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Abstract

To reduce inventory and increase sales, the supplier frequently offers the retailer a permissible delay in
payments if the retailer orders more than or equal to a predetermined quantity. In 2012, Liao et al. proposed
an economic order quantity model for a retailer with two warehouses when the supplier offers a permissible
delay linked to order quantity. In this paper, we attempt to overcome some shortcomings of their mathematical
model. Then, we apply some existing theoretical results in fractional convex programs to prove that the annual
total variable cost is pseudoconvex. Hence, the optimal solution exists uniquely, which simplifies the search
for the global minimum solution to a local minimum solution. Finally, we run a couple of numerical examples
to illustrate the problem and compare the optimal solutions between theirs and ours.

Keywords: inventory theory; economic order quantity; deteriorating items; two warehouses; trade credit

1. Introduction

In order to increase sales and reduce inventory, the seller (e.g., the supplier) frequently offers a
permissible delay in payments (i.e., a trade credit) to the buyer (e.g., the retailer) if the buyer’s
order quantity is greater than or equal to a predetermined quantity by the seller. Usually, there
is no interest charge if the buyer pays in full within the credit period. However, if the buyer
cannot pay in full by the credit period, then the seller starts charging the buyer interest on unpaid
balance after the credit period. Haley and Higgins (1973) first studied the impact of the trade credit
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financing on the inventory lot-sizing policy. Kingsman (1983) discussed the effect of various trade
credit rules on ordering and stocking in purchasing. Goyal (1985) established an economic order
quantity (EOQ) model under conditions of permissible delay in payments. Thereafter, most recent
researchers in the field of inventory lot-sizing policies with trade credit financing have extended his
basic model. Ouyang et al. (2006) presented an inventory model for noninstantaneous deteriorating
items with permissible delay in payments. Teng et al. (2006) studied manufacturer’s optimal pricing
and lot-sizing policies under trade credit financing. Yang and Wee (2006) established a collaborative
inventory model for deteriorating items with permissible delay in payments, finite replenishment rate,
and price-sensitive demand. Chang et al. (2009) developed an integrated inventory model when trade
credit linked to order quantity. Liao and Huang (2010) proposed an EOQ model for deteriorating
items with trade credit financing and capacity constraints. Dye and Ouyang (2011) studied a retailer’s
optimal pricing and lot-sizing problem for deteriorating items with a fluctuating demand under trade
credit financing. Ho (2011) developed a generalized, integrated, supplier–retailer inventory model
using a trade credit policy. Liang and Zhou (2011) provided a two-warehouse inventory model for
deteriorating items under conditionally permissible delay in payments. Teng et al. (2011) considered
optimal ordering policy for stock-dependent demand under progressive payment scheme. Duan
et al. (2012) established two-level supply chain coordination with permissible delay in payments
for fixed lifetime products. Jain and Aggarwal (2012) studied an inventory model for exponentially
deteriorating and imperfect quality items when a trade credit is offered by the supplier. Sarkar
(2012) considered an EOQ model with delay in payments and time-varying deterioration rate. Teng
et al. (2012) extended the traditional constant-demand EOQ model with trade credit financing to
nondecreasing demand. Many related recent articles can be found in Chen et al. (2013a, 2013b),
Chern et al. (2013), among others.

Recently, Liao et al. (2012) generalized Goyal’s EOQ model to allow for deteriorating items with
two warehouses (i.e., an owned warehouse (OW) with the maximum storage capacity of W, and a
rented warehouse (RW) with unlimited storage capacity) under an order size dependent trade credit.
In this paper, we attempt to overcome some shortcomings in their model such as (1) the cost of
deteriorating items was included twice in their objective function, (2) we substitute the unit purchase
cost by unit selling price in calculations of interest earned, and (3) they erroneously considered the
time taken by inventory in RW to reduce to zero, to be same as the time taken by total inventory
to reduce to the storage capacity of the OW. Then we apply some existing theoretical results in
fractional convex programs to prove the annual total variable cost is pseudoconvex. Therefore, the
optimal solution to the problem not only exists but is also unique. Finally, we run a couple of
numerical examples to illustrate the problem.

2. Notation and assumptions

For convenience, the following notation and assumptions are used throughout the paper.

A: the rental cost for renting an additional warehouse in dollars
C: the unit purchase cost in dollars
D: the annual demand rate in units per year
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h: the unit holding cost excluding interest charges per year in dollars for items in OW
I: the earned interest rate per dollar per year (as a percentage)
I(t): the inventory level in units at time t in both RW and OW, 0 ≤ t ≤ T
k: the unit holding cost excluding interest charges per year in dollars for items in RW
M: the credit period in years provided by the supplier to the retailer
P: the unit selling price in dollars, with C < P
Q: the order quantity in units
R: the capital opportunity cost per dollar per year (as a percentage)
S: the ordering cost per order in dollars
t: the time in years
tR: the time in years when inventory level in RW reduces to zero
tW : the time in years when inventory level reduces to W
T: the replenishment cycle time in years
W : the quantity in units at which the delay in payments is permitted
W: the maximum storage capacity in units in OW
λ: a constant deterioration rate with 0 ≤ λ < 1

In addition, the following assumptions are made to establish the mathematical inventory model.

(1) Replenishment rate is infinite and lead time is zero.
(2) If Q < W , then the retailer must pay the supplier in full as soon as items are received. Otherwise,

there is no interest charge if the outstanding amount is paid within the permissible delay period
M.

(3) During the permissible delay, the retailer deposits the sales revenue to an interest bearing
account with interest rate I. If M ≥ T , then the retailer receives all revenue and pays off the
entire purchase cost at the end of the permissible delay M. Otherwise (if M < T ), the retailer
pays the supplier all units sold by M, keeps the profit for the use of the other activities, and
starts paying for the interest charges on the items sold after M.

(4) The OW has a fixed capacity of W units and the RW has unlimited capacity. The items in RW
are consumed first, and then the items in OW.

(5) In today’s time-based competition, we assume that shortages are not allowed.

Given the above assumptions, it is possible to formulate a mathematical inventory model for
deteriorating items with two warehouses and trade credit financing.

3. Mathematical model

The units purchased include both units sold (i.e., good items) and units unsold (i.e., deteriorating)
items. Consequently, the purchase cost includes the cost of deteriorating items. Hence, we define the
annual total variable cost function as follows:

TVC(T ) = ordering cost + purchase cost + stock-holding cost in RW

+ stock-holding cost in OW + capital opportunity cost + rental cost in RW.
(1)

C© 2013 The Authors.
International Transactions in Operational Research C© 2013 International Federation of Operational Research Societies



4 S.-C. Chen et al. / Intl. Trans. in Op. Res. 00 (2013) 1–14

Fig. 1. Graphical representation of a two-warehouse inventory (Q > W).

By contrast, Liao et al. (2012) inappropriately calculated the cost of deteriorating items twice,
and hence defined the annual total variable cost function as follows:

TVC(T ) = ordering cost + purchase cost + deterioration cost

+ stock-holding cost in RW + stock-holding cost in OW

+ capital opportunity cost + rental cost in RW.

(2)

The order quantity Q units are ordered and received at t = 0. If Q > W, then an RW is used to
store Q − W units, and the OW has W units at t = 0. The inventory level in RW then gradually
depletes to zero at t = tR due to the combination effects of demand and deterioration. The graphical
representation of the inventory level in both warehouses is shown in Fig. 1.

During the replenishment cycle [0, T], the inventory level at each warehouse is depleted by
deterioration and demand. We discuss the inventory level in RW first, and then that in OW. The
inventory level in RW can be represented using the following differential equation:

dI(t)
dt

= −λI(t) − D, 0 ≤ t ≤ tR, (3)

with the boundary conditions I(tR) = 0 and I(0) = Q − W . The solution of Equation (3) is

I(t) = D
λ

[
eλ(tR−t) − 1

]
, 0 ≤ t ≤ tR. (4)

Next, the inventory level in OW can be represented using the following differential equations:

dI(t)
dt

= −λI(t), 0 ≤ t ≤ tR, (5)
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and

dI(t)
dt

= −λI(t) − D, tR ≤ t ≤ T, (6)

with the boundary conditions I(0) = W and I(T ) = 0. The solution of Equation (5) is

I(t) = W e−λt, 0 ≤ t ≤ tR. (7)

The solution of Equation (6) is

I(t) = D
λ

[
eλ(T−t) − 1

]
, tR ≤ t ≤ T. (8)

Using Equations (7) and (8), the solution of tR is obtained as

tR = 1
λ

ln
[

eλT − λ

D
W
]

. (9)

Using Equations (4) and (9), and the fact that the initial inventory level in RW is I(0) = Q − W ,
we obtain the order size

Q = D
λ

(eλT − 1). (10)

Therefore, the annual stock-holding cost in RW is as follows:

k
T

∫ tR

0
I(t)dt = k

T

∫ tR

0

D
λ

[eλ(tR−t) − 1]dt = kD
Tλ2

[
eλtR − λtR − 1

]
= kD

Tλ2

[
eλT − λ

D
W − ln(eλT − λW/D) − 1

]
.

(11)

Note that Liao et al. (2012) inappropriately used the time tW (i.e., when the inventory level in
both warehouses reduces to W) to indicate the inventory level in RW is down to zero. Consequently,
they miscalculated the annual stock-holding cost in RW from 0 to tW , instead of from 0 to tR, as
follows:

k
T

∫ tW

0
(I(t) − W )dt = k

λ2T
[D(eλT − eλTa ) − (Dλ + λ2W )(T − Ta)], (12)

where Ta = 1
λ

ln(
λ

D
W + 1) and tW = T − Ta.

Similarly, the annual stock-holding cost in OW is as follows:

h
T

[∫ tR

0
I(t)dt +

∫ T

tR

I(t)dt

]
= h

T

[∫ tR

0
W e−λtdt +

∫ T

tR

D
λ

(eλ(T−t) − 1)dt

]

= h
T

[
W
λ

− D
λ

T + D
λ2

ln(eλT − λW/D)

]
.

(13)

C© 2013 The Authors.
International Transactions in Operational Research C© 2013 International Federation of Operational Research Societies



6 S.-C. Chen et al. / Intl. Trans. in Op. Res. 00 (2013) 1–14

Again, the mathematical expression of the annual stock-holding cost in OW in Liao et al. (2012)
was also inappropriate as follows:

h
T

(
W tw +

∫ T

tW

I(t)dt

)
= h

λ2T

[
D
(
eλTa − λTa − 1

)+ λ2W
(
T − Ta

)]
. (14)

After discussing the differences between Liao et al. (2012) and ours on the objective function and
stock-holding costs, we then discuss the discrepancies between theirs and ours on the annual capital
costs. If Q ≥ W , then the delay in payments is permitted. There are two possible alternatives for the
retailer to select its replenishment cycle time T as follows: (1) M < T , or (2) M ≥ T . Let us discuss
the first alternative M < T first, and then M ≥ T .

If M < T , Q > W, and M ≤ tR ≤ T , then the annual capital opportunity cost is as follows:

1
T

{
CR

∫ T

M
I(t)dt − PI

∫ M

0
Dtdt

}
= CRD

λ2T

[
eλ(T−M) − λ(T − M) − 1

]− PIDM2

2T
. (15)

Note that Liao et al. (2012) used the unit purchase cost C to calculate the revenue received, and
then derived the interest earned. As a result, their annual capital opportunity cost for M < T was
as follows:

CRD
λ2T

[
eλ(T−M) − λ(T − M) − 1

]− CIDM2

2T
. (16)

If M ≥ T , then there is no interest charged, and the annual capital opportunity cost is

−1
T

PI
[∫ T

0
Dtdt + DT (M − T )

]
= PIDT

2
− PIDM. (17)

Likewise, the mathematical expression of the annual capital opportunity cost in Liao et al. (2012)
was as follows:

CIDT
2

− CIDM. (18)

Finally, we use a simpler and easier way to discuss all possible nine subcases than those 21
subcases in Liao et al. (2012). Based on the values of parameters W and W , there are two possible
cases: either W ≥ W or W < W . We discuss them accordingly.

Case 1: W ≥ W
In this case, there are three possible alternatives for the retailer to select its order quantity Q:

Q > W, W ≥ Q ≥ W , and Q < W . Let us discuss them separately.

Subcase 1–1: Q > W
In this subcase, the RW is needed and the delay in payments is also permitted. The annual total

variable costs are given as follows:

TVC(T ) =
{

TVC1(T ) if M ≤ T
TVC2(T ) if M ≥ T

, (19)

C© 2013 The Authors.
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where

TVC1(T ) = S + A
T

+ D(Cλ + k)

λ2T
(eλT − 1) − D(k − h)

λ2T

[
λ

D
W + ln(eλT − λW/D)

]

− hD
λ

+ CRD
λ2T

[
eλ(T−M) − λ(T − M) − 1

]− PI
DM2

2T
,

(20)

and

TVC2(T ) = S + A
T

+ D(Cλ + k)

λ2T
(eλT − 1) − D(k − h)

λ2T

[
λ

D
W + ln (eλT − λW/D)

]

− hD
λ

− PID
(

M − T
2

)
.

(21)

In contrast, the corresponding TVC1(T ) and TVC2(T ) in Liao et al. (2012) were

S + A
T

+ CD
λT

(eλT − 1) + D(λC + k)

λ2T
(eλT − λT − 1)

− (k − h)

λ2T

[
D
(
eλTa − λTa − 1

)+ λ2W (T − Ta)
]+ CRD

λ2T

[
eλ(T−M) − λ(T − M) − 1

]− CI
DM2

2T
and

S + A
T

+ CD
λT

(eλT − 1) + D(λC + k)

λ2T
(eλT − λT − 1)

− (k − h)

λ2T
[D(eλTa − λTa − 1) + λ2W (T − Ta)] − CID

(
M − T

2

)
,

respectively. By comparing theirs and ours, one can easily see that the differences are significantly
large because the following three major reasons: (R1) They double counted the cost of deteriorating
items in their objective function; (R2) They calculated the interest earned based on the unit purchase
cost C, not the unit selling price P; and (R3) They erroneously considered the time taken by inventory
in RW to reduce to zero, to be same as the time taken by total inventory in both OW and RW to
reduce to the maximum capacity in OW, W. In fact, the inventory level in OW deteriorates from
W to below W, whereas the inventory level in RW reduces from Q − W to zero. Hence, when the
inventory level in RW reduces to zero, the total inventory level is less than W.

Subcase 1–2: W ≥ Q ≥ W
In this subcase, the RW is not needed, whereas the delay in payments is permitted. Therefore, the

annual total variable cost TVC(T ) is obtained as follows:

TVC(T ) =
{

TVC3(T ) if M ≤ T
TVC4(T ) if M ≥ T

, (22)

where

TVC3(T ) = S
T

+ C
T

D
λ

(eλT − 1) + h
T

D
λ2

[eλT − λT − 1]

+ CRD
λ2T

[
eλ(T−M) − λ(T − M) − 1

]− PI
DM2

2T
,

(23)
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and

TVC4(T ) = S
T

+ C
T

D
λ

(eλT − 1) + hD
λ2T

[eλT − λT − 1] − PID
(

M − T
2

)
. (24)

By contrast, the corresponding TVC3(T ) and TVC4(T ) in Liao et al. (2012) were

S
T

+ C
T

D
λ

(eλT − 1) + D(λC + h)

λ2T
(eλT − λT − 1)

+ CRD
λ2T

[eλ(T−M) − λ(T − M) − 1] − CIDM2

2T
,

and

S
T

+ C
T

D
λ

(eλT − 1) + D(λC + h)

λ2T
(eλT − λT − 1) − DCI

(
M − T

2

)

respectively. We then discuss the last subcase in which Q < W .

Subcase 1–3: Q < W
In this subcase, the RW is not needed and the delay in payments is not permitted. Therefore, the

annual total variable cost TVC(T ) is obtained as follows:

TVC5(T ) = S
T

+ C
T

D
λ

(eλT − 1) + D(h + CR)

λ2T
[eλT − λT − 1]. (25)

Likewise, the corresponding TVC5(T ) in Liao et al. (2012) was

S
T

+ C
T

D
λ

(eλT − 1) + D(λC + h + CR)

λ2T
[eλT − λT − 1].

Now, Case 1 is finished. Next, we discuss Case 2 of W < W .

Case 2: W < W
Similar to Case 1, there are three possible alternatives for the retailer to select its order quantity

Q: Q ≥ W , W < Q < W , and Q ≤ W . Let us discuss them accordingly.

Subcase 2–1: Q ≥ W
In this subcase, the RW is needed and the delay in payments is also permitted. Consequently, the

annual total variable cost TVC(T ) is obtained as follows:

TVC(T ) =
{

TVC1(T ) if M ≤ T
TVC2(T ) if M ≥ T

. (26)

Subcase 2–2: W < Q < W
In this subcase, the RW is needed, whereas the delay in payments is not permitted. Therefore, the

annual total variable cost TVC(T ) is obtained as follows:

TVC6(T ) = S + A
T

+ D(Cλ + k)

λ2T
(eλT − 1) − D(k − h)

λ2T

[
λ

D
W + ln(eλT − λW/D)

]

− hD
λ

+ CRD
λ2T

[eλT − λT − 1].

(27)
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Similarly, the corresponding TVC6(T ) in Liao et al. (2012) was

S + A
T

+ CD
λT

(eλT − 1) + D(λC + h + CR)

λ2T
[eλT − λT − 1]

− (k − h)

λ2T

[
D(eλTa − λTa − 1) + λ2W (T − Ta)

]
.

Subcase 2–3: Q ≤ W
In this subcase, the RW is not needed and the delay in payments is not permitted. Hence, the

annual total variable cost TVC(T ) = TVC5(T ).
Now, we determine the optimal replenishment cycle T ∗ for cases of W ≥ W , and W < W . In the

next section, we show that TVCi(T ) for i = 1, 2, . . . , 6 is a strictly pseudoconvex function in T.

4. Optimal replenishment cycle time

To solve the problem, we apply the existing theoretical results. According to Theorems 3.2.9, and
3.2.10 in Cambini and Martein (2009), the real-value function

q(x) = f (x)

g(x)
(28)

is (strictly) pseudoconvex, if f(x) is nonnegative, differentiable and (strictly) convex, and g(x) is
positive, differentiable and concave. Furthermore, if ∇q(x0) = 0, then x0 is a local minimum for q.
Now, let us apply the above theoretical results to show that the optimal solution T ∗

i that minimizes
TVCi(T ) for i = 1, 2, . . . , 6 not only exists but is also unique.

Theorem 1. TVCi(T ), for i = 1, 2, . . . , 6, is a strictly pseudoconvex function in T, and hence exists a
unique minimum solution T ∗

i , for i = 1, 2, . . . , 6.

Proof. From Equation (20), let

f1(T ) = S + A + D(Cλ + k)

λ2
(eλT − 1) − D(k − h)

λ2

[
λ

D
W + ln(eλT − λW/D)

]

− hD
λ

T + CRD
λ2

[eλ(T−M) − λ(T − M) − 1] − PI
DM2

2
(29)

and

g1(T ) = T. (30)

Taking the first-order and second-order derivatives of f1(T ), we have

f ′
1(T ) = D(Cλ + k)

λ
eλT − D(k − h)

λ

eλT

eλT − λW/D
− hD

λ
+ CRD

λ
[eλ(T−M) − 1], (31)

and

f ′′
1 (T ) = D(Cλ + k)eλT + D(k − h)(λW/D)eλT

(eλT − λW/D)2
+ CRDeλ(T−M) > 0. (32)

C© 2013 The Authors.
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Therefore, q1(T ) = f1(T )

g1(T )
= TVC1(T ) is a strictly pseudoconvex function in T. Similarly, from

Equation (21), let

f2(T ) = S + A + D(Cλ + k)

λ2
(eλT − 1) − D(k − h)

λ2

[
λ

D
W + ln(eλT − λW/D)

]

− hD
λ

T − PIDT
(

M − T
2

) (33)

and

g2(T ) = T. (34)

Taking the first-order and second-order derivatives of f2(T ), we have

f ′
2(T ) = D(Cλ + k)

λ
eλT − D(k − h)

λ

eλT

eλT − λW/D
− hD

λ
+ PID(T − M), (35)

and

f ′′
2 (T ) = D(Cλ + k)eλT + D(k − h)(λW/D)eλT

(eλT − λW/D)2
+ PID > 0. (36)

Therefore, q2(T ) = f2(T )

g2(T )
= TVC2(T ) is a strictly pseudoconvex function in T. Again, from Equa-

tion (23), let

f3(T ) = S + CD
λ

(eλT − 1) + hD
λ2

[eλT − λT − 1]

+ CRD
λ2

[eλ(T−M) − λ(T − M) − 1] − PI
DM2

2

(37)

and

g3(T ) = T. (38)

Taking the first-order and second-order derivatives of f3(T ), we have

f ′
3(T ) = CDeλT + hD

λ
[eλT − 1] + CRD

λ

[
eλ(T−M) − 1

]
, (39)

and

f ′′
3 (T ) = CDλeλT + hDeλT + CRDeλ(T−M) > 0. (40)

Therefore, q3(T ) = f3(T )

g3(T )
= TVC3(T ) is a strictly pseudoconvex function in T. From Equa-

tion (24), let

f4(T ) = S + CD
λ

(eλT − 1) + hD
λ2

[eλT − λT − 1] − PIDT
(

M − T
2

)
, (41)

and

g4(T ) = T. (42)

C© 2013 The Authors.
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Taking the first-order and second-order derivatives of f4(T ), we have

f ′
4(T ) = CDeλT + hD

λ
[eλT − 1] + PID(T − M), (43)

and

f ′′
4 (T ) = λCDeλT + hDeλT + PID > 0. (44)

Therefore, q4(T ) = f4(T )

g4(T )
= TVC4(T ) is a strictly pseudoconvex function in T. From Equa-

tion (25), let

f5(T ) = S + CD
λ

(eλT − 1) + D(h + CR)

λ2
[eλT − λT − 1], (45)

and

g5(T ) = T. (46)

Taking the first-order and second-order derivatives of f5(T ), we have

f ′
5(T ) = CDeλT + D(h + CR)

λ
[eλT − 1], (47)

and

f ′′
5 (T ) = λCDeλT + D(h + CR)eλT > 0. (48)

Therefore, q5(T ) = f5(T )

g5(T )
= TVC5(T ) is a strictly pseudoconvex function in T. Finally, from

Equation (27), let

f6(T ) = S + A + D(Cλ + k)

λ2
(eλT − 1) − D(k − h)

λ2

[
λ

D
W + ln(eλT − λW/D)

]

− hD
λ

T + CRD
λ2

[eλT − λT − 1]

(49)

and

g6(T ) = T. (50)

Taking the first-order and second-order derivatives of f6(T ), we have

f ′
6(T ) = D(Cλ + k)

λ
eλT − D(k − h)

λ

eλT

eλT − λW/D
− hD

λ
+ CRD

λ
[eλT − 1], (51)

and

f ′′
6 (T ) = D(Cλ + k)eλT + D(k − h)(λW/D)eλT

(eλT − λW/D)2
+ CRDeλT > 0. (52)

Therefore, q6(T ) = f6(T )

g6(T )
= TVC6(T ) is a strictly pseudoconvex function in T. Consequently, we

have completed the proof.
Note that Theorem 1 simplifies the search for the global minimum solution to a local minimum

solution. To find the optimal solution T ∗
i for i = 1, 2, . . . , 6, taking the first-order derivative of

C© 2013 The Authors.
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TVCi(T ), for i = 1, 2, . . . , 6, setting the result to zero, and simplifying terms, we obtain

D(Cλ + k)

λ2
(λT eλT − eλT + 1) + D(k − h)

λ2

[
λ

D
W + ln(eλT − λW/D) − λTeλT

eλT − λW/D

]

+ CRD
λ2

[λT eλ(T−M) − eλ(T−M) − λM + 1] + PIDM2

2
− (S + A)= 0, for T ∗

1 ; (53)

D(Cλ + k)

λ2
(λTeλT − eλT + 1) + D(k − h)

λ2

[
λ

D
W + ln(eλT − λW/D) − λT eλT

eλT − λW/D

]

+ PIDT2

2
− (S + A) = 0, for T ∗

2 ; (54)

D(Cλ + h)

λ2
(λT eλT − eλT + 1) + CRD

λ2
[λT eλ(T−M) − eλ(T−M) − λM + 1]

+ PIDM2

2
− S = 0, for T ∗

3 ; (55)

D(Cλ + h)

λ2
(λT eλT − eλT + 1) + PIDT2

2
− S = 0, for T ∗

4 ; (56)

D(Cλ + h + CR)

λ2
(λT eλT − eλT + 1) − S = 0, for T ∗

5 ; (57)

and

D(Cλ + k + CR)

λ2
(λTeλT − eλT + 1) + D(k − h)

λ2

[
λ

D
W + ln(eλT − λW/D) − λT eλT

eλT − λW/D

]

− (S + A) = 0, for T ∗
6 . (58)

In the next section, we provide a couple of examples to compare the optimal solutions in Liao
et al. (2012) with ours.

5. Numerical examples

Example 1: We consider the data same as those in Example 5 in Liao et al. (2012): h = 5, k = 6, R =
0.15, I = 0.12, S = 40, A = 5, C = 3, λ = 0.03, D = 30, M = 0.1, W = 12, W = 9, and we set P = 10.
In the example, W >W , the calculation results of Liao et al. (2012) and ours are shown in Table 1.

C© 2013 The Authors.
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Table 1
Optimal solution for Example 1

tW tR T ∗ Q∗ TVC(T ∗)

Liao et al. (2012) 0.2881 — 0.6857 20.7846 214.4331
Present paper — 0.2950 0.6891 20.8881 213.3376

Table 2
Optimal solution for Example 2

tW tR T ∗ Q∗ TVC(T ∗)

Liao et al. (2012) 0.5013 — 0.7504 15.1779 154.9769
Present paper — 0.5047 0.7500 15.1699 153.2564

Example 2: We consider the data same as those in Example 4 in Liao et al. (2012): h = 3, k = 5, R =
0.15, I = 0.12, S = 30, A = 2, C = 4, λ = 0.03, D = 20, M = 0.3, W = 5, W = 10, and we set P = 10.
In the example, W <W , the calculation results of Liao et al. (2012) and ours are shown in Table 2.

The computational results in Tables 1 and 2 reveal that (1) the time that inventory level in RW
reaches to zero, tR, is longer than the time that inventory level reduces to W, tW ; and (2) the annual
total variable cost, TVC(T ∗), in ours is less expensive to operate than that in Liao et al. (2012).

6. Conclusions

In this paper, we have identified the flaws of the paper authored by Liao et al. in 2012 as follows:
(1) inclusion of cost of deteriorating items twice, (2) use of unit purchase cost instead of unit selling
price to calculate interest earned, and (3) erroneously considering the time taken by inventory in RW
to reduce to zero, to be same as the time taken by total inventory to reduce to the maximum storage
capacity of the OW. Then we have established appropriately objective function and mathematical
derivations of the problem. Further, we have shown that the optimal replenishment cycle time not
only exists but is also unique, which simplifies the search for the global minimum solution to a
local minimum solution. Finally, we have provided a couple of examples to illustrate the differences
between our optimal solution and theirs.

For future research, the proposed model can be extended in several ways. For instance, we may
consider this model for time-varying or stock-dependent demand. Also, we could generalize the
model to allow for shortages and partial backlogging. Finally, we could consider noncooperative
Nash and Stackelberg equilibrium solutions or cooperative Pareto solution to this supplier–retailer
supply chain management problem.
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