1 4 2 2.33

NIG–NIG 8.282 10.226 11.011 3 3 3 3.00

NIG–GHST 8.284 10.085 10.755 4 1 1 2.00

Panel B: The France mortality data (Unit: %)

JD–Normal 4.866 6.797 7.833 6 4 4 4.67

JD–t 4.772 6.562 7.692 2 2 3 2.33

JD–JD 4.862 6.893 8.359 5 6 5 5.33

JD–VG 4.789 6.579 7.644 3 3 2 2.67

JD–NIG 4.853 6.858 8.435 4 5 6 5.00

JD–GHST 4.475 5.808 6.655 1 1 1 1.00

Panel C: The Netherlands mortality data (Unit: %)

NIG–Normal 3.696 5.289 6.116 6 4 3 4.33

NIG–t 3.548 5.003 5.926 3 2 2 2.33

NIG–JD 3.588 5.334 6.573 4 5 6 5.00

NIG–VG 3.641 5.355 6.511 5 6 5 5.33

NIG–NIG 3.516 5.041 6.199 2 3 4 3.00

NIG–GHST 3.227 4.253 4.938 1 1 1 1.00
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fitted distribution. According to the average rank of the MAPE criterion, the normal
distribution provides poor mortality projection performance; the t and its skew
extension GHST provide the best mortality projection for all mortality data. Thus, the
Lee-Carter model with non-Gaussian distributions provides a better mortality
projection than that obtained from a normal distribution, in terms of the MAPE
criterion.

Conclusions

Recently, many researchers have examined mortality rates and explored different
models. Some studies demonstrate that mortality rate improvements also exhibit jump
properties. We therefore attempt to incorporate five heavy-tailed distributions—t, JD,
VG, NIG and GHST—into the Lee-Carter model. Using mortality data from six
countries, we apply the BIC and KS, AD, and CvM tests and find consistent support
for the non-Gaussian residuals of the Lee-Carter model. Specifically, when we
calibrate the parameters of the Lee-Carter model, the JD–JD model38 is the best one
for French mortality data, the NIG–NIG model is best for the Netherlands, the VG–t

Table 6 (continued )

Model Mean 90% 95% Mean rank 90% rank 95% rank Average rank

Panel D: The Sweden mortality data (Unit: %)

VG-Normal 8.020 9.853 10.446 4 6 4 4.67

VG–t 7.922 9.617 10.251 1 1 1 1.00

VG–JD 8.024 9.829 10.574 6 5 6 5.67

VG–VG 8.015 9.780 10.419 3 3 2 2.67

VG–NIG 8.020 9.789 10.473 5 4 5 4.67

VG–GHST 8.013 9.731 10.419 2 2 3 2.33

Panel E: The Switzerland mortality data (Unit: %)

NIG–Normal 3.816 4.798 5.321 5 6 5 5.33

NIG–t 3.783 4.652 5.187 4 4 4 4.00

NIG–JD 3.817 4.656 5.341 6 5 6 5.67

NIG–VG 3.763 4.601 5.046 2 2 2 2.00

NIG–NIG 3.765 4.616 5.107 3 3 3 3.00

NIG–GHST 3.741 4.542 5.012 1 1 1 1.00

Panel F: The U.S. mortality data (Unit: %)

t–Normal 3.266 4.247 4.676 6 6 6 6.00

t–t 3.191 3.971 4.357 2 2 2 2.00

t–JD 3.244 4.039 4.668 4 3 5 4.00

t–VG 3.265 4.118 4.548 5 5 4 4.67

t–NIG 3.228 4.047 4.457 3 4 3 3.33

t–GHST 3.180 3.943 4.314 1 1 1 1.00

Note: X-Y model means that the error terms in Eqs. (1) and (2) are the X and Y models, respectively.

38 The terminology “X-Y model” refers to the error terms in Eqs. (1) and (2), respectively.
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model offers the best goodness of fit for Swedish mortality data, the t–t model is best
for the U.S. mortality data, and the NIG–t model is the best one for the mortality data
from Finland and Switzerland. For forecasting mortality rates, we find that the
normal distribution provides weak mortality projection performance, whereas t and its
skew extension provide good mortality projections. Therefore, for applications of the
Lee-Carter model, the heavy-tailed distributions appear to be the most appropriate
choices for modelling long-term mortality data.
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