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When the outstanding balance exceeds the housing value before the loan is settled, the
insurer suffers an exposure to crossover risk induced by three risk factors: interest rates,
house prices and mortality rates. With consideration of housing price risk, interest rate risk
and longevity risk, we provide a three-dimensional lattice method that simultaneously
captures the evolution of housing prices and short-term interest rates to calculate the fair
valuation of reverse mortgages numerically. For a reverse mortgage insurer, the premium
structure of reverse mortgage insurance is determined by setting the present value of the
total expected claim losses equal to the present value of the premium charges. However,
when the actual loss is higher than the expected loss, the insurer will incur an unexpected
loss. To offset the potential loss, we also design two types of crossover bonds to transfer the
unexpected loss to bond investors. Therefore, through the crossover bonds, reverse
mortgage insurers can partially transfer crossover risk onto bond holders.
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Introduction

Demographic ageing represents one of the most serious challenges for developed and
developing countries. The trends of mortality improvement continue to threaten the
security of social security systems worldwide. The dependent ratio—defined as the
ratio of the number of senior dependents (over 65 years of age) to the population
between ages 15 and 64 years—keeps rising in most countries, which means that the
overall economy faces a greater burden to support an ageing population.

Governments and industries seek to decrease their financial burden by deferring
the retirement age and/or reducing the benefits people receive in a defined benefit
pension plan. In addition, people might attain financial security in retirement through
savings, purchasing private insurance or continuing to work. However, for many
people who earn less from their employment, the alterative is unrealistic and
impractical. As demographic shifts increase, for the group of elderly homeowners, who
are often house-rich and cash-poor, reverse mortgages might provide a more practical
solution. Reverse mortgages are financial contracts that allow retirees to convert their
home equities into either a lump sum or an annuity, but still maintain ownership and
residence until they die, sell or vacate their homes to live elsewhere.
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There are three basic payment forms for reverse mortgages: (1) tenure, (2) term or
(3) line of credit. The distinguishing characteristic of the tenure mortgage is that it
provides a monthly payment to the borrower as the borrower occupies the house.
In contrast, a term loan provides monthly payments for only a fixed period. The credit
line enables the borrower to make draws at any time up to some maximum, pre-
specified amount; the mortgage is not due and payable until the borrower sells the
property, moves out permanently or dies. At the mortgage’s due date, the loan gets
repaid with accumulated interest through the sale of the property. Furthermore, the
lender can only receive the minimum of the entire debt or the net value of the property,
which prevents the borrower from owing more than the value of the property. This
nonrecourse clause makes the reverse mortgage difficult to price.

Reverse mortgage contracts involve a range of risks from the insurer’s perspective. The
outstanding balance usually accumulates at a faster rate than the appreciating rate of the
housing value; therefore, if the outstanding balance exceeds the housing value before the
loan is settled, the lender starts to incur a loss. This crossover risk is crucial for managing
reverse mortgages effectively. It can be induced by three risk factors: interest rates,
housing prices and mortality rates. As proposed by Phillips and Gwin,1 an increase of the
lifespan of the loan resulting from a mortality improvement incurs a higher crossover
risk. A rise in interest rates speeds up the rate at which the loan accumulates, such that it
may hit the crossover point earlier. In addition, a depression in the real estate market will
lower the value of the home and impose a higher crossover risk.

Szymanoski2 analyses the risks involved with reverse mortgage insurance and
explains a pricing model developed for the Home Equity Conversion Mortgage
(HECM)—a publicly guaranteed reverse mortgage offered by the U.S. Department of
Housing and Urban Development. Chinloy and Megbolugbe3 develop an alternative
pricing model for a reverse mortgage in which the borrower receives payments as either
a lump sum or an annuity. Both studies investigate reverse mortgages with a constant
interest rate assumption. Boehm and Ehrhardt4 provide analysis of the risks associated
with reverse mortgage loans and present pricing models for reverse mortgages under
the interest rate risk inherent to fixed-rate reverse mortgages. They find that the interest
rate risk of a reverse mortgage is greater than that of either a typical coupon bond or a
regular mortgage. Mitchell and Piggott5 explore the feasibility of developing the reverse
mortgage market in Japan and conclude that it has the potential to relieve the fiscal
burden on traditional, state-funded retirement provisions.

Rodda et al.6 analyse the HECM programme, using a simulation model in which
interest rates and house prices vary according to historically accurate transition
probabilities followed by the one-year Treasury rate since April 1953 and the Office of
Federal Housing Enterprise Oversight house price index since 1975. Ma et al.7 analyse

1 Phillips and Gwin (1992).
2 Szymanoski (1994).
3 Chinloy and Megbolugbe (1994).
4 Boehm and Ehrhardt (1994).
5 Mitchell and Piggott (2004).
6 Rodda et al. (2004).
7 Ma et al. (2007).
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the risk of government-insured reverse mortgages in Korea. They apply a Monte Carlo
simulation method, with housing prices following a geometric Brownian motion
(GBM) and interest rates following the Vasicek process. Employing the Lee-Carter
model with permanent jump effects and an ARIMA-GARCH housing pricing model,
Chen et al.8 price the non-recourse provision of reverse mortgages and compare it with
calculated mortgage insurance premiums.

The loan balance of reverse mortgages may grow to exceed the property value at the
time of termination because of multiple risks: termination risk (longevity risk), interest
rate risk and housing price risk. However, most existing literature on risk modelling in
the HECM programme does not simultaneously consider the dynamics of mortality
rates, interest rates and housing prices. To fill this gap and address interest rate risk,
housing price risk and longevity risk, we price reverse mortgages with up-to-date
methods. Specifically, we consider a reverse mortgage structured like an HECM
scheme and assume that the housing price follows a GBM process;9 the interest rate
reflects the lognormal process proposed by Black et al.;10 and the mortality-related
risk can be assessed by the Lee-Carter model.

However, when the process for the short-term interest rate follows the lognormal
process, the closed-form solutions of reverse mortgages are not available. Therefore,
we use a three-dimensional lattice method that can simultaneously capture the
evolution of housing prices and short-term interest rates to calculate a fair valuation of
reverse mortgages. For the housing price process, we use the Cox–Ross–Rubinstein
(CRR)11 model to generate the possible states of future housing price. For short-term
interest rates, we use the Black–Derman–Toy (BDT)10 model to generate the possible
states of future spot rates.

Securitisation is a financial innovation that emerged in the 1970s in the U.S.
financial market. According to Cowley and Cummins,12 it involves the isolation of a
pool of assets or rights to a set of cash flows and the repackaging of the assets or cash
flows into securities that are traded in capital markets. The idea of securitising
mortality and/or longevity risks also has been introduced.13 There is increased interest
in modelling these types of mortality-based securities; hence, prior literature has
proposed the ideas of mortality bonds and mortality swaps,14 which in turn have been
effectively put into practice. Following an approach similar to that used by Lin and
Cox,14 Wang et al.15 propose a securitisation method to hedge the longevity risk by
using survivor bonds and survivor swaps for reverse mortgage products.

Also in line with Lin and Cox, Denuit et al. and Wang et al.,16 we propose a
securitisation method based on crossover bonds to hedge the crossover risk inherent in

8 Chen et al. (2010).
9 Cunningham and Hendershott (1984), Kau et al. (1992), Chinloy and Megbolugbe (1994), Szymanoski

(1994), Hilliard et al. (1998), Yang et al. (1998) and Ma et al. (2007).
10 Black et al. (1990).
11 CRR (1979).
12 Cowley and Cummins (2005).
13 See Blake and Burrows (2001) and Blake (2003).
14 Lin and Cox (2005).
15 Wang et al. (2007).
16 Lin and Cox (2005), Denuit et al. (2007) and Wang et al. (2007).
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reverse mortgage products. The present value of expected premiums should equal the
present value of expected claim losses under the actuarial equivalence principle.
However, when the crossover risk increases due to the unexpected shocks in housing
prices, interest rates or mortality rates, the actual loss may be larger than the expected
one, which creates an unexpected loss for the insurer. Therefore, we design principal-
guaranteed crossover bonds to transfer the unexpected loss partly onto bond investors.
The payoff structure of principal-guaranteed crossover bonds relates to the actual and
expected losses of reverse mortgages. At each payment date, if the actual loss of the
reverse mortgage is less than the expected loss, bond investors can obtain a higher
coupon rate; otherwise, they receive a lower coupon rate level. Therefore, through
principal-guaranteed crossover bonds, reverse mortgage insurers can partly transfer
the unexpected loss onto bond holders. In addition, both the principal guaranteed
feature and the possibility of higher coupon rates inspire risk-averse investors to
purchase these bonds. This win-win situation offers a solution to the issue of crossover
bonds. Using a three-dimensional lattice method, we also numerically calculate fair
coupon rates for crossover bonds.

Pricing model of reverse mortgage insurance contracts

In this section, we first describe the contract structure of reverse mortgages, which
provides the basis for our valuation. We then model the dynamics of the spot interest
rates, housing prices and mortality rates sequentially.

Reverse mortgage contracts

In the U.S. HECM programme, borrowers are required to pay 2 per cent of housing
values as an upfront mortgage insurance premium (UP0), as well as a monthly mortgage
insurance premium (MIPt), according to the annual rate of 0.5 per cent of the
outstanding loan balances. Using this predetermined insurance premium structure, we
evaluate the present value of expected claim losses and insurance premiums, thus
determining the loan-to-value (LTV) ratios in a condition in which the present values of
expected claim losses are equal to those of insurance premiums.

We investigate reverse mortgages with a lump sum payment, analogous to the U.S.
HECM programme.2 The initial property value, denoted H0, enables us to determine
the lump sum payment. We assume that the loan becomes due and payable only at the
borrower’s death. The borrower receives a lump sum payment, BAL0, and does
nothing else, because the house is his or her principal residence. The value of BALt, or
the outstanding balance at time t, is determined by the outstanding balance at time t�1
plus the premium charge with interest accrued. Thus BALt can be calculated as
follows:

BALt ¼ ðBALt�1 þMIPtÞð1þ yÞ; ð1Þ

where

BALt� The outstanding loan balance at time t,
BAL0¼M �H0þUP0¼M �H0þ 0.02H0¼ (Mþ 0.02)H0.
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M � Maximum level of mortgages (as a percentage).
UP0 � Upfront mortgage insurance premium at inception.
MIPt� Yearly mortgage insurance premiums at time t,

MIPt¼ 0.005BALt�1.
y � Mortgage interest rate at time t.

We can recursively obtain the expressions for MIPt and BALt, as follows:

BALt ¼ 1:005tðMþ 0:02Þð1þ yÞtH0; ð2Þ
and

MIPt ¼ 0:005BALt�1

¼ 0:005�1:005t�1ðMþ 0:02Þð1þ yÞt�1H0:
ð3Þ

From the insurer’s standpoint, one of the crucial risks to manage in reverse mortgages
is the crossover risk, which combines three underlying risks: interest risk, housing price
risk and mortality risk. In the following sections, we describe their dynamics.

Interest rate process

Generally speaking, in an ordinary economic environment, we can assume that the
short-term risk-free interest rate is constant. However, in some circumstances, the
short-term interest rate changes dramatically. For example, when the central bank
suddenly changes monetary policies or oil shocks occur, the short-term interest rate
will fluctuate over time. Thus, instead of using a constant interest rate, we assume the
short-term risk-free interest rate is stochastic.

There are a number of models of the local process for the short-term interest rate—a
normal process,17 a lognormal process18 and a square-root process,19 among others.
Among them, lognormal models keep the rate away from zero entirely, whereas the
interest rate in the normal process may fall below zero. We use the lognormal model to
describe the evolution of short-term interest rates, as follows:

d ln rt ¼ yt þ
q ln srt

�
qt

srt
ln rt

� �
dtþ srtdW

r
t ; ð4Þ

where rt is the instantaneous spot rate at time t; yt is a long-term interest rate
parameter; st

r is the volatility of the spot rate at time t; and Wt
r represents a standard

Brownian motion under a risk-neutral measure Q. Assuming a different lognormal
short rate distribution for each future time allows both mean and variance to depend
on time. In contrast with the Vasicek model, in the lognormal representation, the short

17 Jamshidian (1989) and Vasicek (1977).
18 Dothan (1978), Black et al. (1990) and Black and Karasinski (1991).
19 Cox et al. (1985).
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rates are lognormally distributed, with the resulting advantage that interest rates
become nonnegative.

Under the risk-neutral measure Q, the spot rate process defined in Eq. (4) must
ensure that the discounted zero coupon bond price follows a martingale, namely,

Pð0;TÞ ¼ EQ
PðT;TÞ
BðTÞ

� �
¼ EQ exp �

ZT
0

rsds

0
@

1
A

2
4

3
5; ð5Þ

where P(t,T) denotes the price of a zero-coupon bond issued at time t that pays US$1
at time T, tpT, and B(t) is the money market account at time t. Note that Eq. (4) is a
continuous time limit of the Black–Derman–Toy one-factor model (BDT model),
which incorporates two independent functions of time, yt and st

r, chosen so that the
model fits both the yield curve and the yield rate volatility structure. We use the spot-
rate tree generated by the BDT model to capture the evolution of the short-term
interest rate, which ensures that Eq. (5) holds.

Housing price model

Mortgage valuations typically rely on the assumption that housing prices follow a
stochastic GBM process.9 This process is also known as a continuous time limit of
random walk with drift for the dynamics of an instantaneous rate of returns.
Therefore, under the risk-neutral measure Q, the discounted housing price adheres to a
martingale, as follows:

Hð0Þ ¼ EQ
HðTÞ
BðTÞ

� �
¼ EQ HðTÞ exp �

ZT
0

rsds

0
@

1
A

2
4

3
5; ð6Þ

where H(t) is the housing price at time t. A solution of Eq. (6) is given by

dHt

Ht
¼ rtdtþ sHðrHrdW

r
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Hr

q
dWH

t Þ; ð7Þ

where Wt
H, independent of Wt

r, is standard Brownian motion under a risk-neutral
probability measure Q; sH is the volatility of housing returns; and rHr is the
correlation coefficient between the spot rate and housing returns. The proof of
Eq. (7) appears in Appendix A. Note that the volatility of housing returns is
unchanged when the probability measure transforms from the real-world probability
measure P to the risk-neutral measure Q. Therefore, we can directly calibrate the vola-
tility of housing returns by using the standard derivation of the housing return series as
its estimate.

We also construct a binomial tree model to capture the housing price dynamic and
the correlation coefficient between the spot rate and housing returns simultaneously.
We discuss the binomial tree model in the section “Three-dimensional lattice method”.
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Mortality model

Since Lee and Carter presented their original work in 1992, the Lee–Carter model has
been widely used for mortality trend fitting and projection. The Census Bureau
population forecast has used it as a benchmark for long-run forecasts of U.S. life
expectancy. The two most recent Social Security Technical Advisory Panels have
suggested that trustees should adopt this method or other methods consistent with it.20

In this article, we assess mortality-related risks using the Lee–Carter model, for
which mx, t, the mortality force at age x during calendar year t, satisfies

lnðmx;tÞ ¼ ax þ bxkt þ ex;t; ð8Þ

where ax represents the age pattern of death rates; bx describes the pattern of
deviations from the age x profile when the parameter k varies; kt explains the change
of mortality over time t; and ex, t describes the error term, which is expected to be white
noise with zero mean and a relatively small variance.21

The Lee–Carter model cannot be fitted by the ordinary least square approach,
because all variables on the right-hand side of the model are unobservable. Moreover,
this model is obviously over-parameterised. We use the singular value decomposition
method22 to fit the solutions of the parameters. To obtain a unique solution, we
impose a normalisation condition, such that the bx terms sum to unity, and the kt
terms sum to zero, that is, X

t

kt ¼ 0; and
X
x

bx ¼ 1: ð9Þ

Then ax becomes the average value of ln(mx, t). For each age group x, we can obtain b̂x
by regressing ln(mxt)�âx on k̂t without a constant term. Finally, k̂t is approximately
equal to the sum over age of ln(mxt)�âx.

Following Lee and Carter,22 we forecast future values of kt as follows:

kt ¼ kt�1 þ zþ et; ð10Þ
where z is the drift parameter, and et is a sequence of independent and identically
normal distributions with mean 0 and variance s2. The values k1; . . . ; kt0 are known at
time t0, but ktj are unknown and must be forecast, where tj¼t0þ j for any natural
number j. By virtue of Eq. (10), we have

ktj ¼ kt0 þ jzþ
Xj
i¼1

eti : ð11Þ

Moreover, conditional on the information up to time t0, ktj is normally distributed
with mean kt0 þ jz and variance js2.

20 Lee and Miller (2001).
21 Lee (2000).
22 Lee and Carter (1992).
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Let p x0
ðt0Þ denote the one-year survival probability that an x0-aged person in

calendar year t0 reaches age x0þ 1. We assume that the age-specific mortality rates are
constant within bands of age and time, but may vary from one band to the next.
Specifically, given any integer age x0 and calendar year t0, we suppose that

mx0þx;t0þt ¼ mx0;t0
; for 0px; to1: ð12Þ

Thus, the one-year survival probability can be calculated as px0ðt0Þ ¼ expð�mx0;t0
Þ.

Let tnpx0;t0 denote the n-year survival probability that an x0-aged person in calendar
year t0 reaches age xn¼x0þ n, which is

tnpx0;t0 ¼ exp �
Xn�1
j¼0

mxj;t0þj

 !
¼ exp �

Xn�1
j¼0

expðax0þj þ bx0þjkt0þjÞ
 !

: ð13Þ

The distribution function of tnpx0;t0 under the real-world (physical) probability
measure P is given by

FtnðxÞ ¼ PorbPðtnpx0;t0pxÞ: ð14Þ

Wang23 proposes a distortion operator to change the probability measure from the
real-world probability measure P to a Wang risk measure, with the following
transformation:

Fl
tn
ðxÞ ¼ FðF�1ðFtnðxÞÞ þ lÞ; ð15Þ

where l is a parameter called the market price of risk, and F is the distribution
function that corresponds to the standard normal distribution. Therefore, as shown
by Denuit et al.,24 the expectation value of tnpx0;t0 under the Wang risk measure is
defined as

Sx0ðtnÞ ¼EQ½tnpx0;t0 � ¼
Z1
0

ð1� Fl
tn
ðxÞÞdx

¼
Z1
0

ð1� FðF�1ðFtnðxÞÞ þ lÞÞdx:

ð16Þ

The analytical computation of Sx0ðtnÞ according to Eq. (16) is difficult to implement.
Therefore, after calibrating the parameters of the Lee–Carter model, we use a Monte
Carlo simulation to obtain the expected value of the n-year survival probability under
the Wang risk measure.

23 Wang (2000).
24 Denuit et al. (2007).
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Pricing model for reverse mortgage insurance

We determine the lump sum payment BAL0 when the present value of the insurance
premiums covers the present value of expected losses from future claims. Through the
pricing process, it is more convenient to set the valuation date t0 as 0. Thus, at the
valuation date t0(¼0), the money market account is defined by

BðtÞ ¼ exp

Zt
0

rudu

0
@

1
A: ð17Þ

We also assume that the market is complete and without arbitrage. According to
arbitrage pricing theory, the present value of reverse mortgage insurance premiums
equals the present value of the expected losses from future claims under the risk-
neutral measure Q. Let x0 be the age of the borrower at time t0, then the present value
of the reverse mortgage insurance premiums is of the form:

PVMIP ¼UP0 þ
XT
j¼1

EQ tjpx0;t0
MIPtj

BðtjÞ

� �

¼
XT
j¼1

EQ ðtj�1px0;t0 � tj px0;t0Þ
MaxðBALtj �Htj ; 0Þ

BðtjÞ

� �
¼ PVEL;

ð18Þ

where PVMIP� Present value of total mortgage insurance premiums at inception
(time t0).

PVEL� Present value of total claim losses at inception.
T� The number of years that borrowers with age x0 will live until they

reach 100 years of age.

tjpx0;t0 � The probability that a borrower of age x0 at inception will survive to
age x0þ j.

With the assumption that mortality rate and financial risk are independent, we can
rewrite Eq. (18) as follows:

PVMIP ¼UP0 þ 0:005ðMþ 0:02ÞH0

XT
j¼1

1:005j�1ð1þ yÞj�1

Pðt0; tjÞSx0ðtjÞ;
ð19Þ

PVEL ¼
XT
j¼1
½Sx0ðtj�1Þ � Sx0ðtjÞ�CðtjÞ; ð20Þ

where Sx0ðtnÞ ¼ EQ½tnpx0;t0 �, and C(tj) is of the form:

CðtjÞ ¼ EQ

MaxðBALtj �Htj ; 0Þ
BðtjÞ

� �
: ð21Þ
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However, when the process for the short-term interest rate follows the lognormal
process defined in Eq. (4), the closed-form solutions of C(tj) are not available. To
obtain the values of C(tj) numerically, there are many techniques in option pricing,
such as finite difference methods, lattice or tree methods, and Monte Carlo simulation
methods.

Three-dimensional lattice method

We use a three-dimensional lattice method that can simultaneously capture the
evolution of housing prices and short-term interest rates. To determine the process of
short-term interest rates, we use the BDT10 model to generate the possible states of
future spot rates. We fit the BDT model to both the yield curve and the term structure
of the yield rate volatilities. Initially, we divide the time horizon into N equal segments
with length Dt¼T/N.

Jamshidian25 shows that the level of the spot rate at time t in the BDT model is given
by rt¼f(t)exp(strWt

r), where f(t) is a time-varying medium of the lognormal distri-
bution for the spot rate at time t. As proved by Shreve’s26 Theorem 3.2.1,

PN
k¼1 Xk

ffiffiffiffiffi
Dt
p

converges to WT
r as Dt-0, where Xk is either �1 or 1 with equal probability.

Therefore, we can represent the level of the spot rate at node (i, j) in the tree as

riDtðjÞ ¼ fðiÞexpðsriDt j
ffiffiffiffiffi
Dt
p
Þ; i ¼ 1; . . . ;N

and

j ¼ �i;�iþ 2; :::; i� 2; i;

ð22Þ

such that we replace t by iDt and Wt
r by

Pi
k¼1 Xk

ffiffiffiffiffi
Dt
p

¼ j
ffiffiffiffiffi
Dt
p

. We briefly sketch the
methodology to fit the BDT model to both the yield curve and the yield rate volatilities
in Appendix B.

For the housing price process, considering the correlation coefficient between spot
rates and the housing returns, we modify the CRR model to generate possible states of
future housing prices. Therefore, if H0 is the housing value at time 0, then after one
period, at time Dt, it can rise to uH0 or decrease to dH0, where u and d represent the
magnitudes of one step up or down, respectively. We thus derive the binomial tree for
housing prices.

Proposition 1 Let Xiþ 1¼1(�1) if the spot rate goes up (down) at time (iþ 1)Dt in
the BDT model. Based on Eq. (7) and conditional on riDt( j) and Xiþ 1, the possible

values of H(iþ 1)Dt are HiDtu with probability PH
r
iDtðjÞ;Xiþ1

and HiDtd with probability

1� PH
r
iDtðjÞ;Xiþ1

, where u, d and PH
r
iDtðjÞ;Xiþ1

are defined as follows:

u ¼ 1

d
¼ expðsH

ffiffiffiffiffi
Dt
p
Þ: ð23Þ

25 Jamshidian (1991).
26 Shreve (2004).

Hong-Chih Huang et al.
Securitisation of Crossover Risk in Reverse Mortgages

631



PH
r
iDtðjÞ;Xiþ1

¼ expððriDtðjÞ � 0:5r2Hrs
2
HÞDtþ rHrsHXiþ1

ffiffiffiffiffi
Dt
p
Þ � d

u� d
: ð24Þ

The proof of Proposition 1 is in Appendix C. When rHr¼0, Eq. (24) reduces to the
original upward risk-neutral probability in the CRR model. Taking the limit of the
number of periods equal to infinity, the continuous time limit of the binomial tree
model for a log-change of housing prices becomes the GBM process defined in Eq. (7).

We combine the BDT model and modified CRR model in Figure 1 to depict a three-
period lattice model. When the spot rate at time 2Dt is r2Dt(0) and the housing price is
H0d

2, the probability P9 that both housing price and spot rate go up at the sequential

period is equal to 0.5, multiplied by PH
r
2Dtð0Þ;X3¼1. The other probabilities have

analogous definitions. Therefore, using the three-dimensional lattice model, we can
numerically obtain the values of C(tj). The initial outstanding loan balance BAL0 can
be determined by setting the present value of total expected claim losses equal to the
present value of the premium charges, namely, PVMIP¼PVEL.

Securitisation for reverse mortgage insurance

Suppose the lender holds a portfolio of L loans. At time 0, all the borrowers are of
different ages, ranging from 62 years to 100 years. Each borrows a lump sum against
his or her home property. When the outstanding balance exceeds the housing value
before the loan is settled, the insurer starts to incur a loss. Therefore, for a reverse
mortgage insurer, the premium structure of reverse mortgage insurance is determined
by setting the present value of total expected claim losses equal to the present value of
the premium charges. However, when the actual loss is higher than the expected loss,
the insurer incurs an unexpected loss. To offset the potential loss, we design a principal
guaranteed crossover bond to transfer the unexpected losses induced by crossover risk
to the bond investors.

The payoff structure of the crossover bond is related to the actual loss and the
expected loss. Similar to Treasury bonds, the crossover bonds pay interest at each
coupon payment date and the principal at maturity. Unlike Treasury bonds though,
when the actual loss is less than the expected loss at the coupon payment date, the
bond investors receive a higher coupon rate than that for Treasury bonds with the
same maturity. Otherwise, the bond investors receive a lower coupon rate. The closed
form solution of the crossover bonds are hard to derive, but using the three-
dimensional lattice method, we can calculate their fair values.

Numerical analysis

For the numerical analysis of the impacts of longevity risk, interest rate risk and housing
price risk on the valuation of reverse mortgages, we first describe the parameters for the
dynamics of the interest rate, housing price and mortality rate, then present the nume-
rical results for the LTV ratios, as well as their sensitivity analysis. Finally, we compute
the fair coupon rates of the crossover bonds with maturity of up to 30 years.
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First, we employ the daily Treasury yield curve rate data from 1 October 1993 to 31
December 2010,27 obtained from the U.S. Department of the Treasury,28 to calculate

Figure 1. Three-period lattice method for pricing reverse mortgage insurance contracts.

27 Prior to 1 October 1993, the 20-year treasury yield rates are not available.
28 www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldAll.
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the volatilities of the three-month, six-month, one-year, two-year, three-year, five-
year, seven-year, ten-year, 20-year and 30-year yield rates. The top two figures in
Figure 2 are the yield curve at 31 December 2010, and its corresponding volatility
structure. Fitting the BDT model to the yield curve and yield rate volatilities, we depict
the minimum, medium and maximum of the spot-rate tree, together with the spot rate
volatilities (see the bottom of Figure 2). Without loss of generality, we use the
mediums at each time period of the BDT model as corresponding floating mortgage
rates of reverse mortgages to hedge against the risk exposure to spot rate uncertainty.

We use the national average prices of previously occupied homes for conventional
single-family mortgages in the U.S. as the proxy for the housing price data.29 Our
sample period runs from January 1973 to December 2010, with data from the Federal
Housing Financial Board. Because we assume that housing returns follow a normal
distribution, the standard derivation of the housing return series, which provides an
unbiased estimate of the volatility of housing returns, is 12.43 per cent. Finally, using
the three-month Treasury yield rate as a proxy for the spot rate, we calculate the
correlation coefficient between spot rates and housing returns as 0.0154.
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Figure 2. Calibration of the BDT model.

29 Categories of homes include previously occupied, new and all homes. We choose previously occupied

home prices as a proxy for sale price, because a reverse mortgage loan gets repaid through the proceeds

of the sale of the property when the mortgagor dies.
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We turn to the U.S. mortality rates to calibrate the parameters of the Lee–Carter
model. The data for our sample period, 1933–2007, was obtained from the Human
Mortality Database website.30 The pattern of empirical mortality rates and the fitted
values of ax, bx and kt appear in Figure 3. Let the market price of risk for male and
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Figure 3. Calibration of the Lee–Carter model: (a) U.S. females, (b) U.S. males.

30 www.mortality.org/.
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female mortgagees, denoted lM and lF, be �0.5 and �0.3,31 respectively. Applying the
Lee–Carter model, we depict the survival probabilities Sx0ðtnÞ, according to Eq. (16),
for x0¼65, 70, 75 and 80 in Figure 4. The higher the age, ceteris paribus, the lower is
the survival probability.

Using the three-dimensional lattice method, we first present the numerical results
for a representative base case. For the parameters of the base case, the initial housing
value is US$274,600, the average of previously occupied home prices in December
2010. Figure 5 depicts the LTV ratios for different ages. The lower the age is, ceteris
paribus, the lower the LTV ratio. In terms of economic implications, the present value
of the house is the sum of the present value of future rental incomes. According to the
reverse mortgage mechanism, the borrower uses the rental income after his or her
death in exchange for the lump sum payment at the inception. An older borrower can
borrow more money, because his or her expected death is sooner, and the present
value of the rental income after death is greater.
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Figure 4. Survival probabilities under the Wang risk transform: (a) female, (b) male.

31 Using the market price of an annuity sold to a 65-year-old individual in Belgium, Denuit et al. (2007) find

that lM ranges from 0.4901 to 0.4449 and lF range from 0.3080 to 0.2795. We also calculate the LTV

ratios in Table 2 by varying the market price of risk from �0.5 to �0.3 for comparison.
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We next examine the sensitivity of the LTV ratios by varying the level of housing
price volatility and interest rate volatility in Table 1. From Table 1, we recognise that
the higher the interest rate volatility, the lower the LTV ratio is. Higher interest rate
volatility also may lead to a higher interest rate and thus a lower present value of the
house, as well as a lower LTV ratio. Similarly, because higher housing price volatility

62 64 66 68 70 72 74 76 78 80 82 84 86 88 90
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Figure 5. Loan-to-value ratios for different ages.

Table 1 Loan-to-value ratios

Volatility Gender Age (years)

Housing price Interest rate 65 70 75 80

0.0932 Lower Female 0.8122 0.8178 0.8252 0.8354

Male 0.8172 0.8238 0.8321 0.8433

Normal Female 0.8115 0.8174 0.8250 0.8353

Male 0.8167 0.8235 0.8319 0.8432

Higher Female 0.8107 0.8169 0.8247 0.8352

Male 0.8161 0.8232 0.8318 0.8431

0.1243 Lower Female 0.6692 0.6861 0.7064 0.7303

Male 0.6834 0.7016 0.7224 0.7472

Normal Female 0.6686 0.6858 0.7063 0.7302

Male 0.6830 0.7014 0.7223 0.7471

Higher Female 0.6679 0.6854 0.7061 0.7301

Male 0.6826 0.7011 0.7222 0.7471

0.1554 Lower Female 0.5398 0.5652 0.5963 0.6303

Male 0.5602 0.5883 0.6185 0.6549

Normal Female 0.5394 0.5649 0.5961 0.6302

Male 0.5599 0.5882 0.6184 0.6548

Higher Female 0.5390 0.5647 0.5960 0.6302

Male 0.5595 0.5880 0.6184 0.6548

Notes: We examine the sensitivity of the LTV ratios by varying the housing price volatility from

0.1243� 0.75=0.0932 to 0.1243� 1.25=0.1554. The lower (higher) case in the second column represents the

interest rate volatilities, equal to the estimated volatilities multiplied by 0.75 (1.25).
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may contribute to a lower level of housing prices, greater housing price volatility leads
to a lower LTV ratio.

In Figure 6, we depict the LTV ratios when we vary the correlation coefficient bet-
ween the interest rate and housing price from �0.3 to 0.3. The higher the correlation
is, the lower the LTV ratio. Therefore, both higher correlation coefficients and higher
volatilities in the spot rate and housing returns contribute to a higher risk profile in the
reverse mortgage, which leads to lower LTV ratios. The floating mortgage rates for
reverse mortgages also mean that the impact of housing price volatility is more
significant than that of the correlation and interest rate volatility on the LTV ratio,
and therefore for pricing an adjusted-rate reverse mortgage, it is crucial to estimate the
volatility of housing price precisely.

In Table 2, we examine the sensitivity of the LTV ratios by varying the level of
market price of risk for men and women. These results reveal that the higher the
market price of risk, the higher is the LTV ratio. This higher market price of risk also
contributes to a lower survival probability, which in turn leads to a higher LTV ratio.
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Figure 6. Loan-to-value ratios for different correlation coefficients: (a) female, (b) male.
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However, compared with the volatility of housing returns, the impact of the market
price of risk is trivial.

For the securitisation of the reverse mortgage, we assume the payoff structure of the
principal guaranteed crossover bond relates to actual and expected losses. The actual
loss at each period is calculated according to the distribution of borrowers’ age and
gender, as follows:

ALt ¼
X

g¼f or m

X90
x¼62

wgwxAL
g;x
t ; ð25Þ

where ALt is the actual loss at time t; wg is the gender weight; wage is the age weight;
and ALt

f, x(ALt
m, x) is the actual loss for a woman (man) of age x that satisfies:

ALg;x0
tj ¼ tj�1 q

g
x0

�� MaxðBALg;x0
tj �Htj ; 0Þ

BðtjÞ
; ð26Þ

where tj�1 q
g
x0

�� ¼ tj�1p
g
x0;t0 � tj p

g
x0;t0 denotes that the person has lived for tj�1 years and

will die within one year. Using the three-dimensional lattice method, we can calculate
the actual losses, together with the expected losses, for different ages in each period.

The payoff structure of the first type of crossover bond (Type I) is defined as
follows: similar to the case of Treasury bonds, bond investors receive the interest at
each coupon payment date and the principal at maturity. However, unlike Treasury
bonds, when the actual loss is larger than the expected loss at the coupon payment
date, bond investors receive a coupon rate equal to 0.5 per cent. Otherwise, the bond
investors receive a higher coupon rate than that of the Treasury bonds with the same
maturity. In addition, according to the gender and age distribution of HECM loan
borrowers,32 the female weight is assumed to be 0.6, and the age weights wx are as
given in Figure 7. Using the three-dimensional lattice method, in Table 3, we calculate

Table 2 Loan-to-value ratios with different market price of risk

Age (years)

65 70 75 80

lF
Female �0.3 0.6686 0.6858 0.7063 0.7302

�0.4 0.6684 0.6856 0.7061 0.7300

�0.5 0.6682 0.6854 0.7059 0.7299

lM
Male �0.3 0.6834 0.7018 0.7227 0.7474

�0.4 0.6832 0.7016 0.7225 0.7473

�0.5 0.6830 0.7014 0.7223 0.7471

32 Bishop and Shan (2008).
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the fair coupon rates of the principal-guaranteed crossover bonds with different time
to maturities. As the time to maturity increases, both the coupon rate and the markup
increase. Therefore, when the actual loss is larger than the expected loss at the coupon
payment date, the issuer of a crossover bond can partially hedge the unexpected loss,
and bond holders receive a minimum coupon rate and principal at maturity.
Otherwise, the crossover bond holders can receive a higher coupon than the Treasury
bond with the same time to maturity. This win-win situation should make the bond
attractive, such that issuers can transfer the crossover risk to the bond market.

Again using the three-dimensional lattice method, we depict the expected losses for
the next 30 years in Figure 8. According to the age weights in Figure 7, the expected
losses are greater than the average mortgage insurance premiums after year 11. It is
challenging for the insurer to hedge potential losses after ten years. Therefore, we
design a second type of crossover bond (Type II), the terms of which are virtually
identical to those of the original crossover bond, with one main exception: it pays
a fixed coupon rate equal to the ten-year yield rate (3.13 per cent) for the first ten
years. With the three-dimensional lattice method, we provide in Table 4 the fair
coupon rates of the principal-guaranteed crossover bonds with different times to
maturities. Similar to the Type I crossover bond, both the coupon rate and the markup
increase as the time to maturity increases. In addition, the markup is significantly
larger than that of the Type I crossover bond. Therefore, the Type II crossover bond
provides a different risk profile for bond investors.
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Figure 7. Age distribution for crossover bonds.

Table 3 Fair coupon rates of crossover bonds (Type I)

Time to

maturity

Coupon rate Corresponding

zero rate (%)

Markup

(bps)

Actual loss>Expected

loss (%)

Actual loss%Expected

loss (%)

10 0.50 3.85 3.30 +55.26

20 0.50 4.86 4.13 +72.80

30 0.50 5.22 4.34 +88.22
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Conclusion

In addition to government-sponsored social security systems and employer-sponsored
retirement plans, reverse mortgages have become remarkably popular because they
allow retirees to convert their substantial home equities into either a lump sum or an
annuity and to remain in their homes until they die, sell or vacate their homes to live
elsewhere. In the United States, only an estimated 2 per cent of possible reverse
mortgage borrowers take advantage of these loans under government-guaranteed pro-
grammes. To offset future pension and senior care costs, many countries need to find
ways to increase this acceptance rate for reverse mortgage loans. From the insurer’s
perspective, reverse mortgages involve a range of risks, including housing price, inte-
rest rate and longevity risks. In this article, with full consideration of all three forms of
risk, we provide a three-dimensional lattice method that simultaneously captures the
evolution of housing prices and short-term interest rates, and numerically calculates
fair values for reverse mortgages.
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Figure 8. Expected losses and average mortgage insurance premiums.

Table 4 Fair coupon rates of crossover bonds (Type II)

Time to

maturity

Coupon rate Corresponding zero

rate (%)

Markup

(bps)

1–10 years

(%)

Actual loss>Expected

loss (%)

Actual loss%Expected

loss (%)

15 3.30 0.50 5.42 3.72 +170.87

20 3.30 0.50 6.26 4.13 +212.63

25 3.30 0.50 6.40 4.24 +216.56

30 3.30 0.50 6.52 4.34 +217.77
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Based on an actuarial equivalence principle, the premium structure of reverse mort-
gages is determined according to when the present value of expected premiums is equal to
the present value of expected losses. However, the insurer incurs an unexpected loss if
actual losses are larger than expected losses. To hedge unexpected losses, we design two
types of principal-guaranteed crossover bonds, whose payoff structures are related to
actual losses and expected losses. Therefore, through crossover bonds, reverse mortgage
insurers can partly transfer the crossover risk to bond investors.

Since Clark’s33 early work, it has been widely recognised that the dynamics of asset
returns present some commonly observed statistical properties—or stylised empirical
facts in financial econometrics literature.34 Therefore, the dynamics of housing returns
may not be adequately described by GBM with constant drift and volatility. From our
numerical analysis, we find that the impact of housing price volatility is more impor-
tant than that of interest rate volatility on pricing reverse mortgages; therefore, it
would be interesting to incorporate stylised facts with housing price processes, such
as exponential Lévy processes or GARCH Lévy models for pricing reverse mortgages.
Furthermore, using the Lee–Carter or other mortality models while considering
mortality improvement as an appropriate predictor of mortality can decrease the LTV
ratio. If a financial institution aims to maximise the LTV ratio to increase market
acceptance of non-government-guaranteed reverse mortgage programmes, it might
adopt a model with higher mortality rates or higher withdrawal rates.
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Appendix A

Proof of Eq. (7)

Using Ito’s Lemma, we have

dlnHt ¼ rt �
1

2
s2H

� �
dtþ sHðrHrdW

r
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Hr

q
dWH

t Þ: ðA:1Þ

Or equivalently,

lnHT ¼ lnH0 þ
ZT
0

rs �
1

2
s2H

� �
dsþ sHðrHrW

r
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Hr

q
WH

T Þ: ðA:2Þ

Therefore,

EQ HðTÞexpð �
ZT
0

rsdsÞ

2
4

3
5

¼ H0EQ exp sHðrHrW
r
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Hr

q
WH

T Þ �
1

2
s2HT

� �� �
:

ðA:3Þ

Because sHðrHrW
r
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Hr

p
WH

T Þ follows a normal distribution with zero mean
and variance equal to sH

2 T, we obtain EQ[H(T)exp(�
R
0
Trsds)]¼H0. This completes the

proof of Eq. (7).
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Appendix B

Constructing the binomial spot-rate tree

As shown by Black et al.10 and Clewlow and Strickland,35 the procedure to deter-
mine the BDT model based on the yield curve and yield rate volatilities is as follows:
Let node (1, 1) be denoted by U and node (1,�1) be denoted by D. Let PU(i) and
PD(i) for i¼1,y,N be the discount function evaluated at nodes U and D, respectively.
Let sR(i) be the volatility of the yield on the zero coupon bond maturing at time
iDt. Then QU, i, j (QD, i, j) is the value, as seen from node U (D), of a security that
pays off US$1 if node (i, j) is reached and $0 otherwise. By definition, QU, i, j¼1 and
QD, i, j¼1. The risk-neutral probabilities of the binomial branches for the BDT model
are assumed to be 0.5. The value at the initial times are f(0)¼r0(0), s0r¼sR(1) and
d0, 0
r ¼1/(1þ r0(0)Dt).

The first step for constructing the BDT model is to determine PU(i) and PD(i) for
i¼2,y,N using Eq. (5):

1

1þ r0ð0ÞDt
ð0:5PUðiÞ þ 0:5PDðiÞÞ ¼ Pð0; iDtÞ; ðB:1Þ

where

PUðiþ 1Þ ¼
X
j

QU;i;j
1

1þ riDtðjÞDt

¼
X
j

QU;i;j
1

1þ fðiÞexpðsriDt j
ffiffiffiffiffi
Dt
p
ÞDt

;

j ¼ �iþ 2; . . . ; i;

ðB:2Þ

and

PDðiþ 1Þ ¼
X
j

QD;i;j
1

1þ riDtðjÞDt

¼
X
j

QD;i;j
1

1þ fðiÞexpðsriDt j
ffiffiffiffiffi
Dt
p
ÞDt

;

j ¼ �i; . . . ; i� 2:

ðB:3Þ

To match the initial volatility curve, we have

sRðiÞ
ffiffiffiffiffi
Dt
p

¼ 1

2
ln

lnPUðiÞ
lnPDðiÞ

� �
: ðB:4Þ

35 Clewlow and Strickland (1998).
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Therefore, substituting Eq. (B.4) into Eq. (B.1) yields

PUðiÞ þ PUðiÞexpð�2sRðiÞ
ffiffiffiffi
Dt
p
Þ ¼ 2Pð0; iDtÞð1þ r0ð0ÞDtÞ: ðB:5Þ

According to Eq. (B.5), we can derive PU(i) and PD(i) for i¼2,y,N. The second
step is to generate QU, i, j and QD, i, j, as follows:

QU;i;j ¼ 0:5ðQU;i�1;j�1d
r
i�1;j�1 þQU;i�1;jþ1d

r
i�1;jþ1Þ; ðB:6Þ

and

QD;i;j ¼ 0:5ðQD;i�1;j�1d
r
i�1;j�1 þQD;i�1;jþ1d

r
i�1;jþ1Þ: ðB:7Þ

Using these two discount functions, we can simultaneously solve f(i) and siDt
r accor-

ding to Eqs. (B.2) and (B.3). Finally, the spot rates and discount factors for all nodes
j at time iDt are given by riDtðjÞ ¼ fðiÞexpðsriDt j

ffiffiffiffiffi
Dt
p
Þ and di, j

r ¼1/(1þ riDt(j)Dt). This
completes the procedure for building the binomial spot-rate tree.

Appendix C

Constructing a binomial housing price tree

In view of Eq. (A.2), when the spot rate at time iDt is riDt(j), the housing price dynamic
under the risk-neutral measure Q is given by

ln
Hðiþ1ÞDt
HiDt

� �
¼ riDtðjÞ �

1

2
s2H

� �
Dt

þ sHðrHrðWr
ðiþ1ÞDt �Wr

iDtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Hr

q
ðWH
ðiþ1ÞDt �WH

iDtÞÞ
ðC:1Þ

In the BDT model, we replace WiDt
r by

Pi
k¼1 Xk

ffiffiffiffiffi
Dt
p

; hence, Eq. (C.1) can be
rewritten as

ln
Hðiþ1ÞDt
HiDt

� �
¼ riDtðjÞ �

1

2
s2H

� �
Dt

þ sHðrHrXiþ1
ffiffiffiffiffi
Dt
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Hr

q
ðWH
ðiþ1ÞDt �WH

iDtÞÞ:
ðC:2Þ

We construct the binomial tree by matching the first two moments of Eq. (C.2) with
the tree’s parameters, as follows:

E ln
Hðiþ1ÞDt
HiDt

� �����riDtðjÞ;Xiþ1

� �

¼ riDtðjÞ �
1

2
s2H

� �
Dtþ sHrHrXiþ1

ffiffiffiffiffi
Dt
p

¼ PH
r
iDtðjÞ;Xiþ1

lnuþ ð1� PH
r
iDtðjÞ;Xiþ1

Þlnd:

ðC:3Þ
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E ln
Hðiþ1ÞDt
HiDt

� �� �2�����riDtðjÞ;Xiþ1

 !

¼ riDtðjÞ �
1

2
s2H

� �
Dtþ sHrHrXiþ1

ffiffiffiffiffi
Dt
p� �2

þs2Hð1� r2HrÞDt

¼ s2HDt ¼ PH
r
iDtðjÞ;Xiþ1

ðlnuÞ2 þ ð1� PH
r
iDtðjÞ;Xiþ1

ÞðlndÞ2;

ðC:4Þ

where we use the fact that (Dt)n¼0 for n>1 and Xiþ 1
2 ¼1. Using the series expansion

ex¼1þ xþ x2/2þ? and ignoring the higher powers of Dt, we attain one solution of
Eqs. (C.3) and (C.4) in the form of Eqs. (23) and (24). This completes the proof of
Proposition 1.
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