
 
 

Algorithmic Social Sciences Research Unit 
ASSRU 

 
 

Department of Economics 
University of Trento 

Via Inama 5 
381 22 Trento Italy 

 
 
 

Discussion Paper Series 
 

8 – 2011/II 
 
 
 

AGENT-BASED MODELLING OF THE EL FAROL 
BAR PROBLEM♠ 

 
Shu-Heng Chen & Umberto Gostoli 

 
 
 

July 2011 

                                                            
♠ Text of the talk given at the ASSRU/Department of Economics Seminar, University of 
Trento, 31 May, 2011. Professor Shu-Heng Chen is a Founding Honorary Associate of 
ASSRU. 



Agent-Based Modeling of the El Farol Bar Problem  
 

Shu-Heng Chen and Umberto Gostoli  
AI-ECON Research Center 
Department of Economics 

National Chengchi University 
Taipei, Taiwan 

chen.shuheng@gmail.com, u.gostoli@gmail.com 
 
 

In this paper, we study the self-coordination problem as demonstrated by the 
well-known El Farol problem (Arthur, 1994), which has later become what is known 
as the minority game in the econophysics community. While the El Farol problem or 
the minority game has been studied for almost two decades, existing studies are 
mostly only concerned with efficiency. The equality issue, however, has been largely 
neglected. In this paper, we build an agent-based model to study both efficiency and 
equality and ask whether a decentralized society can ever possibly self-coordinate a 
result with the highest efficiency while also maintaining the highest degree of equality. 
Our agent-based model shows the possibility of achieving this social optimum. The 
two key determinants to make this happen are social preferences and social networks.  
Hence, not only doe institutions (networks) matter, but individual characteristics 
(preferences) also matter. The latter are open to human-subject experiments for further 
examination. 
 
Keywords: El Farol Bar problem, Social Preferences, Social Networks,     
         Self-Organization, Emergence of Coordination. 
 
 
1. Introduction. 
 
The El Farol Bar problem, introduced by Arthur (1994), has over the years become 
the prototypical model of a system in which agents, competing for scarce resources,  
deductively adapt their belief-models (or hypotheses) to the aggregate environment 
that they jointly create. The numerous works that have analyzed and extended this 
problem along different lines show that perfect coordination, that is, the steady state 
where the aggregate bar’s attendance is always equal to the bar’s maximum capacity, 
is very hard, not to say impossible, to reach, at least under the common knowledge 
assumption (Fogel, Chellapilla, and Angeline (1999); Edmonds (1999); C. Atilgan, A. 



R. Atilgan and Demirel (2008), to name just a few). Works where this assumption has 
been relaxed, such as those that substituted best-response behavior with reinforcement 
learning, show that perfect coordination is possible and that it is, indeed, the long-run 
behavior to which the system asymptotically converges (Whitehead, 2008). However, 
it is an equilibrium characterized by complete segregation: the population is split into 
a group of agents who always go (filling the bar up to its capacity all the time) and a 
group of agents who always stay at home.  

In this paper, we pose the question whether a state of perfect coordination with 
perfect equality, that is, a state where the bar attendance is always equal to its capacity 
and all the agents go to the bar with the same frequency, can be reached and, if yes, 
under which conditions. We will refer to this special state as the socially optimal 
equilibrium, as we implicitly assume that, among all states in which the scarce 
resource is always exploited to the full, the aggregate utility is maximized by its 
egualitarian division among the agents. In fact, the equality, or fairness, of the 
outcomes in the El Farol Bar problem is an issue that has been largely neglected by 
the literature on the subject, with a paper by Farago, Greenwald and Hall (2002) being, 
to the best of our knowledge, the only exception. However, while this work considers 
the possibility of reaching a fair outcome through the imposition of a fee by a central 
planner, in the present paper we consider whether the efficient and fair outcome can 
emerge from the bottom up, through the process by which the agents’ strategies 
co-evolve and adapt. 
 Our main finding is that is possible to reach the socially optimal equilibrium, 
with the following being two sufficient conditions (although further work is required 
to assess their necessity). First, the agents need to make use, in their decision-making 
process, of local information. This means that we have to modify the original model 
by introducing social networks. However, our simulation shows that the social 
network structure matters: some networks allow the system to reach the socially 
optimal equilibrium more than others. Second, the agents need to have some kinds of 
social preferences: they need to care about their attendance frequency compared to 
their neighbors’ attendance frequencies.  

In the present work we adopt, as a first step, a relatively ‘strong’ social 
preferences hypothesis, according to which the agents have the tendency to attend the 
bar with the same frequency as their neighbors. In fact, the presence of social 
preferences, in our model, is implicit in the same concept of the socially optimal 
equilibrium: it is because the agents’ utility functions are maximized when their 
attendance frequencies are equal to each other so that we can define a state where 
perfect coordination is conjugated with perfect equality as being ‘socially optimal’. 
To better appreciate the effect of social preferences in the outcomes, we also consider 



a model with a social network but without social preferences. The results show that 
the presence of social networks is sufficient to allow the system to reach perfect 
coordination, although in this case equilibria with many different attendance 
frequency distributions can emerge.  
 The present paper is organized as follows. In Section 2, we will present a brief 
review of the literature. In Section 3 we will describe the model and then, in Section 4, 
we will present the simulations’ results. Finally, in Section 5 we will present the 
conclusions. 
 
2. Previous literature 

 
2.1 The seminal models. 

 
In the El Farol Bar problem, N people decide independently, without collusion or 
prior communication, whether to go to a bar. Going is enjoyable only if the bar is not 
crowded, otherwise the agents would prefer to stay home. The bar is crowded if more 
than B people show up, whereas it is not crowded, and thus enjoyable, if attendees are 
B or fewer. Arthur assumes that all the agents know the attendance figures in the past 
m periods and that each of them has a set of k predictors or hypotheses, in the form of 
functions that map the past t periods’ attendance figures into next week’s attendance. 
After each period, the predictors’ performance indexes are updated according to the 
accuracy with which the various predictors forecasted the bar’s attendance. Then, the 
agent selects the most accurate predictor and uses the relative forecast to decide 
whether to go to the bar or to stay at home during the next period. The characterizing 
feature of the El Farol Bar problem is that, in such a system, expectations will be 
forced to differ: if all believe few will go, all will go, whereas if all believe most will 
go, nobody will go, invalidating that belief. Although the competitive process among 
predictors never comes to rest, it still produces a remarkable statistical regularity: at 
the macro level, the number of attendees fluctuates around the threshold level B, 
while, at the micro level, each agent goes B/N percent of the times, in the long run. 
 Zambrano (2004) shows analytically how the method of inductive inference 
employed by the agents in Arthur’s computer simulation leads the empirical 
distribution of aggregate attendance to be like those distributions in the set of Nash 
equilibria of the game. Challet, Marsili and Ottino (2004), in analyzing the El Farol 
Bar problem with the tools of statistical physics, find that for small m, the relative 
variance of the fluctuations around the resource level, σ2/N (that in this, as in other 
econophysics papers, is taken as a measure of the coordination level), displays a 
maximum when the agents are endowed with a set of strategies that make them 



choose to go to the bar with a frequency equal to the resource level. This suggests that 
a small bias in the strategies’ prescriptions, of either sign, is beneficial as it decreases 
the fluctuations. They also find that the effect of the distribution of strategies becomes 
shallower as m increases and it disappears for m = 6. However, for large m, the 
average attendance does not converge to the resource level, so that there is an 
intermediate memory length which is optimal for the collective behavior that depends 
on the number of agents N. 
 Inspired by the El Farol Bar problem, Challet and Zhang (1997) proposed the 
Minority Game (MG). In the Minority Game there is a population of N (with N being 
an odd integer) players who have to choose an action (-1 or +1). In each period, the 
action chosen by the minority wins. The past m outcomes of the game are common 
knowledge. To choose their next-period state, players use one of their k strategies 
among a set of strategies drawn at random from the pool of all conceivable strategies, 
with each strategy being a lookup table assigning an action to any of the past winning 
actions’ configurations. Similar to the El Farol Bar problem, the agents, to make their 
choice, select their best-performing strategy: after each period, the agents assign a 
point to all strategies that succeeded in predicting the winning action (regardless of 
whether they were actually used or not) and zero to the others. The main difference 
between the two models, apart from the different threshold B (respectively 60 and 
50%), is that while in the former no explicit assumption is made regarding the number 
of agents N (it is set to 100 in Arthur’s model), in the MG it is explicitly assumed that 
N is an odd number, an assumption that, together with the 50% threshold, ensures that 
there is always a minority side. The simulations show that although the two actions 
are chosen, as one may expect, 50% of the times in the long run, the average 
fluctuations’ size around the average, a measure of the efficiency with which the 
system exploits the scarce resource, is inversely proportional to the size of the agents’ 
memory m, at least up to m ≈ 6. Moreover, simulations show that, contrary to what 
one may expect, increasing the number of strategies that the players are endowed with, 
in general, tends to decrease their performance.  
 In the same paper, Challet and Zhang introduce an ‘evolutionary’ version of the 
MG where the worst player is replaced by a new one after some time steps, with the 
new player being a clone of the best player. To keep some heterogeneity, a mutation 
process is introduced: one of the best player’s strategies is replaced by a new one, 
randomly drawn from the whole strategies’ space. The social learning that takes place 
in this evolutionary MG makes the average fluctuations’ size decrease over time. 
Moreover, if the memory size m is allowed to change through this evolutionary 
process, simulations show that an ‘arms race’ takes place among the players, with the 
memory size increasing up to a ‘saturation’ level that increases with the agents’ 



population size. 
 However, in spite of the many similarities, the two models differ on one 
fundamental point: whereas in the MG, as mentioned before, there is always a 
majority side that makes the wrong choice, in the El Farol Bar problem there is the 
possibility of exactly hitting the target B, a situation where all the agents, no matter 
what they decided, made the right choice. This difference makes the average 
aggregate payoff move in opposite directions as we increase the number of agents N: 
while in the MG the average aggregate payoff is inversely proportional to the 
aggregate attendance fluctuations’ size and, consequently, increases with the number 
of agents N. In the El Farol Bar problem, it decreases with N. This is because, in this 
problem, the average aggregate payoff is composed of a negative component, 
represented by the average aggregate payoff for the times the aggregate attendance is 
below or above the threshold, and a positive component, represented by the average 
aggregate payoff for the times the aggregate attendance is exactly equal to the 
threshold B. Now, while the first component becomes smaller as N increases because 
of the reduction in the fluctuations’ size, the second component also becomes smaller, 
as with a higher N the probability of hitting the target decreases. The simulations 
show that the net effect is negative: as we increase N, the positive component 
becomes smaller more quickly than the negative one, decreasing the average 
aggregate payoff. Given this different aggregate behavior, in the next sub-section we 
will focus on the literature on the El Farol Bar problem, considering, within the MG 
literature, only those papers that have introduced local interaction. 
 

2.2  Extensions: Learning Mechanisms and Local Interactions. 
 
The El Farol Bar problem and the MG have inspired, since their introduction, many 
works in as many different directions. Here we will focus on two research strands that 
are relevant to this paper: the introduction of different leaning models in the El Farol 
Bar problem and the introduction of local interaction in the MG (quite strangely, 
examples of the adoption of local interaction in the former model and of different 
learning mechanisms in the latter are much rarer). Among the first research strand, we 
can distinguish two groups of works: those which retain the best-reply behavior of 
Arthur’s El Farol Bar problem and those which introduce reinforcement learning 
mechanisms. Among the first Edmonds (1999) proposes an extension of the El Farol 
Bar problem where agents can change their strategies set by means of a genetic 
programming (GP) algorithm and are given the chance to communicate with other 
agents before making their decision of whether to go to the El Farol Bar. Simulations 
show that although all agents were indistinguishable at the start of the run in terms of 



their resources and computational structure, they evolved not only different models 
but also very distinct strategies and roles.  
 Another work where the agents’ strategies are allowed to co-evolve is that of 
Fogel, Chellapilla and Angeline (1999). In the model they propose, the agents are 
endowed with 10 predictors that take the form of autoregressive models with the 
number of lag terms and the relative coefficients being the variables that evolve over 
time. For each predictor, one offspring is created (with mutation). The 10 models 
having the lowest prediction error based on the past 12 weeks of data are selected to 
be the parent of the next generation. Their simulations show that the system, in a 
typical trial, has a lower average aggregate attendance (around 56.3%) and a higher 
standard deviation (17.6) than the ones resulting from Arthur's model. 
 More recently, Atilgan, Atilgan and Demirel (2008) have explored the effect of (i) 
the different types of algorithms used by the agents, (ii) the strategy employed to 
select algorithms from this pool, and (iii) the memory horizon for which attendance 
data are available to the agents. They show that whether the average attendance will 
converge to the threshold level or not depends on the algorithm selection procedures 
of the agents. Changing the algorithm used whenever it fails, irrespective of the past 
success of the algorithm, and picking up another one randomly, drives the average 
attendance to the comfort level, as the agents use more information from the past. 
Taking into account a merit-based stickiness of the algorithms employed in the past 
exhibits considerable deviation from the path that carries the average attendance to the 
threshold level. Stickiness not only alters the plateau levels, but also gives rise to large 
fluctuations on the approach-to-plateau pathways, especially for shorter memory.  

 Other works have abandoned the best-reply behavior to adopt the more basic 
reinforcement learning framework. One of the first works where the best-reply 
behavior of Arthur’s original model has been replaced by a kind of reinforcement 
learning is that of Bell and Sethares (1999). In this paper, the authors present an 
agent-based model where the agents’ strategies are represented by an integer c 
determining the agents’ attendance frequency: if c = 2 the agent goes to the bar once 
every 2 periods; if c = 3 he goes once every 3 periods and so on. Every time an agent 
goes to the bar and has a good time (because the bar was not too crowded) he 
decreases c (goes more often) whereas, in the opposite case, he increases c (goes less 
often). No change in the attendance frequency takes place if the agents stay at home, 
as it is assumed that he cannot assess whether he made the right choice or not.
 Subsequently, Franke (2003) proposed a reinforcement learning model that, 
although quite elaborate, for the purpose of this paper can be summarized as follows: 
each agent goes to the bar with a probability p. If the bar is not crowded he increases 
p, while if the bar turns out to be too crowded, he decreases p. If the agent stays at 



home, a parameter u determines the extent to which the attendance probability is 
updated according to the bar’s aggregate attendance. In both papers, simulations show 
that the populations tend to split in two groups: a group of frequent bar-goers and a 
group of agents who go to the bar very seldom. This result has been analytically 
obtained by Whitehead (2008). By applying the Erev and Roth (1998) model of 
reinforcement learning to the El Farol Bar framework, he shows that the long-run 
behavior converges asymptotically to the set of pure strategy Nash equilibria of the El 
Farol stage game.  
 To sum up, the literature on the El Farol Bar problem can be divided in two 
broad categories, depending on the payoff that, implicitly or explicitly, is assigned to 
the agents staying at home and this, in turn, is naturally associated with different kinds 
of learning mechanisms. To make this point clear, let us look at the payoff matrix 
shown in Figure 1. 
 

 Uncrowded Crowded 
Go to the Bar G B 
Stay at Home S H 

 
Figure 1: El Farol Bar problem payoff matrix 

 
We can distinguish between these two payoff structures: 
 
a) G = H > B = S: this is the typical payoff setting of works adopting the best-reply 

behavioral model first introduced by Arthur (1994). The payoff, in these models, 
is represented by the amount by which the strategies’ fitness is increased 
(decreased) after a right (wrong) forecast. To be precise, in some of these models 
(as the one introduced by Arthur) the strategy fitness is updated by an amount that 
is inversely proportional to the difference between the aggregate attendance 
forecasted by the strategy and the actual aggregate attendance. In any case, the 
characterizing feature of these models is that both the agents going to the bar and 
those staying at home can assess whether their strategies generated a successful 
prediction or not (or the extent to which they got close to the target) and can 
update their strategies’ fitness accordingly. In this work, the aggregate attendance 
fluctuates around an average value that falls between B and a lower bound 
represented by the average attendance resulting from the agents adopting the 
mixed strategy that maximizes the aggregate payoff, depending on the values 
assigned to the many parameters characterizing the best-reply behavior and 
induction process.  



b) G > H = S > B: this is the typical payoff setting of works adopting reinforcement 
learning. The assumption is that the utility they obtain from staying at home does 
not depend on the bar attendance. With this payoff structure, two classes of agents 
emerge: those who often go and those who seldom go to the bar. The learning 
process will asymptotically lead to a state of perfect coordination with complete 
segregation, when B agents will always go and N-B agents will always stay at 
home. 
 

Among the second research strand, based on the introduction of local interaction in 
the MG, Paczuski, Bassler and Corral (2000) consider a random network of 
interconnected Boolean elements under mutual influence, the so-called Kauffman 
network. The performance of each agent is measured by counting the number of times 
each agent is in the majority. After a certain number of periods, the worst performer, 
who was in the majority most often, changes his strategy. The Boolean function of 
that agent is replaced by a new Boolean function chosen at random, and the process is 
repeated indefinitely. They observe that in some epochs the dynamics of the network 
takes place on a very long attractor, while, in other epochs, the network is either 
completely frozen or the dynamics is localized on some attractor with a smaller period. 
This result, however, appears only when the number of links K is below 6.  
 Slanina (2000) proposes a model where the agents are placed on a linear chain 
with nearest-neighbor connections: each agent can ‘see’ the action and the 
accumulated wealth of his left-hand neighbor. Each agent is endowed with S 
strategies. Every agent has a probability p of being an imitator. If an agent is an 
imitator and his neighbor has larger accumulated wealth than the agent itself, he 
relegates the decision to the neighbor and takes the same action. In all the other cases 
(if the neighbor has a lower accumulated wealth or the agent is not an imitator), she 
will look only at his S strategies and choose the best estimate from them. The results 
show that there is a local minimum in the dependence of σ2/N on p, indicating that 
there is an optimal level of imitation, beyond which the system performs worse. 
Moreover, this learning dynamics leads to the creation of coherent areas of poor and 
rich agents.  
 Finally, Kalinowski, Schulz and Briese (2000) propose a model where the agents 
are arranged in a circle and everyone obtains the previous decisions of his neighbors 
as input. For an odd memory m, the decisions of the (m−1)/2 left- and right-handed 
neighbors and the own one are known. The rest of the procedure is the same: each 
agent looks at the more successful strategy among the s strategies he is endowed with. 
When all have decided, the minority side is determined, every agent on this side gets a 
point, the strategies are valued and the next round begins. The simulations show that 



the system’s efficiency is maximized for m = 3. Furthermore, the authors discuss the 
question of whether the system can be optimized by evolutionary mechanisms. The 
‘genetic code’ of an agent consists of two genes: m and s. After n periods each agent 
looks at his direct neighbor to the right and to the left and, if the best neighbor has at 
least 1% more points than the agent, he obtains the properties of this neighbor. Setting 
m = 5 and s = 4 as initial states, the simulations show that most agents end up with m 
and s equal to 2 or 3. 
 
3. The model 
 
For the model we present in this paper, we retain the best-reply strategies of the 
original El Farol Bar problem. However, we also modify the standard settings by 
adopting the informational structure introduced by the works on the MG with local 
interaction. Like in the original El Farol Bar problem, we consider a population 
composed of 100 agents and set the threshold level to 60 (these values have become 
commonplace in the literature on this topic). Differing from the original model, each 
agent can ‘see’ the actions, the strategies and the strategies’ performances of four 
other agents (his neighbors).  
 In this paper, we investigate two network typologies (Figure 2): the circular 
neighborhood, where each agent is connected to the two agents to his left, and the two 
agents to his right; the von Neumann neighborhood, where the agents occupy a cell in 
a bi-dimensional grid covering the surface of a torus.  
  
   

 
  

N4 N3 Agent N1 N2 

  
 
 

 
(a)  
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N2 Agent N1 

 N4  
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Figure 2: (a) Circular neighborhood; (b) von Neumann neighborhood 
 
Contrary to the prototypical El Farol Bar problem and MG settings, each agent is 
assigned, at the beginning of the simulation, only one strategy, randomly chosen from 
the whole strategies’ space. This strategy specifies one action to be taken the next 
period for every possible combination of his four neighbors’ actions in the past period. 
So, the strategies are represented by 16-bit long strings, with a strategies’ space of 216 
possible strategies (note, at this point, that, with the von Neumann neighborhood, we 
have the typical settings of cellular automata).  



 The agents are endowed with a memory of length m. Each agent keeps track of 
his strategy forecasting success (that is, the times the strategy prescribed the right 
action, given the bar’s aggregate attendance) and of his attendance frequency in the 
past m periods. The agent’s strategy overall performance (or fitness), F is given by 
(1): 
 

                                   (1)  

 
So, the agent’s strategy fitness is greater the higher is its forecasting success (as in the 
original El Farol Bar problem) and the closer is the agent’s attendance frequency to 
0.6. Implicit in this rule is the assumption that each agent wants to go to the bar with 
the same frequency as the other agents. Given this assumption, 0.6 is the only 
attendance frequency compatible with the bar’s capacity: a higher attendance 
frequency would lead to an overexploitation and a lower frequency would lead to an 
underexploitation of the scarce resource. The strategy fitness can take any value 
between 0 and 1.  
 In any given period, an agent either imitates the strategy of the most successful 
agent among its neighbors or, with a certain probability p, he mutates his strategy by 
changing one randomly chosen bit of his strategy. In order for the average attendance 
associated with any strategy to be computed, it has to be adopted for at least m periods: 
so, we can think of m as the trial period of a strategy. Consequently, an agent changes 
his strategy (either through imitation or mutation) only if it has been adopted for at 
least m periods, and, in the imitation process, he considers only those neighbors 
whose strategy has been adopted for at least m periods. So, to recapitulate, in order for 
an agent to change his strategy through imitation, five conditions are necessary:  
a) the agent’s strategy fitness is below 1. 
b) the agent’s strategy is not in its trial period. 
c) The agent has at least one neighbor: 

- whose strategy has a higher fitness than the fitness of the agent’s own strategy; 
- whose strategy is not in its trial period; 
- whose strategy is different from the agent’s own strategy. 

If only the first two conditions are met, the agent, with a probability p, will mutate 
one rule on his strategy. While the imitation process ensures that the most successful 
strategies are spread in the population, the mutation process ensures that new, 
eventually better, strategies are introduced over time. Once the agent has adopted a 
new strategy (either through imitation or mutation) he will reset his memory to zero 
and will start keeping track of the new strategy’s fitness. Once one agent’s strategy 



reaches the fitness value of 1, the agent stops the mutation process, as he is perfectly 
satisfied with his strategy. The socially optimal equilibrium is a state where all the 
agents’ strategies have fitness equal to 1: at this point all the strategies’ evolutionary 
processes stop, as the system has reached the global maximum. 
 In order to highlight the importance of social preferences for the attainment of 
the socially optimal equilibrium, we will first show the results of simulations with a 
model where the social preferences are not present: in this version, the agents just try 
to develop strategies with good forecasting performances, as in the traditional 
best-reply framework. In this case, the strategy’s fitness F is represented only by the 
numerator of (1), as the agents have no preferences regarding their attendance 
frequency. 
 
4. Simulation results 
 
 4.1 Social Networks without Social Preferences 
 
In this case, the system, with both social networks, always reaches the perfect 
coordination, that is, the state where the bar attendance is always equal to the 
threshold and the agents never make the wrong choice. We observe that the 
introduction of social networks leads to the emergence of new kinds of equilibrium. 
We can classify them on the basis of the number of different classes that emerge, each 
class being characterized by different attendance frequency (the socially optimal 
equilibrium being the only one with just one class).  
 Table 1 shows the percentage for each kind of equilibrium (over 1,000 runs), for 
the circular neighborhood (CN) and the von Neumann neighborhood (vNN). We can 
see that, with the von Neumann neighborhood, the system has a non-negligible 
probability of reaching the socially optimal equilibrium (SOE) even if the agents have 
no social preferences: it is the second most likely equilibrium, with a probability of 
almost one third of that of the most likely outcome, i.e., 2C. 
 
 SOE 2C 3C 4C 5C > 5C 

CN 2% 62.2% 15.4% 3.7% 13.7% 2.9% 
vNN 18.3% 53.5% 15.8% 3% 6.3% 3.1% 

 
Table 1: Equilibria frequencies without social preferences. 

 
Within the equilibria characterized by the emergence of two classes (2C) the great 
majority (over 90%) is represented by the well-known 60/40 subdivision between the 



agents who always go to the bar and those who always stay at home. The rest (less 
than 10%) are represented by a new equilibrium characterized by 80 agents with an 
attendance frequency of 0.5 and 20 agents with an attendance frequency of 1. The vast 
majority of the equilibria with three classes (3C) are represented by an equilibrium 
where some agents never go to the bar, some always go and the rest go with an 
attendance frequency of 0.5. Another relatively frequent outcome is the emergence of 
five classes (5C). Within this case, the vast majority are represented by a 
configuration where, besides the three classes mentioned in the 3C case, two groups 
of agents, that go to the bar with frequencies of 0.4 and 0.6, also emerge. 
 To sum up, the introduction of social networks leads, on average, to more 
egalitarian attendance frequency distributions compared to the equilibrium to which 
the system (asymptotically) converges with reinforcement learning. However, in the 
absence of preferences regarding the attendance frequency, the less unequal 
attendance frequency distributions are not associated with higher aggregate utility: the 
only thing that matters in this setting is the attainment of perfect coordination, and this 
is reached in every trial. 
 
 4.2 Social Networks with Social Preferences 
 
  4.2.1 The Circular Neighborhood 
 
Beyond 1,000 simulations, the system always reaches the socially optimal equilibrium. 
Figure 3 shows the dynamics of the average fitness of the population with the circular 
neighborhood for a typical run.  
 

 
Figure 3: Average fitness dynamics with the circular neighborhood. 



 
No learning process seems to take place: after a period of fluctuations of different 
sizes around an average value between 0.4 and 0.6, suddenly, around period 7,500, the 
system jumps to the socially optimal equilibrium.  
 In Figure 4 we show the distribution of the number of periods the system took to 
reach the socially optimal equilibrium of over 1,000 trials. We can see that the 
distribution is highly skewed: while the mode is around 4,000 periods, the average is 
almost 28,000. However, for a few runs, it took over 150,000 periods to reach the 
equilibrium. 
 

 
Figure 4: Periods-to-equilibrium distribution with the circular neighborhood  

 
An interesting feature of the model is that, at the equilibrium, the same four strategies 
always emerge, with both network structures (see Section 4.2.2 for the von Neumann 
network). Table 2 shows the four strategies emerging with the circular network (in the 
table, 1 stands for ‘Go’ and 0 stands for ‘Stay at Home’). Even if the whole strategies 
are composed by 16 binary numbers (that is, 16 rules), at the equilibrium only five 
combinations repeatedly appear to each agent, so only five of the strategy’s 16 rules 
are actually used by the agents. From Table 2 we can see that Strategy 1 and Strategy 
2, although different, are specified by the same five rules and the same occurs for 
Strategy 3 and Strategy 4. 
 



Input Strategy 1 Strategy 2
0-0-1-1 0 1 
0-1-1-1 0 1 
1-0-1-0 1 1 
1-1-0-0 1 0 
1-1-0-1 1 0  

Input Strategy 3 Strategy 4 
0-1-0-1 1 1 
0-1-1-0 0 1 
1-0-0-1 1 0 
1-0-1-1 1 0 
1-1-1-0 0 1  

Table 2: Emergent strategies with the circular neighborhood 
 

However, the two sets of rules share many similarities as each of the five rules shown 
in the table on the right side of Table 2 can be obtained from one of the rules shown 
on the table in the left side of Table 1 by simply moving the first bit of the rule to the 
last position (for example, in the table on the left, the first rule is 0-0-1-1: moving the 
first bit in the last position we get 0-1-1-0, the third rule in the table on the right). 
Moreover, at the equilibrium, the agents do not need to look at all their four 
neighbors’ actions anymore, as each of the four strategies is equivalent to the action of 
one of the four agents’ neighbors: for example Strategy 1 is equivalent to the first 
neighbor’s action (shown in bold in the table on the left); Strategy 2 is equivalent to 
the third neighbor’s action; Strategy 3 is equivalent to the fourth neighbor’s action 
(shown in bold in the table on the left); and Strategy 4 is equivalent to the second 
neighbor’s action. This means that, at the equilibrium, Strategy 1 (if, for example, this 
is the strategy that emerged), could be substituted by the rule ‘Do what the neighbor 
in position 1 did in the last period’. Of course, such a simple rule is only able to 
sustain the cooperation once it has been reached, but can not lead to the equilibrium 
itself if adopted from a random initial state. 
 Finally, we observe that all four strategies generate the same 5-period cycle 
represented by the sequence 1-1-1-0-0. Of course, the strategy the agents are endowed 
with at the equilibrium makes them follow these cycles asynchronously, so that in 
every period only 60 of them go to the bar. 
 
  4.2.2 The von Neumann neighborhood. 
 
Also in this case, the system reaches the socially optimal equilibrium in all the 1,000 
runs performed. Figure 5 shows the dynamics average fitness of the population with 
the von Neumann neighborhood for a typical run.  
 



 
Figure 5: the Average fitness dynamics with the von Neumann neighborhood. 

 
In this chart we can see a spike before the system reaches the perfect coordination. 
Although not present in every run, these spikes are quite common with the von 
Neumann neighborhood. They occur when a relatively steady cycle emerges that is 
characterized by a ‘sea’ of perfectly coordinated agents surrounding an ‘island’ of 
agents with low fitness. These low-fitness agents are ‘trapped’ in a cycle that causes 
their attendance frequency to be below or above the optimal value of 0.6. These 
cycles, however, are short-lived as these agents, sooner or later, will mutate their 
strategy and some of these mutations will unsettle the cycle in which they had been 
trapped. 
 From Figure 6 we can see that, as for the circular neighborhood, the distributions 
of the periods needed to reach the equilibrium is highly skewed: the mode is around 
1,500 periods and the average is around 5,800 periods. In a few runs the system took 
over 40,000 periods to reach the equilibrium. Overall, compared with the results of 
the circular neighborhood, the process adopted to reach the equilibrium is between 4 
and 5 times faster with the von Neumann neighborhood.  
 



 
Figure 6: Periods-to-equilibrium distribution with the von Neumann neighborhood 

 
Why is the von Neumann neighborhood a more efficient network structure than the 
circular neighborhood? A cue to answer this question comes from the observation that 
one of the crucial parameters for dynamics of the system is the mutation probability p: 
a few calibration attempts showed that while with the circular neighborhood the 
average number of periods is minimized with p ≈ 0.002, with the von Neumann 
neighborhood it is minimized with p ≈ 0.005. In other words, the von Neumann 
neighborhood allows a faster mutation process. We have to keep in mind that in such 
a system, the mutation process is potentially disruptive: if an optimal strategy is 
mutated by some agents before it could spread to all the population (because before 
that point, its fitness is lower than 1), the chances of reaching the equilibrium with 
this strategy are gone and the system has to wait for another favorable strategy to 
emerge. So, it is important that every strategy that is introduced in the system spreads 
quickly, so that the optimality can be checked before the mutation process intervenes 
to disrupt the coordination ensuing from the spreading strategy. Now, strategies 
spread more quickly with the von Neumann neighborhood than with the circular 
neighborhood, given that the average distance between agents is more than 2.5 times 
lower in the former network compared to the latter (respectively, 5.05 and 12.88). So, 
the system can effectively explore the highly rugged and ever-changing fitness 
landscape faster with the former network than with the latter and, consequently, has a 
greater chance of finding the socially optimal strategy. 
 Table 3 shows the four strategies emerging with the von Neumann neighborhood. 
In this case, we can see that, at the equilibrium, only three combinations of actions 
appear periodically and these are different for Strategy 1 and Strategy 2 on the one 
hand (the table on the left) and for Strategy 3 and Strategy 4 on the other (the table on 



the right). Also in this case, at the equilibrium, the agents do not need to look at all 
their neighbors’ actions to follow their strategy. 
 

Input Strategy 1 Strategy 2
0-1-0-1 0 1 
1-0-1-0 1 0 
1-1-1-1 1 1  

Input Strategy 3 Strategy 4 
0-1-1-0 0 1 
1-0-0-1 1 0 
1-1-1-1 1 1  

Table 3: Emergent strategies with the von Neumann neighborhood 
 
While in the case of the circular neighborhood, every strategy was associated with a 
neighbor, in this case every strategy is associated with two neighbors that the agent 
can equivalently look at: Strategy 1 is equivalent to the actions of the first and the 
third neighbor (shown in bold in the table on the left); Strategy 2 is equivalent to the 
actions of the second and the fourth neighbor; Strategy 3 is equivalent to the actions 
of the first and the fourth neighbor (shown in bold in the table on the right); and 
Strategy 4 is equivalent to the actions of the second and the third neighbor. So, at the 
equilibrium, if, for example, Strategy 1 emerges, this strategy can be substituted by 
the rule ‘Do what your neighbor in position 1 or your neighbor in position 3 did last 
period’. If we look at the von Neumann neighborhood in Figure 1, we can notice that 
the two neighbors associated with each strategy are adjacent to each other. 
 Finally, we observe that, while all the four strategies that emerge with the 
circular neighborhood generate the same 5-period cycle 1-1-1-0-0, with the von 
Neumann neighborhood, besides this 5-period circle, two 10-period cycles emerge: 
the cycle 1-1-1-1-0-0-1-1-0-0 and the cycle 1-1-0-0-1-1-0-1-1-0. The three cycles can 
be generated by any of the four strategies that emerge at the equilibrium. 
 
5. Conclusions 
 
While the El Farol Bar problem has been studied for almost two decades, existing 
studies are mostly concerned with efficiency only. The equality issue, however, has 
been largely neglected. In this paper, we present an agent-based model to assess 
whether a decentralized society can ever possibly self-coordinate a result with the 
highest efficiency while also maintaining the highest degree of equality. The main 
differences between the model we presented in this work and those previously 
introduced are two: a) the presence of social networks through which the agents can 
access the information regarding their neighbors’ choices; and b) the introduction of 
social preferences, in the form of a fitness function that takes into account the 
frequency with which the agents go to the bar. The reason behind the introduction of 



social networks is the idea that only by using local information do the agents have the 
chance to coordinate: if they use the aggregate information, as in the best-reply 
models proposed so far, too many or too few of them are likely to go to the bar, as the 
aggregate information generates herding behavior. As regards the introduction of 
social preferences, their presence is implicit in our definition of a socially optimal 
outcome.  
 The simulations show that, with these assumptions, the system always reaches a 
state where all the agents go to the bar 60% of the time and the bar is always filled to 
its capacity although it could take many periods to reach such a state. The simulations 
also show that, at the equilibrium, the strategies generate 5-period or 10-period cycles 
that all the agents follow in an asynchronous way so that their aggregate attendance is 
always equal to the threshold. 
 Moreover, the simulations show that there are some kinds of network structures 
that process the information more efficiently, allowing the system to reach the socially 
optimal equilibrium much faster than others. In particular, the von Neumann 
neighborhood seems more likely to lead the system to the socially optimal outcome 
than the circular neighborhood, and this is true even if we remove social preferences 
(although in this case this outcome could not be properly defined as ‘socially optimal’ 
anymore). Simulations with the model without social preferences show that the 
presence of social networks allows the system to always reach a state of perfect 
coordination, with many different kinds of different attendance frequency 
distributions. 
 The extent to which social networks can enhance coordination among real 
subjects and whether their behavior is affected by social preferences are issues open to 
further examination. 
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