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We study generalizations of the singlet-sector amplitude-product (AP) states in the valence-bond
basis of S = 1/2 quantum spin systems. In the standard AP states, the weight of a tiling of
the system into valence bonds (singlets of two spins) is a product of amplitudes depending on
the length of the bonds. We here introduce correlated AP (CAP) states, in which the amplitude
product is further multiplied by factors depending on two bonds connected to a pair of sites (here
nearest neighbors). While the standard AP states can describe a phase transition between an
antiferromagnetic (Néel) state and a valence-bond solid (VBS) in one dimension (which we also
study here), in two dimensions it cannot describe VBS order. With the CAP states, Néel–VBS
transitions are realized as a function of some parameter describing the bond correlations. We here
study such phase transitions of CAP wave-functions on the square lattice. We find examples of
direct first-order Néel–VBS transitions, as well as cases where there is an extended U(1) spin liquid
phase intervening between the Néel and VBS states. In the latter case the transitions are continuous
and we extract critical exponents and address the issue of a possible emergent U(1) symmetry in the
near-critical VBS. We also consider variationally optimized CAP states for the standard Heisenberg
model in one and two dimensions and the J-Q model in two dimensions, with the latter including
four-spin interactions (Q) in addition to the Heisenberg exchange (J) and harboring VBS order
for large Q/J . The optimized CAP states lead to significantly lower variational energies than the
simple AP states for these models.

PACS numbers: 75.10.Kt, 75.10.Jm, 75.40.Mg, 75.40.Cx

I. INTRODUCTION

The valence-bond (VB) basis1–6 is ideally suited for
describing many different types of ground states and
low-energy excitations of quantum spin models.7–17 In
the case of S = 1/2 spins in the singlet sector, a ba-
sis state corresponds to a tiling of the lattice into bonds
connecting pairs of sites forming singlets, such that each
spin belongs to one bond. This basis is overcomplete if
bonds of all lengths are included. To describe the ground
state of a Hamiltonian with bipartite interactions, only
bonds connecting sites on different sublattices have to
be included—this restricted VB basis exactly reproduces
Marshall’s sign rule18 for the ground state of such a sys-
tem. Thus, in this basis the wave function is positive
definite and can be sampled using Monte Carlo (MC)
techniques. We here investigate a class of bipartite corre-
lated VB wave functions which can exhibit valence-bond-
solid (VBS) order and related interesting quantum phase
transitions in one and two dimensions.

In this introductory section we provide some further
background and motivation for studying VB states. We
review the definition and properties of the well-studied
Liang-Doucot-Anderson amplitude-product states4 and
introduce their more versatile generalizations—the cor-

related AP (CAP) states that we focus on in this paper.
We discuss reasons to study such states in the context
of quantum phase transitions from the antiferromagneti-
cally ordered Néel state into non-magnetic VBS and spin
liquid states.

A. Valence-bond states and Marshall’s sign rule

While some analytical work has been carried out in the
VB basis,8,12 in most quantitative calculations MC sam-
pling of the bonds must normally be used to reliably eval-
uate expectation values. Since the basis is overcomplete,
the non-negative definiteness of the wave function is a
requirement to avoid problems due to negative sampling
weights (the sign problem). Thus, in most cases VB MC
calculations are restricted to bipartite (non-frustrated)
systems. A two-spin singlet (VB) connecting sites a and
b on sublattices A and B is then defined according to the
following phase convention:

(a, b) = (↑a↓b − ↓a↑b)/
√
2. (1)

Marshall’s sign rule is then incorporated for any tiling of
an even number N of spins into N/2 singlets,

|V 〉 = |(a1, b1) · · · (aN/2, bN/2)〉, (2)

i.e., when expressed in the standard basis of z spin com-
ponents, |Z〉 = |Sz

1 , . . . , S
z
N〉,

|V 〉 = 1

2N/2

∑

Z

ψV (Z)|Z〉, (3)

the sign of a non-zero coefficient ψV (Z), i.e., for states
with antiparallel spins on each bond, is given by

sign[ψV (Z)] = ψV (Z) = (−1)nA↓ , (4)
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where nA↓ is the number of ↓ spins on sublattice A. The
wave function ψ0(V ) of the ground state of such a system
expressed in the VB basis,

|Ψ0〉 =
∑

V

ψ0(V )|V 〉, (5)

is therefore non-negative. When using MC simulations,
e.g., with a variational wave function |Ψ〉 approximating
|Ψ0〉, this is essential, because the overcompleteness im-
plies that the sampling weigh is not |ψ(V )|2, as it would
be in a standard orthogonal basis, but ψ(V )ψ(V ′)〈V ′|V 〉
for simultaneously sampled non-orthogonal bra and ket
configurations |V 〉 and 〈V ′|. The overlap 〈V ′|V 〉 and ma-
trix elements of operators of interest in characterizing the
states can be easily calculated,3–5 as we will discuss later
below.

B. Amplitude-product states

The most commonly used variational states in this con-
text are the AP states introduced by Liang, Doucot,
and Anderson.4 Here one associates a bond connecting
two sites (a, b) with an amplitude h(a, b), which in the
case of a translationally-invariant system is only a func-
tion of the lattice vector rab separating the two sites;
h(a, b) = h(rab). The wave function coefficient for a VB
configuration V is then

ψ(V ) =
∏

r

h(r)nr , (6)

where nr is the number of bonds of “shape” r in the
configuration.
The amplitudes h(r) can be used as variational pa-

rameters. In the original work with the AP states to
describe the ground state of the two-dimensional (2D)
Heisenberg model,4 only the amplitudes for a small num-
ber of short bonds were optimized, and different func-
tional forms (exponentially or power-law decaying with
the distance r) were tested. In later work all the am-
plitudes (on finite lattices) were optimized, leading to
relative energy errors (deviations from results from unbi-
ased quantum Monte Carlo, QMC, calculations) of less
than 0.1%.19,20 In the optimal state the amplitudes de-
cay asymptotically as 1/r3, which is also the result of a
mean-field VB approach.12

In some cases, if one is just interested in the proper-
ties of some class of states without reference to a specific
Hamiltonian, the optimization step is not needed. This
approach has been taken in recent studies of the proto-
typical resonating VB (RVB) spin-liquid state consisting
of the superposition of all configurations of the shortest
(nearest-neighbor) bonds on the square lattice,21–23 and
also in the presence of some fraction of the second bipar-
tite bond (fourth-neighbor).21 These wave functions, for
which the parent hamiltonian was recently identified (in
the case of nearest-neighbor bonds only),24 has exponen-
tially decaying spin correlations but power-law decaying

c0 c1 c2 c3 c4

FIG. 1: (Color online) Configurations of short valence bonds
(shown in red) connected to a lattice link b (indicated by
thick black bars). Their associated CAP weights, Eq. (7), are
Cb(r1, r2) with r1 = r2 = 1 and b here being a horizontal link.
We will later use a notation with weights ci for CAP states
including only short-bond correlations, with i corresponding
to (r1, r2) according to the labeling above.

VBS correlations. A phase transition from the Néel state
into this kind of spin liquid can be achieved by using am-
plitudes of the form h(r) ∝ 1/rκ and tuning the exponent
κ to a critical value.12,25

C. AP states with bond correlations (CAPs)

One of the motivations of the work reported in the
present paper is to obtain a variational description of the
2D Néel–VBS transition. For this, we need a class of wave
functions beyond the AP states, since they do not exhibit
VBS order (while the 1D variants do, as we will discuss in
Sec. III). The 2D non-magnetic AP states are beleived to
always be spin liquids, with exponentially decaying spin
correlations and power-law VBS correlations, similar the
prototypical short-bond RVB states.12,21

We study a class of generalized AP states defined
with bond-correlation factors multiplying the AP wave
function (6). We take these factors to be of the form
Cb[r1(b), r2(b)], where b denotes a nearest-neighbor link
on a 1D chain or 2D square lattice (or, more generally,
any lattice with some imposed bipartition), and r1(b),
r2(b) are the shapes of the two VBs connected to this
bond (with the case of there being just a single bond
connecting the two sites being a special case). Thus, the
wave-function coefficient is

ψ(V ) =
∏

r

h(r)nr

∏

b

Cb[r1(b), r2(b)]. (7)

For a translationally invariant system Cb(r1, r2) for given
(r1, r2) depends only on the orientation (horizontal or
vertical in two dimensions) of the bond b, and these
weights also should obey applicable lattice symmetries.
The number of different correlation factors is then ∝ N2

for a system of N spins. For simplicity of the notation
we hereafter suppress the subscript b.
In principle, in variational CAP calculations all cor-

relation factors can be optimized, along with the ampli-
tudes h(r), but one can also opt to consider only those
factors C(r1, r2) for which r1, r2 ≤ rmax, with some max-
imum bond length rmax, and set the remaining weights
to unity. The possible two-bond configurations with
rmax = 1 are illustrated in Fig. 1. In variational cal-
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culations one would expect the energy to decrease mono-
tonically with rmax, which we will demonstrate explicitly
in Sec. V.
Beyond improving the energy in variational calcula-

tions, the correlation factors also play an important qual-
itative role in 2D systems—without bond correlations,
the standard AP states are either long-range Néel or-
dered (although they do not, by construction, break the
spin-rotation symmetry, they can still develop the magni-
tude of the sublattice magnetization) or are RVB spin liq-
uids with critical VBS correlations (as discussed above in
the context of the short-bond RVBs). They cannot form
VBS order. In contrast, the trivial 1D AP state with
only short bonds is an extreme case of a two-fold degen-
erate VBS state with alternating links with or without a
VB. This kind of long-range order remains stable also in
the presence of some fraction of longer bonds, as we will
discuss below in Sec. III. The generalized CAP states (7)
can exhibit 2D VBS order if the correlation factors favor
such correlations strongly enough. This is true even with
correlations only involving only the shortest bonds on
the square lattice, illustrated in Fig. 1. The CAP states
open the possibility to study the Néel–VBS transition
in classes of wave functions with the bond correlations
parametrized in some way, and to carry out improved
variational calculations for systems with VBS order or
Néel states with significant VBS fluctuations.

D. Purpose and outline of the paper

One of our main reasons to study the CAP states
here is to investigate their abilities to describe the 2D
Néel–VBS transition. This transition has received con-
siderable interest recently in the context of “decon-
fined” quantum-criticality (DQC).26,27 Following earlier
work on VBS states and quantum-critical phenomena in
antiferromagnets10,28–31 and topological aspects of phase
transitions in 3D classical spin systems,32 Senthil et

al. proposed26,27 that the 2D Néel–VBS transition is of
an unusual kind where the standard Landau rule stip-
ulating a generically first-order transition between the
two ordered states is violated. The two order parame-
ters in the DQC scenario are both consequences of the
same underlying more fundamental objects—spinons in-
teracting with an emergent U(1) symmetric gauge field.
The spinons condense in the Néel state and confine as
pairs in the VBS state. Unbiased QMC studies of J-
Q models,33–38 which include certain multi-spin inter-
actions (Q) in addition to the standard Heisenberg ex-
change (J), are in general in good agreement with the
theoretical predictions. Among the most interesting fea-
tures observed is an emergent U(1) symmetry of the
VBS order parameter (presumably reflecting the emer-
gent gauge field—the “photon”) as the critical point is
approached from the VBS side. Moreover, studies of
SU(N) generalizations of the J-Qmodel36 and other spin
models39 have allowed direct connections with analytical

large-N calculations for the non-compact CPN−1 field
theory argued26,27 to describe the transition.

1. Scope of the paper

We here investigate whether the 2D Néel–VBS tran-
sition can be correctly captured with a simple ansatz
wave-function of the form (7) with fixed single-bond am-
plitudes (of a power-law form) and continuously varying
short-bond correlation weights of the form in Fig. 1. The
result so far is negative, in the sense that we do not ob-
serve the same kind of continuous VBS transition as in
the J-Q model. Instead, with parameters chosen such
that there is direct Néel–VBS transition, we find strong
discontinuities. In other cases we find an RVB spin liq-
uid intervening between the ordered phases. Thus, it
still remains an interesting challenge to find a simple VB
description of the DQC point.

Looking at the VBS order-parameter distribution, we
do not observe any emergent U(1) symmetry of the VBS
at the continuous VBS to RVB transition, impliying that
this is not a “deconfined” transition in this case. Never-
theless, we find interesting scaling properties of the an-
gular VBS fluctuations, although the length-scale associ-
ated with them are not divergent.
In addition to the 2D studies, we also closely examine

the Néel–VBS transition within the standard AP states
in one dimension, with amplitudes h(r) of the form 1/rα.
This transition, which occurs at a critical value of α
(which is not universal but depends on the detailed form
of the amplitudes for small r) was previously studied by
Beach,12 but only the spin correlations were computed.
Here we extract also the VBS correlations and confirm
that there is a single critical point versus α. The expo-
nents are continuously varying, depending on the short-
bond amplitudes.
We also report variational calculations including opti-

mization with the CAP states, minimizing the energy for
1D and 2D Heisenberg and J-Q models. Naturally, bond
correlations have a significant improving effect in VBS
phases, but they help also to improve the 2D Néel state
and the critical ground state of the 1D Heisenberg chain.

2. Outline of the paper

In Sec. II we briefly describe the technical aspects of
MC calculations with AP and CAP states. In Sec. III we
study the Néel–VBS transition in 1D AP states, and in
Sec. IV we study the more rich set of states and quantum
phase transitions in 2D CAP states. In Sec. V we present
some 1D and 2D AP and CAP variational calculations
(minimizing the energy as a function of the amplitudes
and correlation factors) for prototypical model Hamilto-
nians with Néel and VBS order (the Heisenberg and J-
Q models), showing how bond correlations improve the
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FIG. 2: (Color online) Transition graph on a 4 × 4 lattice
consisting of two states, Vα and Vβ, which are depicted by
red and black bonds, respectively. This transition graph has
two loops formed by alternating bonds of Vα and Vβ .

states. We conclude in Sec. VI with a summary and dis-
cussion of future prospects.

II. MC SAMPLING OF CAP STATES AND
CALCULATION OF OBSERVABLES

In an AP or CAP state with the wave function of the
form (7) the expectation value of an observable Ô can be
written for the purpose of importance sampling as

〈Ψ|Ô|Ψ〉 =

∑

αβ ψ(Vβ)ψ(Vα)〈Vβ |Ô|Vα〉
∑

αβ ψ(Vβ)ψ(Vα)〈Vβ |Vα〉

=

∑

αβ WαβOαβ
∑

αβ Wαβ
, (8)

where the configuration weight is

Wαβ = ψ(Vβ)ψ(Vα)〈Vβ |Vα〉, (9)

and the estimator corresponding to Ô given by

Oαβ =
〈Vβ |Ô|Vα〉
〈Vβ |Vα〉

. (10)

Here the overlap 〈Vβ |Vα〉 is evaluated by counting the
number lαβ of loops in the transition graph of Vα and
Vβ ;

3,4

〈Vβ |Vα〉 = 2lαβ . (11)

An example with two loops is shown in Fig. 2. Below
we briefly discuss MC sampling of the VB configurations
and estimators for some important observables.

A. Bond and spin sampling schemes

For a given functional form for h(r) and bond corre-

lation factors C(r1, r2), an expectation value 〈Ô〉 can be
computed stochastically by importance sampling accord-
ing to the weight Wαβ . Using some random reconfigu-
ration of bonds in either the state Vα or Vβ or both of

them, the standard Metropolis acceptance probability for
a modified configuration (Vα′ , Vβ′) is

Paccept = min

[

Wα′β′

Wαβ
, 1

]

, (12)

where the weight ratio is

Wα′β′

Wαβ
=
ψ(Vα′)ψ(Vβ′)

ψ(Vα)ψ(Vβ)
2(lα′β′−lαβ), (13)

Even for the simplest update involving changes in just
two bonds,4 the calculation of the change in the new num-
ber of loops (lα′β′−lαβ) can require a computational time
up to ∝ N for each new update proposal, since a Néel
state has extensive loops (while magnetically disordered
states have only short loops). Since the number of such
updates in each MC sweeps should also be proportional
to N , this type of update leads to a total computational
time O(N2) for a full sweep in a Néel state, while in a
non-magnetic state the scaling is O(N).
The unfavorable scaling in the Néel state can be

avoided by working in a combined space of both spins
and bonds,19 where the VBs are also sampled, by ran-
domly selecting either ↑a↓b or ↓a↑b for each singlet (a, b).
Since the spin basis is orthogonal, all spins in the bra and
the ket have to be the same, and a consistent assignment
for both Vα and Vβ , thus, implies that the spins on each
loop in the transition graph follow a staggered, ↑↓↑↓ . . .,
pattern. The overlap (11) in the pure VB basis then
follows, since there are two possible staggered configura-
tions on each loop. The spins are periodically updated
by flipping all spins in randomly selected loops. By such
spin sampling, the weighting by the number of loops is
accounted for automatically, due to the entropic effect
of favoring configurations with large numbers of loops,
without the need for actually counting the loops. For a
detailed description of the combined spin-bond basis and
simulations in it, we refer to Refs. 19 and 21. Here we
just note two different ways of updating the bond config-
urations:
(i) In the two-bond reconfiguration scheme, an elemen-

tary MC move consists of choosing two sites on the same
sublattice at random (typically the two bonds on a ran-
domly chosen pair of next-nearest-neighbor spins), and
exchanging the bonds connected to these two sites for
the other possible bipartite configuration. Such a recon-
figuration is only possible if the spin states on the two
selected sites are the same. If that is the case, the accep-
tance probability (12) is applied, where in the combined
spin-bond basis the weight is

Wαβ = ψ(Vβ)ψ(Vα), (14)

instead of Eq. (9), and with Wα′β′/Wαβ evaluated using
only the bond amplitudes and correlation factors in (7)
affected by the change.
(ii) In a loop update, we start by removing a dimer

randomly from two connected sites, creating two defects
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(“holes”). We keep one defect stationary and move the
second one by connecting one end (the one on the same
sublattice) of a chosen bond to it (hence moving the hole
to the previous location of that end of the bond). The
bond to move should be chosen probabilistically in such
a way as to satisfy detailed balance, which is relatively
straight-forward in the case of AP states19,40 but more
complicated when bond correlations are included. In the
present work we have used loop updates only for pure AP
states, while we use two-bond updates for CAP states.
The latter are also efficient enough to study relatively
large lattices (with thousands of spins).
It should be noted here that VB configurations can be

classified according to topological “winding numbers”.43

In AP or CAP states defined with only short bonds,
the two-bond update conserves the winding number, but
with no restriction on the bond-length such updates can
change the winding number. In practice, if the bond
probability (which depends on the single-bond ampli-
tudes as well as the correlation factors in CAP states)
decays very rapidly with the length, a simulation for a
large system may still be confined to the sector of zero
winding number.

B. Spin and dimer correlations

In order to characterize the different phases realized by
the CAP states, we evaluate order parameters for detect-
ing antiferromagnetic (Néel) order and VBS order. Néel
order can be characterized using the standard two-spin
correlation function,

C(rij) = 〈Sri
· Srj

〉(−1)(xij+yij), (15)

where we use rij to denote the vector separating the lat-
tice sites i and j and the phase factor cancels the signs of
the staggered spin correlations obtaining in the systems
we study. Alternatively, one can study the full sublattice
magnetization averaged over the whole system;

ms =
1

N

∑

i

φiSi, (16)

where φi = +1 on sublattice A and φi = −1 on sublat-
tice B. Since the singlet AP and CAP states manifestly
cannot break the spin-rotation symmetry, order must be
detected in the squared order parameter, 〈m2

s〉, which
in the limit of large system size will be identical to the
long-distance spin correlation (15).
To accurately locate an antiferromagnetic phase tran-

sition, the Binder cumulant is very useful. It is defined
according to42

U =
5

2

(

1− 3

5

〈m4
s〉

〈m2
s〉2

)

, (17)

where the factors are chosen for the 3-component Néel
order parameter such that U(N → ∞) = 0 in the disor-
dered phase (where the order-parameter distribution is a

Gaussian with zero average) and U(N → ∞) = 1 in the
ordered phase (where the radial distribution is peaked
at non-zero ms). Typically crossing points of U graphed
versus a control parameter for different system sizes ap-
proach the critical point vary rapidly as a function of
increasing system size.
To characterize VBS order we use the dimer correlation

function, defined as

Dxx(rij) = 〈Bx(ri)Bx(rj)〉,
Dyy(rij) = 〈By(ri)By(rj)〉,

(18)

in terms of the bond operators

Bx(ri) = Sri
· Sri+x̂,

By(ri) = Sri
· Sri+ŷ,

(19)

directed along the unit lattice vectors x̂ and ŷ. We will
not need the mixed x-y correlations here. In some cases
we will characterize VBS order by the long-distance be-
havior of (18). The states we will be studying have a
2-site VBS unit cell, forming a staggered weak-strong-
weak-strong pattern in one dimension and an analogous
columnar pattern in two dimensions. In both cases we
can extract the dominant component of the correlations,
corresponding to the squared order parameter, by taking
the appropriate difference of (18) evaluated at nearby
distances. We here use a symmetric version of this dif-
ference;

D∗
xx(r) = Dxx(r) −

1

2

[

Dxx(r− x̂) +Dxx(r+ x̂)
]

, (20)

and a function D∗
yy(r) for y-oriented dimers defined anal-

ogously. We will also study the full order parame-
ter, which in two dimensions can be defined using the
q = (π, 0) and q = (0, π) Fourier transforms of the
nearest-neighbor bond correlations (19);

Dx =
1

N

∑

i

(−1)xiBx(ri),

Dy =
1

N

∑

i

(−1)yiBy(ri).

(21)

The magnitude D of the order parameter can be com-
puted as the square-root of the average squared opera-
tor, 〈D2〉 = 〈D2

x〉+ 〈D2
y〉. In addition to the expectation

values, we will also investigate the probability distribu-
tion P (dx, dy), in which emergent U(1) symmetry can
be detected. Here dx and dy are the expectation values
of the corresponding operators (21) evaluated in a given
sampled configuration based on the transition graph. We
refer to Ref. 52 for further details on this quantity, which
is not a conventional quantum mechanical expectation
value but still very useful for characterising VBS states.
All of the above two- and four-spin correlations are

related to the transition-graph loops generated in the VB
MC sampling process. For instance, the estimator for the
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two-spin correlation is given by3,4

〈Vα|Sri
· Srj

|Vβ〉
〈Vα|Vβ〉

=

{

± 3
4 , [i, j],
0, [i][j],

(22)

where [i, j] and [i][j] denote sites i and j belonging to the
same loop and different loops, respectively, and the sign
in the case [i, j] is + and − for spins on the same and
different sublattices, respectively. From Eq. (22) one can
also obtain a very simple expression for the estimator for
the squared staggered magnetization,

〈Vα|m2
s|Vβ〉

〈Vα|Vβ〉
=

3

4

lαβ
∑

ℓ=1

L2
ℓ , (23)

where Lℓ is the size (the number of sites) of loop ℓ.
Both the dimer correlation function and the fourth

power of the staggered magnetization involve four-spin
correlations. Detailed descriptions on how to calculate
these based on the transition graph of two VB configura-
tions can be found in Refs. 5 and 21. Here we only write
down the expression for the fourth power of the staggered
magnetization, needed for the Binder cumulant (17),

〈Vα|m4
s|Vβ〉

〈Vα|Vβ〉
=

∑

ℓ

L2
ℓ +

15

16

(

∑

ℓ

L2
ℓ

)2

− 5

8

∑

ℓ

L4
ℓ (24)

which is also solely determined by the sizes of all loops
formed in the transition graph. We note that the Binder
cumulant of the VBS order parameter is much more diffi-
cult to evaluate, since its definition in analogy with (17)
requires eight-spin correlations. While these also in prin-
ciple can be evaluated in terms of the transition-graph
loops,5 the expressions are quite complicated to imple-
ment in practice and we have not done so.

III. NÉEL TO VBS TRANSITION IN ONE
DIMENSION

In one dimension, the standard AP states given in Eq.
(6) are able to reproduce a Néel-VBS transition without
correlation factors. We will study this 1D transition care-
fully in this section, using the very efficient loop update
of the VB configurations.
It is natural to study the evolution of the state as a

function of some parameter governing the long-distance
behavior of the amplitudes, e.g., using the power law
h(r) = 1/rκ with tunable κ or an exponential form. Here
we will use the power-law. However, it is already known
that the nature of the state is not just determined by
the asymptotic behavior of h(r), but also depends on
details of the short-bond weights.12 In addition to the
exponent κ we here tune the shortest-bond amplitude
h(r = 1) = λ. The wave function is, thus, explicitly
given by

ψ(V ) = λn1(V )
∏

r>1

(

1

rκ

)nr(V )

, (25)
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FIG. 3: (Color online) The upper panel shows the crossing
behavior of the Binder cumulant U(κ) defined in Eq. (17)
for several different chain lengths L when λ = 1. The ap-
proach to 1 for small κ and 0 for large κ corresponds to the
presence and absence of Néel order, respectively. The cross-
ing point approaches the critical value of κ. The lower panel
demonstrates extrapolations to the thermodynamic limit of
the critical κc by fitting crossing points of (L, 2L) pairs to the
power-law correction (26).

where nr(V ) again refers to the number of bonds of
length r in the bond configuration V .

It is clear that for λ > 0 and large κ this AP state
is a VBS, since in the limit κ → ∞ only two configura-
tions contribute; those with r = 1 bonds on alternating
links. For small κ there is instead Néel order but no VBS
order.12 Note that long-range order corresponding to bro-
ken SU(2) symmetry is possible in this kind of 1D system,
since viewed as a classical statistical-mechanics problem
there are long-range interactions (since the bonds have
unbounded length), and the Mermin-Wagner theorem41

prohibiting 1D Néel order does not apply. Note also again
that the AP wave function is a singlet and, thus, the
SU(2) symmetry is not actually broken (as in any calcu-
lation targeting the singlet ground state). The magnitude
of the Néel order measured by 〈m2

s〉, Eq. (16), or the long-
distance correlation function (15) can still evolve toward
a non-zero value as the system size grows, tending to the
square of the symmetry-broken value of ms in the corre-
sponding thermodynamic-limit state with no constraint
on the total spin.
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FIG. 4: (Color online) Phase diagram of 1D AP states with
tuning parameters κ and λ, as defined in Eq. (25). The cir-
cles are calculated transition points and the curve is a guide
to the eye representing approximately the boundary between
the long-range ordered Néel (below) and VBS (above) phases.
The inset exemplifies long-distance spin correlation functions
inside the phases and at the critical point when λ = 1; the
black squares correspond to κ = 1.6 (inside VBS phase) and
the green triangles are for κ = 1.4 (in the Néel phase). The
red circles show the behavior at the critical point.

Beach has previously studied Néel ordering in this
class of wave functions (with a somewhat different
parametrization of the short-bond amplitudes).12 He
found a continuous transition between the Néel state and
the non-magnetic state. Here we also investigate the VBS
correlations and find a single transition point where both
the spin and dimer correlations are critical. We study the
evolution of the transition in the plane (κ, λ).
For fixed λ, in order to find the critical value of κc of

the AP state we study the Néel Binder cumulant (17).
The behavior of curves for different system sizes L cross-
ing each other as a function of κ is illustrated in the upper
panel of Fig. 3. The crossing points do not fall exactly
on a single point due to subleading size corrections. We
observe a systematic smooth drift of the crossing points
as the system size is increased. In order to eliminate this
size effect and determine the critical point from data such
as those in Fig. 3, we extract κ-values corresponding to
crossing points of (L, 2L) size pairs, and plot these points
against 1/L, as shown in the lower panel of Fig. 3. We
then extrapolate these values to L → ∞ and obtain κc.
The fitting function we use here for extrapolation is the
standard power-law;42

fc(L, 2L) = κc +
a

Lb
. (26)

The extrapolated κc values versus λ are plotted in Fig. 4;
the phase diagram of 1D AP states with the two tuning
parameters λ and κ. The inset of this figure demonstrates
the qualitatively different behaviors of the spin correla-
tion functions in the two phases and at the critical point,
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FIG. 5: (Color online) Staggered spin-spin (upper panel) and
dimer-dimer (lower panel) correlations of 1D AP states at the
largest distance, graphed versus the chain length at κ = κc

for different short-bond amplitudes λ. All lines are fits to the
form aL−b.

using λ = 1 results as an example. At κ = 1.6 the
correlations decay faster than power-law, as is expected
for a non-magnetic VBS ordered state. In contrast, at
κ = 1.4, the correlations for small L first decay some-
what but then converge to a non-zero value for larger
L (even increasing somewhat for large systems), demon-
strating the presence of long-range Néel order. At the
critical value κc extracted using the Binder crossings as
explained above, the decay of the correlations are consis-
tent with a critical, power-law form.

To determine whether the VBS correlations are also
critical at the κc points extracted from the Néel Binder
cumulant, we further study both the spin and dimer cor-
relations at these points. The results confirm the expec-
tation of a common critical Néel and VBS point. By
studying chains as large as L = 4096, we can extract
the exponents governing the critical correlation functions
with relatively small error bars (thanks to the powerful
VB MC loop update discussed in Sec. II). The analysis
of the power laws is presented in Fig. 5. Note that in
order to avoid boundary modifications of the power-law
correlation functions as a function of the distance r in
systems of fixed L, we study the long-distance correla-
tions versus the system size, with r = L/2 for the spin
correlations and the staggered component of the dimer
correlations extracted based on r = L/2 and L/2 − 1
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FIG. 6: (Color online) The continuously varying spin (α) and
dimer (β) decay exponents of the 1D AP state (25) as a func-
tion of the short-bond amplitude λ. The exponents corre-
spond to the power-law decay of the correlation functions;
C(r) ∼ r−α, D∗(r) ∼ r−β. The points are calculated values
and the curves are guides to the eye.

data according to Eq. (20) [where it should be noted that
D(L/2− 1) = D(L/2 + 1) for a periodic chain].
As λ increases, larger system sizes are needed to ob-

serve the asymptotic critical forms. Especially for the
largest λ studied, λ = 8, one can observe in Fig. 5 (up-
per panel) a clear cross-over of the spin correlation func-
tion from a rapidly decaying short-distance form to the
asymptotic power-law form. The straight lines in Fig. 5
are fits to the simple asymptotic form aL−b. We have
also tried to include shorter chains in an analysis includ-
ing corrections, by fitting to the form aLb + cLd. This
form is, however, not capable of describing the small size
effect in this model (in contrast to 2D critical spin liquid
RVB states, where this form works very well21). In any
case, the large-L behaviors appear to be reasonably well
converged to the simple power law and the exponents ex-
tracted should be reliable. An exception is λ = 0, for
which the dimer correlations decay very rapidly and are
too noisy to allow the exponent β to be reliably deter-
mined (and we have therefore not graphed these correla-
tions in Fig. 5). It is even possible that the VBS state
for λ = 0 is of a different kind than for λ > 0. Further
studies will be needed to settle this issue.
We plot the extracted critical exponents as a function

of λ in Fig. 6. The exponents vary continuously with λ,
with the dimer exponent decreasing monotonically and
the spin exponent increasing. An interesting conclusion
that can be drawn from these results is that the criti-
cal state becomes increasingly “quasi VBS ordered” with
increasing λ, with the decay exponent of the dimer cor-
relations perhaps vanishing as λ → ∞, although this
is difficult to confirm definitely (because the simulations
become increasingly difficult for large λ). The behavior
is in line with the expectation that a large lambda fa-
vors VBS ordering because of the predominance of the
very shortest bonds, i.e., when moving on the critical

line toward higher λ the density of short bonds increases,
and this leads to a strengthening of the VBS quasi-order.
At the same time, the exponent of the spin correlations
appear to approach 1. However, Néel order still exists
for large λ when reducing κ from the critical value. In
terms of the transition graph estimators of the correlation
functions, VBS correlations correspond to certain loop
correlations,5 while Néel order is related to the presence
of long (∝ L) loops. While long-range Néel and VBS or-
ders are mutually exclusive in these states, the Néel state
in the neighborhood of the critical curve for large λ ap-
proaches a coexistence situation. Here the magnitude of
the Néel order parameter also becomes very small, how-
ever, and the coexistence is therefore not robust.
The VB formulation of the ground state can be viewed

as a 1D classical statistical mechanics problem, but at the
same time it should also correspond to a path-integral
formulation in 1 + 1 dimensions (with some underlying
parent Hamiltonian). One may then expect the system
to be classifiable according to the standard 2D conformal
field theories by a central charge c. Varying critical expo-
nents, as we have found here, normally imply c ≥ 1, but
the fact that the system includes long-range interactions
may invalidate this requirement, although it is not clear
how the power-law bond length translates into effective
interactions in an underlying parent Hamiltonian (and
the interactions in it may well be short-ranged). One no-
table aspect of the AP states is that they are not able
to reproduce the ground state of the critical Heisenberg
chain, where α = β = 1.44 We will address this issue
further in Sec. V with variational AP calculations for the
Heisenberg chain.
It would be interesting in the future to compute the

bipartite entanglement entropy of the 1D AP states, to
test its system size scaling and consistency between c
extracted from it45,46 and from the correlation functions.
Such calculations can also be carried out using the VB
MC sampling scheme used here.23,47

IV. NÉEL TO VBS TRANSITION IN TWO
DIMENSIONS

The Néel state is known to be the ground state of the
square lattice Heisenberg antiferromagnet with homoge-
neous nearest-neighbor couplings. There is convincing
numerical evidence20 as well as mean-field arguments12

showing that the standard AP states with power-law de-
caying amplitudes of the asymptotic form h(r) = 1/r3

is an optimal variational wave function for the 2D Néel
state (for any finite size, where the ground state is a sin-
glet with no explicitly broke symmetry).
The AP states have no Néel order for rapidly decay-

ing (exponentially or according to a power law 1/rκ with
large κ) bonds.4 An extreme case is the state that con-
tains only nearest neighbor bonds (dimers). Such a short-
bond VB state on the square lattice normally corresponds
to an U(1) spin liquid with critical VBS correlations,21,22
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FIG. 7: (Color online) Results for the CAP states with the
case (I) parametrization. (a) The Binder cumulant of the
staggered magnetization as a function of the weight p favor-
ing parallel dimer alignment (c1 = p in Fig. 1, with the other
configurations suppressed by setting ci>1 = 1/p). The grow-
ing negative peaks of the cumulant indicate the location of the
first-order phase transition developing as a function of the sys-
tem size. (b) The columnar component D∗(r) of the dimer
correlation function at the largest distance, r = (L/2, L/2),
plotted against p. The correlation function approaches zero
for large systems in the non-VBS state and becomes finite
in the VBS. The behavior of the correlation function tending
to a step-function as L increases, and the curves for differ-
ent L crossing each other, is in accord with the first-order
phase transition signaled by the pronounced negative cumu-
lant peaks in (a).

in contrast to the 1D AP VBS state discussed in the pre-
vious section. One should expect the 2D AP state to
turn into a long-range ordered VBS when appropriate
bond correlations are included. On the square lattice,
which we will consider here, the simplest kinds of VBS
states (with 2-site unit cell) form columnar, staggered,
or plaquette ordering patterns.

We here study the Néel to VBS transition on a square
lattice within the CAP states by imposing bond correla-
tions that favor or suppress only certain types of short-
dimer alignments. All possible configurations of short
dimers connected to a pair of nearest-neighbor sites on
a square lattice are shown in Fig. 1. We assign a weight
to each of those two-dimer configurations according to
Eq. (7), with all weights with r1, r2 6= 1 set to 1. To
simplify the notation we here use ci for the short-bond
correlation factors, instead of C(r1, r2), with the corre-
spondence between the two shown in Fig. 1. For the
special case of there being a single bond connecting the
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FIG. 8: (Color online) Finite size scaling behavior of the
Binder cumulant minimum of the CAP states, case (I). The
negative minimum increases linearly with L2, indicating a
first-order transition in this case.

two reference sites we set c0 = 1 as a normalization factor
for the correlations.
To reduce the number of control parameters in our

simulations we introduce a single parameter p such that
ci = p > 1 for favored two-dimer configurations i, while
ci = 1/p < 1 for unfavored configurations and p = 1 for
cases that are considered “neutral”. If all dimers are un-
correlated, i.e., p = 1, the state reduces to the standard
AP state, for which we choose the single-bond amplitudes
to be h(r) = 1/r3. This choice, which we keep also for
the CAP states, is motivated by the fact that this gives
the correct description of the Néel state. The generalized
CAP states we use in our simulations are therefore char-
acterized by the single parameter p controlling the bond
correlations.
Below we investigate two different parametrizations of

the bond correlations. In both cases we use c1 = p > 1
to locally favor the columnar or plaquette VBS pattern
(and whichever of these two VBS patterns that actually
will be realized is not clear from the outset). Other types
of dimer correlations are suppressed, by setting c2 = c3 =
c4 = 1/p in the first case—case (I)—while they are set to
neutral, c2 = c3 = c4 = 1, in case (II).
We destabilize Néel order by increasing the control pa-

rameter p and study the phase transition into a VBS.
For case (I), we have found a first-order Néel to colum-
nar VBS transition, while for case (II) we have found a
continuous transition into a critical U(1) spin liquid, fol-
lowed by a second continuous transition to the columnar
VBS. We discuss the two cases in order.

A. A first-order Néel to VBS transition

Case (I) again corresponds to favoring parallel VB
bond configuration by setting c1 = p > 1 in Fig. 1 and
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suppressing fluctuations by setting ci>1 = 1/p. As in the
1D case discussed in Sec. III, we here first use the Binder
cumulant of the staggered magnetization U to detect the
transition of the Néel order. This quantity is also useful
for distinguishing between a first-order and continuous
phase transitions. As shown in Fig. 7(a), the Binder cu-
mulant as a function of the control parameter p exhibits
a minimum separating the Néel phase, where U → 1,
and a non-magnetic phase, where U → 0. The minimum
value of U is negative for all system sizes we studied, and
the negative peak becomes narrower and deeper as the
system size increases. In fact, the negative peak diverges
as −L2 when L→ ∞, as plotted in Fig. 8, which provides
strong evidence48 for a first-order phase transition.

Note that the divergence of Umin of the form Ld ex-
pected for a classical d-dimensional system could in prin-
ciple change to Ld+z for a quantum system, where z
is a dynamical exponent.49 However, our definition of
the Binder cumulant is purely a real-space definition and
does not include integration over the imaginary time di-
mension (which we do not even have access to because it
relies on a path-integral formulated using the underlying,
unknown parent Hamiltonian). The form L2 therefore is
expected.

To check whether the non-magnetic phase exhibits
VBS order, we next compute the columnar component of
the dimer correlation defined according to (20). Fig. 7(b)
shows D∗(r) for the largest distance, r = (L/2, L/2).
The correlation indeed converges to a non-zero value in
the non-magnetic phase, tending to a step function at pc
as L increases. The location of the discontinuity coin-
cides with the point where the Binder cumulant reaches
its minimum in Fig. 7(a). Note also that the curves for
different L cross each other. This size-independence of
the order parameter (as supposed to size-independence
after multiplying with some power of L corresponding to
an exponent of critical correlations) at the transition also
supports a first-order scenario.

The location of the transition point pc in the thermo-
dynamic limit can be determined, e.g., by extrapolating
the U minimum location pmin (Fig. 7) to the infinite-L
limit. The finite-size scaling plot in Fig. 9(a) shows that
the finite-size shift of the transition point defined in this
way is consistent with ∝ L−2 for large L, where the ex-
ponent 2 again is the one expected based on scaling at
a first-order transition, as discussed above. We estimate
pc ≈ 1.500 from an extrapolation to L→ ∞.

In the regime for p < pc the cumulant for different sys-
tem sizes exhibits crossing points versus p. We expect
that the crossing points should coincide with the mini-
mum location when L = ∞. By finite-size extrapolation
of crossing points p∗ for pairs of two system sizes L/2
and L, shown in Fig. 9(b), we estimate p∗c ≈ 1.500 in
the thermodynamic limit, in perfect agreement with the
result obtained from the cumulant minimum.

In addition to the Binder cumulant signaling the tran-
sition of the Néel order, we also estimate the transition
point of the VBS order from the scaling of the crossing
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FIG. 9: (Color online) Finite-size scaling plots for extracting
the location of the phase transition in CAP case (I). (a) the
location pmin at which the Binder cumulant reaches its min-
imum, (b) the crossing point of the Binder cumulant for sys-
tem sizes (L/2, L), and (c) the crossing point of the columnar
dimer correlation function. From finite-size extrapolations of
these three quantities, assuming 1/L2 dependence, we obtain
consistently the transition point pc located within the range
1.500−1.505. Note that there are still some visible deviations
from the assumed form and a more precise determination of
pc would require data for still larger systems.

points p′ of the long-distance dimer correlation function.
The inset of Fig. 7(b) shows a zoom-in of the region where
the crossings occur. As shown in Fig. 9(c), these crossing
points also appears to shift as p′ ∼ L−2 for large L, and
the extrapolation to L→ ∞ yields an estimated location
of the transition point p′c ≈ 1.503. This is marginally
above the two other estimates discussed above, but given
the very small range of data points for which the L−2 fits
work well (we have used the points for the three largest
systems in all cases, but the data still show some non-
asymptotic curvature here), this result is still consistent
with a single Néel–VBS transition point. Larger system
sizes would be required to extract the location of this
point more precisely.

Finally for case (I) we examine the histogram P (dx, dd)
of the order parameters dx and dy, corresponding to VBS
order with x- and y-oriented dimers, Eq. (21). In Fig. 10
we show P (dx, dy) for L = 28 at p = 1.46, 1.48 and 1.50.
At p = 1.46 inside the Néel phase, the distribution has
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FIG. 10: (Color online) VBS order parameter distribution
P (dx, dy) for L = 28 CAP states in case (I). Brighter re-
gions correspond to higher density. Left panel: The distri-
bution at p = 1.46 is circular-shaped with a central peak,
showing U(1) symmetry in the Néel state. Right panel: At
p = 1.50 there are four peaks at the Z4-symmetric angles
φ = arctan(Dx/Dy) = 0, π/2, π, 3π/2, reflecting columnar
VBS order. Middle panel: At p = 1.48, in the transition
region, the 5-peak distribution shows coexistence of the Néel
and VBS order, providing evidence for a first-order transition.

a circular shape with a central peak. At p = 1.48 in
the transition region, the distribution shows coexistence
of the Néel order (characterized by the central circular
region) and the columnar VBS order [characterized by
the four narrow peaks at angles φ = arctan(dy/dx) =
0, π/2, π, 3π/2]; this again provide clear evidence for a
first-order Néel-VBS phase transition. At p = 1.50, only
barely inside the columnar VBS phase of this finite sys-
tem, the distribution exhibits only the four VBS peaks.

From the many consistent results discussed in this sub-
section, we can conclude that the CAP states with fa-
vored parallel dimer pairs and suppressed flips of such
pairs can characterize a first-order phase transition be-
tween the Néel and the columnar VBS phases. In such a
CAP state, the Néel order is destroyed by formation of
parallel dimers as the weight p increases. A first-order
transition is also of course what would normally be ex-
pected for an order–order transition involving two unre-
lated order parameters. Note also that the system sizes
studied in this section were rather modest; up to L = 36
(while much larger systems, up to L = 128, will be con-
sidered in the next section). For larger systems it be-
comes very difficult to obtain good statistics and smooth
curves versus the control parameter, because of hysteresis
effects related to the first-order nature of the transition.
Still, as we have shown, the system sizes studied are suf-
ficient to study the asymptotic finite-size scalimng forms.

In the context of VBS ground states of Hamiltonians,
a first-order transition was previously observed with a
J-Q model with the multi-spin interaction Q arranged
to favor a staggered state.50 In that case, the first-order
transition was expected, because local dimer fluctuations
are strongly suppressed with this kind of bond order. Al-
ternatively, one can make an argument based on the na-
ture of vortex-like defects in the VBS.51 In contrast, in
a columnar state parallel short-dimer pairs can fluctuate
by 90◦ rotation, unless such fluctuations are energetically
expensive. In the DQC theory, these fluctuations are es-
sential and correspond to an emergent U(1) symmetry of
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FIG. 11: (Color online) Results for CAP states, case (II), for
different system sizes plotted versus the control parameter
p. (a) The binder cumulant of the staggered magnetization
exhibits a shallow peak at the transition from the Néel to
a non-magnetic state, with pc1 ≈ 1.28. (b) The columnar
dimer correlation function indicates a second transition, into
the VBS, at pc2 ≈ 1.65, with a completely disordered phase
for pc1 < p < pc12.

the VBS order parameter, which has been confirmed in
J-Q models with plaquette VBS ground states.33,35,36,52

In the CAP state considered here, we suppressed the fluc-
tuations out of the perfect columnar state by the use of
correlation weights and the observed first-order transi-
tion then is in line with expectations based on the DQC
theory and the earlier studies of the Néel–VBS transi-
tions in various models.

B. A critical U(1) spin liquid and a second-order
transition to the VBS

Given the findings and discussion in the previous sec-
tion, we now investigate whether the removal of the corre-
lation factors suppressing dimer fluctuations can change
the nature of the Néel–VBS transition of the CAP states.
In this case (II) we only set c1 = p > 1 and keep the other
correlation factors in Fig. 1 as neutral; c2 = c3 = c4 = 1.

Fig. 11 shows the Néel Binder cumulant and the stag-
gered dimer correlation function against the control pa-
rameter p. Like in case (I), the Néel order, characterized
by the Binder cumulant tending to 1 as L grows, survives
in the small p region up to a certain value of p, and a sub-
stantial columnar dimer correlation D∗ sets in when the
Néel order is destroyed.
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FIG. 12: (Color online) Finite size scaling behavior of the
Binder cumulant minimum in case (II). The negative mini-
mum (obtained by interpolation of the data shown in Fig. 11)
increases only logarithmically with the system size L, indicat-
ing a continuous transition.

We notice that the negative peak of the Binder cu-
mulant, which occurs only for large systems, is less pro-
nounced than the cumulant peak in case (I). A nega-
tive Binder cumulant is often taken as evidence for a
first-order transition,53 but there are now known exam-
ples of rigorously understood continuous classical phase
transitions associated with this behavior, e.g., the 2D 4-
state Potts model and the related Ashkin-Teller model
in the neighborhood of this special point.54 In such cases
of “pseudo-first-order” scaling the minimum Umin of the
Binder cumulant diverges much slower than the expected
Ld form at a first-order transition (or, in some cases, pos-
sibly even converges to a finite value) .

The finite-size scaling plot Fig. 12 shows that −Umin

for CAP in case (II) grows only logarithmically with
the system size. Thus, we conclude that the Néel or-
der here vanishes in a continuous transition associated
with pseudo-first-order behavior (related to anomalies in
the critical order-parameter distribution).

Next we determine the phase boundaries more pre-
cisely. For a continuous phase transition, a frequently
used method to determine the critical point is to find the
unique asymptotic crossing point of the Binder cumulant
for different system sizes. Due to finite size effects, the
cumulant curves will intersect at a single point only when
the system sizes are sufficiently large. For our case, we
find the intersection point of the cumulant for L ≥ 80,
and it is located at p ≈ 1.276 [Fig. 13(a)], which can be
identified as the Néel-spin liquid transition point p1c. As
the cumulant for a large system size exhibits a negative
peak before it vanishes in the spin liquid phase, we also
extrapolate the location of the peak to L→ ∞ to deter-
mine the critical point from another route. By doing so,
we estimate p1c ≈ 1.276, in perfect agreement with the
cumulant intersection point.

Beyond the order of the transition, another major dif-
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FIG. 13: (Color online) (a) The Binder cumulant for large
system sizes in case (II). The curves intersect at a point, p ≈
1.276, which separates the Néel phase and the spin liquid. (b)
Finite size scaling of the location pmin at which the cumulant
reaches its minimum. The critical point of the Néel-spin liquid
transition in the thermodynamics limit is also here estimated
as p1c ≈ 1.276, from an extrapolation to L = ∞

ference from case (I) is the behavior of the dimer corre-
lations. As seen in Fig. 11(b), there is a wide interme-
diate region between the Néel phase and the VBS phase
for larger p (where the correlation clearly converges to a
non-zero constant for large systems); in this intermediate
region, the dimer order parameter still decays versus the
system size and, for the largest systems, the curve ver-
sus p develops a behavior suggestive of a second phase
transition between a disordered state and the VBS above
p = 1.6. The dimer correlations decay in the intermediate
region as a power law, D∗(r) ∼ r−β , with the exponent
β depending on p, as shown in Fig. 14. Algebraically de-
caying dimer correlations were previously found in short-
bond resonating valence bond (RVB) spin liquids inves-
tigated in Refs. 21,22. We thus tentatively identify this
intermediate p-region with critical dimer correlations as
a spin liquid in the same class of RVB states, for which
it is known that the exponent of the dimer correlations
depends on details of the bond fugacities.21

We next study the distribution of the VBS order pa-
rameter P (dx, dy). The examples of distributions shown
in Fig. 15 for L = 64 are ring shaped in the intermedi-
ate region (at p = 1.4 and p = 1.5) before evolving into
the expected Z4-symmetric shape in the larger-p regime
where columnar VBS order is formed (as seen in the loca-
tion of the peaks; a 45◦ rotated distribution would corre-
spond to a plaquette VBS). The same kind of ring-shaped
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FIG. 14: (Color online) Long-distance columnar dimer corre-
lation function versus system size for different p in the inter-
mediate region. the correlations decay as a power-laws (with
the decay exponent β = 0.57 for p = 1.4, 0.43 for p = 1.5, and
0.32 for p = 1.6), in the spin liquid phase and are size inde-
pendent in the VBS state (p = 1.8). At p = 1.7 the behavior
is approximately a power-law but with a slight up-turn for
the largest size, indicating a weakly VBS ordered state here.

P (dx, dy) distribution was also found in the prototypi-
cal short-bond RVB spin liquid (although only when the
bond configurations are restricted to the dominant topo-
logical sector of zero winding number).21,22

An important issue here is whether the VBS hosts
emergent U(1) symmetry when the critical point is ap-
proached. To investigate this, we also need to determine
the location of the point where the VBS becomes long-
range ordered. This is not easy to do just based on the
scaling behavior versus the system size in Fig. 14, because
there is a whole critical VBS phase and the change from
the power-law decay to convergence to a samall non-zero
constant is subtle. We can instead characterize the VBS
state by the quantity cos(4φ), where φ = arctan(dy/dx) is
the angle in the VBS order parameter (dx, dy) computed
for the individual VB configurations, i.e., based on the
histogram, P (dx, dy). This expectation value measures
the degree of the developed Z4 symmetry of the VBS or-
der parameter. In the spin liquid (as well as in the Néel
state), where the U(1) symmetry is preserved as L→ ∞,
we have 〈cos(4φ)〉 = 0. In the VBS states in which the
distribution for large systems develops Z4 symmetry, we
have 〈cos(4φ)〉 → 1 as L→ ∞ for a columnar VBS (while
it approaches −1 for a plaquette VBS). As cos(4φ) is
dimensionless, one expects 〈cos(4φ)〉-curves for different
system sizes to asymptotically become size-independent
at the transition point into the VBS state.
As seen in Fig. 16(a), for the case-(II) CAP, a cross-

ing point develops at a non-zero value of 〈cos(4φ)〉, at
p ≈ 1.65, which we thus identify as the liquid-VBS tran-
sition point. The fact that cos(4φ) > 0 at this point
shows that there is no emergent U(1) symmetry at the
VBS–liquid transition, since the order parameter remains
Z4 symmetric exactly at the transition point. For ref-

FIG. 15: (Color online) Histograms of the VBS order param-
eter defined in Eq. (21) shown for L = 64 systems in CAP
case (II). In the spin liquid phase with p = 1.4 and p = 1.5
[(a) and (b), respectively], the distributions are ring-shaped
with weight at all angles (bright regions). As p increases to
p = 1.6 (c) and p = 1.7 (d), the U(1) symmetric distributions
evolve into Z4-symmetric ones, with higher densities at the
angles 0, π/2, π, 3π/2 corresponding to columnar VBS order.

erence, in Fig. 17 we show QMC results for the J-Q
model with 6-spin columnarQ-interactions, for which the
order-parameter symmetry was previously analyzed in a
slightly different way.36 The results for 〈cos(4φ)〉 here
show crossing points decaying toward 0 in the vertical
direction. The system sizes are not yet sufficiently large
to see that the crossings tend toward the critical point,
(J/Q)c ≈ 0.66. The contrast with the CAP states in
Fig. 16(a) is stark, however, with the absence of four-fold
symmetry—presence of emergent U(1) symmetry—at the
transition being very plausible.

Since the results shown in Fig. 16(a) appear to give
a rather precise estimate for the transition point, p2c =
1.650(5), without any scaling needed of the vertical axis,
we now use this result to investigate scaling of the VBS
order parameter. In Fig. 18, in order to achieve data
collapse, we have rescaled the long-distance dimer corre-
lation functions in Fig. 13(b) both vertically, multiply-
ing by Lβ , with β = 0.22, and horizontally, multiplying
(p − p2c) by L1/ν, with 1/ν = 0.44. The correlation-
length exponent is, thus, ν ≈ 2.3, which is anomalously
large and definitely rules out a first-order transition (in
which case ν = 1/d = 1/2 would be expected).

The 〈cos(4φ)〉 curves in Fig. 16(a) can also be scaled
in the horizontal direction to collapse all the data onto
a single curve, as shown in panel (b). In cases where
there is emergent U(1) symmetry, this procedure, using
the control parameter scaled as L1/aν(p − pc), gives the
correlation-length exponent ν multiplied by a number
a > 1,36 reflecting the faster divergence of the length-
scale Λ controlling the emergent symmetry; Λ ∼ ξa. In
the case at hand, we have already concluded that there
is no emergent U(1) symmetry, since 〈cos(4φ)〉 remains
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FIG. 16: (Color online) The quantity 〈cos(4φ)〉 with φ =
arctan(dy/dx) measures the degree of Z4 symmetry in the
VBS order parameter and also gives a good estimate of
the location of the liquid-VBS transition. In the spin liq-
uid the distribution P (dx, dy) is U(1) symmetric, leading to
〈cos(4φ)〉 = 0 for L → ∞, while in the columnar VBS phase,
where the distribution is Z4-symmetric, 〈cos(4φ)〉 approaches
1. (a) The curves for different system sizes cross at a single
point located at p = 1.65, which is identified as the transition
point; p2c = 1.650(5). Since 〈cos(4φ)〉 > 0 at this point, there
is no emergent U(1) symmetry at this transition, although it
appears to be a continuous transition based on other results.
(b) When p−p2c is scaled with the system size L raised to the

power L1/aν , with aν ≈ 1.82, the curves for different systems
collapse onto each other.

non-zero as p → p2c, and the exponent aν, with a < 1
should instead reflect a shorter length-scale (irrelevant
operator), governing the reduction of the angular VBS
fluctuations (〈cos(4φ)〉 → 1) in the VBS and the growth
of these fluctuations (〈cos(4φ)〉 → 0) in the liquid. We
find very good scaling, and indeed the factor a ≈ 0.8 is
clearly less than one.

We finally investigate the nature of the spin correla-
tions in the spin liquid phase. Results for the squared
sublattice magnetization for several points representing
the three different phases are shown in Fig. 19. Here
we plot the results on a log-log scale, in order to study
power-law correlations. In the Néel state the sublattice
magnetization approaches a non-zero constant, while in
the liquid and VBS states we observe a clear 1/L2 decay.
This is the form expected with exponentially decaying
spin-spin correlation functions. We see a power-law be-
havior with a non-trivial exponent, ∼ L−α, with α = 1.55
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FIG. 17: (Color online) The degree of Z4 anisotropy of the
VBS order parameter of the J-Q model with 6-spin inter-
actions for different system sizes. Here the curve crossings
tending to 〈cos(4φ)〉 = 0 with increasing L demonstrates the
emergent U(1) symmetry at the Néel–VBS transition of this
model.
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FIG. 18: (Color online) The data of Fig 11(b) in the neigh-
borhood of the liquid-VBS transition, rescaled to extract the
exponent β of the dimer correlation function, D∗(r) ∼ r−β,
here with β = 0.22, and the correlation length exponent ν,
here with ν ≈ 1/0.44 ≈ 2.27.

only at the Néel–liquid critical point. These results again
confirm that the liquid is of the same type as the proto-
typical AP RVB states (i.e., with no correlation factors),
where the varying power-law for the critical VBS corre-
lations corresponds to a varying stiffness constant in a
mapping to a height model.21,55

V. VARIATIONAL CALCULATIONS

In this section we explore variational optimization of
CAP states, carrying out energy minimization based on
derivatives along the same lines as in Refs. 19,20. We con-
sider two models. First, the standard Heisenberg model,
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FIG. 19: (Color online) Finite-size dependence of the squared
staggered magnetization for different values of p. In the Neel-
phase (p = 1.260), m2 converges to a non-zero value for L →
∞. At the Neel-spin liquid critical point, p = 1.276, it scales
as m2 ∼ L−1.55. We see m2 ∼ L−2 inside the spin liquid phase
(p = 1.4), at the liquid-VBS critical point (p = 1.65), as well
as in the VBS phase (p = 2), indicating an exponentially
decaying spin-spin correlation function. The lines are fits to
the power-law mentioned.

defined by the Hamiltonian

HJ = J
∑

〈ij〉

Si · Sj , (27)

where 〈ij〉 denotes a pair of nearest-neighbor sites. We
will consider both the 1D chain and the 2D square lat-
tice (in both cases adopting periodic boundary conditions
for systems an even number of spins). We also consider
the J-Q model,33 which includes four-spin interactions in
addition to the exchange J :

HJQ = HJ −Q
∑

〈ijkl〉

(Si · Sj − 1
4 )(Sk · Sl − 1

4 ). (28)

Here ij and kl form opposite edges on an elementary
2 × 2 plaquette on the square lattice and the summa-
tion includes both horizontal and vertical orientations of
these edges on all plaquettes (i.e., the Hamiltonian obeys
all the symmetries of the square lattice). With the neg-
ative prefactor of the Q term, this interaction clearly is
related to enhancement of the parallel-dimer weight c1,
in the notation of Fig. 1, in the ground state wave func-
tion (although the state is still of course not expected to
be exactly reproduced by the CAP ansatz).

A. Optimization method

We start a variational calculation from some initial
value of the parameters in the CAP state (7), typically
a power-law form of the amplitudes h and all the cor-
relation constants C = 1. When optimizing states for

different values of some parameter (e.g., J/Q), we also
normally start the calculation for a new parameter value
from a previous calculation for some nearby value. One
can also use this approach for different system sizes, al-
though when increasing the system size initial values for
the parameters corresponding to the longest bonds are of
course not available and have to be set to some suitable
values based on the longest previous bonds. In general,
we have found that the starting point does not play an
important role in optimization of AP and CAP states, in-
dicating that the energy landscape is relatively smooth.
To minimize the energy as a function of all parameters,

we compute the energy and its derivatives. We then ap-
ply either (a) the steeped-decent method or (b) a stochas-
tic variant of it where only the signs of the derivatives are
used, as discussed in Ref. 20. A generic parameter p is
in these two cases updated according to

(a) p → p− δ · R · sign(dE/dp),
(b) p → p− δ · (dE/dp)/max(|dE|). (29)

Here, in (a) R ∈ [0, 1) is a random number and in (b)
max(|dE|) denotes the derivative that is the largest in
magnitude among all the derivatives considered. The
maximum shift δ is gradually reduced, so that the vari-
ational parameters eventually will converge. If δ is re-
duced sufficiently slowly, then one will reach a minimum.
This minimum is not necessarily the global one, however.
The stochastic scheme (a) should be better in avoiding
local minimums, although one can of course never be
completely guaranteed to find the global minimum. For
the case at hand, the energy landscape appears to be
relatively smooth, with no serious problems in consis-
tently reaching the same minimum energy (regardless of
the starting point, as mentioned above). Occasionally
the method does fail, with independent runs of the same
system leading to different final results. Typically, in a
set of several runs, most of them will be consistent with
each other, with only a small fraction of them deviating
significantly from the majority value. As expected, the
failure rate decreases when increasing the number of MC
sweeps for sampling the VB configurations (leading to
smaller error bars on the derivatives) and when reducing
δ at a slower rate.
We typically use a protocol based on an iteration num-

ber k. For each k, the parameters are adjusted some
number M of times (e.g., M = 100) based on derivatives
obtained in MC simulations with ∝ k2 steps. This way,
the derivatives become more precisely determined as the
solution approaches the minimum (where the derivatives
decrease in magnitude, thus necessitating a larger num-
ber of MC sampling steps to obtain statistically useful in-
formation). The maximum parameter shift δ in Eqs. (29)
is of the form δ0/k

α, with α = 3/4 a suitable exponent
in practice, based on experience.
Fig. 20 shows an example of the evolution of the energy

and the sublattice magnetization squared in a run for a
Heisenberg chain of length L = 256. It is clear that at the
final step shown here, k = 30, the calculation has not yet
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FIG. 20: (Color online) Convergence of the energy per spin
(top panel) and the staggered spin structure factor (bottom
panel) as a function of the iteration number k for a 1D Heisen-
berg chain with L = 256 sites and all correlation amplitudes
(i.e., rmax = L/2− 1) included in the CAP wave function (7).
For each k, 100 adjustments of the parameters were carried
out, each based on an MC simulation with 104k2 updating
sweeps. The points with error bars correspond to averages
over the last 20 iterations for each k. The horizontal lines are
results of unbiased QMC calculations.56

completely converged (but note that one should not ex-
pect convergence to the shown exact values, as the CAP
states still are of course not sufficiently flexible to repro-
duce the true ground state wave function completely).
In practice, one can quite easily converge calculations for
small systems essentially completely, while large systems
require very long runs. There is still some room for im-
provement of the energy minimization protocol, as what
we have explored so far are essentially schemes based
on trial-and-error approaches. Nevertheless, the results
to be presented next can be considered as almost op-
timized and we do not anticipate that our conclusions
would change based on more complete optimizations.

B. Heisenberg chain

An interesting question in one dimension is whether
AP or CAP states can describe the critical ground state
of the Heisenberg chain. As we saw in Sec. III, with the
simple parametrized 1D AP wave function (25) the cor-
rect critical decay exponents (α = β = 1)44 correspond-
ing to this system cannot be achieved. In a variationally
optimized state, we are not tied to any particular form
of the amplitudes, and a sufficiently flexible variational
wave function should then be able to capture the cor-

10 100
L

3

4

5

6

7

8

S(
π)

 AP
 CAP, r

max
 = 1

 CAP, r
max

 = L/2-1
 exact QMC

FIG. 21: (Color online) Staggered spin structure factor of
the Heisenberg chain versus system size in variational AP
and CAP calculations at different correlation levels. The re-
sults are compared with exact results from unbiased QMC
calculations.56

rect criticality, including the logarithmic corrections that
arise in the field-theory language due to a marginally ir-
relevant operator. The question then is whether the AP
or CAP states have this kind of flexibility, to possibly
capture even such a subtle effect as the logarithmic cor-
rections to the correlation functions.57

To answer the above question, we have carried out en-
ergy minimizations with the simple AP state (with all
amplitudes as adjustable parameters) as well as with
two types of CAP states. To include only the mini-
mum amount of bond correlations beyond the AP state
we include in (7) only the two 1D bond-pair configura-
tions with length-1 bonds; C(r1, r2) with r1 = ±1 and
r2 = ±1. The case r1 = 1, r2 = −1 corresponds to
a single bond on a nearest-neighbor link and we can
regard this as a normalization for the correlation fac-
tors, C(1,−1) = 1, in the same way as we also set
h(r = 1) = 1. There is then only one other corre-
lation factor, C(−1, 1) to optimize at this level. We
also consider the extreme case of optimizing all C(r1, r2),
rmax = L/2− 1, again with C(1,−1) = 1.
Let us first discuss the energy. As an example, for L =

256 the exact energy per site is E/L = −0.44316 while
for the AP state we obtained −0.44184. For the CAP the
best energy when rmax=1 is E/L = −0.44272, and with
rmax = L/2−1 it decreases to −0.44306. As discussed in
the previous section, it is difficult to completely optimize
long chains, so the optimal variational energies may still
be somewhat lower. Following the trends as a function of
system size, the relative energy error with the CAP state
seems to remain at about 0.05%.
Turning now to the spin correlations, in Fig. 21 the

staggered spin structure factor, defined according to

S(π) =

L−1
∑

r=0

(−1)rC(r), (30)
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FIG. 22: (Color online) Optimized AP amplitudes for the
Heisenberg chain of length L = 256. The line has slope −1.44.

is graphed versus the system size for all the cases dis-
cussed above. Since the exact C(r) decays as 1/r with
a multiplicative logarithmic correction, the exact S(π)
grows slightly faster with L than ln(L), as demonstrated
with unbiased QMC results in Fig. 21. All the AP
and CAP results exhibit a faster growth with L. When
graphed on a log-log scale (instead of the lin-log scale
used in Fig. 21), the AP behavior is consistent with a
power law, S(π) ∼ L1−α with α ≈ 0.70. With the CAP
states, the data move closer to the exact points, but even
with the maximally correlated CAP state the divergence
is still somewhat too fast.
It is also interesting to examine the optimized ampli-

tudes of the AP state. Fig. 22 shows results for L = 256.
Interestingly, a power law applies here for short and mod-
erate bond lengths, with the deviations (enhancements)
at large lengths likely related to the periodic boundary
conditions (and some jaggedness of the large-r data due
to imperfect optimization, reflecting the total energy not
being very sensitive to these “noise” features). Even the
r = 1 amplitude falls on the common power-law line in
Fig. 22, i.e., in the notation of Sec. III the optimized
state has λ = 1. Looking at Fig. 6, when λ = 1 the
exponent α ≈ 0.75, quite close to α ≈ 0.70 obtained
above with the optimized amplitudes. Thus, the bound-
ary effects on h(r) seen in Fig. 22 appear to have only
minor effects on the critical behavior. The conclusion
for the optimized AP state is, thus, that a critical be-
havior is reproduced, but with the wrong exponents for
the correlation functions. Note, however, that α ≈ β for
the applicable power-law obtained here, which is also the
case for the true Heisenberg correlations (but with larger
values, α = β = 1).

C. Two dimensions

We next systematically investigate the improvement of
the energy with the inclusion of bond correlations in two
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FIG. 23: (Color online) Levels of bond correlations. At level
n, the longest bonds (r1, r2) for which the correlation weight
C(r1, r2) in Eq. (7) is optimized (i.e., can be different from 1)
are those marked by n.

dimensions, using several choices for the maximum bond-
length rmax in the correlation factors C(r1, r2). Fig. 23
illustrates all the bond shapes (r1, r2) at three correlation

levels, with rmax = 1,
√
5, and 3 for correlation levels 1,2,

and 3, respectively.

1. Heisenberg model

For the 2D Heisenberg model, previous variational AP
calculations have shown that the energy error within this
class of state is < 0.1% for large systems, and the spin
correlations are reproduces to within 1% or better.19,20

Although the system is strongly Néel-ordered and only
has rapidly decaying short-range VBS correlations, in-
cluding bond correlations with CAP states can still signif-
icantly improve the energy further. Fig. 24 shows results
for L × L systems with L = 16, 32, and 64 at different
correlation levels. The deviation from unbiased QMC
calculations decreases with increasing correlation level.
For L = 16 with rmax = 3 the relative error is as small as
≈ 4 × 10−5, while for the larger systems it is somewhat
larger, about 10−4.
Going further and optimizing all correlation weights

C(r1, r2) with r ≤ L/2 − 1, one should in principle be
able to further improve the energy and obtain the best
possible CAP state (with the kind of correlations in-
cluded here) when L → ∞. The energy only improves
marginally on the rmax = 3 results, however. Fig. 25
shows results versus the system size for the energy as
well as the sublattice magnetization. On the scale of
the graphs, one can barely see any differences between
the CAP and unbiased QMC results for L ≤ 20, while
for the larger systems there are some visible deviations.
Here it should again be noted that the results for large
systems are likely not completely optimized. As dis-
cussed above in Sec. VA, the energy depends only very
weakly on the long-bond statistics, which implies that
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FIG. 24: (Color online) Energy of the 2D Heisenberg model
with variational CAP states at three different levels of bond
correlations, according to the definition of the levels in Fig. 23.
Level 0 corresponds to the pure AP state, with no bond corre-
lations included. The horizontal lines show energies obtained
with unbiased QMC calculations (with the width of the lines
corresponding approximately to the statistical errors).

MC evaluations of the corresponding derivatives are af-
fected by relatively large fluctuations, leading to slow
convergence. The sublattice magnetization is more sen-
sitive to the long bonds, however, and this makes it very
difficult to obtain completely unbiased results for large
systems. For example, five independent optimizations
for L = 32 with rmax = 3 all gave the same energy
within statistical errors, but the sublattice magnetization
showed significant fluctuations, with the following re-
sults: 〈m2〉 = 0.1131, 0.1113, 0.1132, 0.1129, 0.1094, with
the error bar approximately equal to 2 in the last digit.
Here it can be noted that three of the results agree well,
while two of them are clearly off. One may then conclude
that the best optimized results should be around 0.1131,
although to confirm this one should carry out a much
larger number of independent runs. The correct results
based on unbiased QMC calculations19 is 〈m2〉 = 0.1128,
less that 0.3% below the average of the above 3 consistent
points.

2. J-Q model

As discussed in Sec. I, the J-Q model (28) exhibits
a Néel–VBS transition at a critical value of the cou-
pling ratio J/Q, with most precise estimate so far being
(J/Q)c = 0.0447(2).38 An interesting question is whether
this transition can be described by the CAP states. Here
we consider the case J = 0, where the ground state
is a columnar VBS. This VBS is very complex, how-
ever, since the order parameter is only about 20% of
the maximum possible value (i.e., for states with length-
1 singlets forming columns and no fluctuations around

-0.674

-0.673

-0.672

-0.671

-0.670

-0.669

E
/L

 exact QMC
 CAP

10 20 30
L

0.10

0.12

0.14

0.16

0.18

<
m

2 >

 exact QMC
 CAP

FIG. 25: (Color online) Energy (top panel) and squared sub-
lattice magnetization (bottom panel) of the 2D Heisenberg
model obtained by unbiased QMC calculations and by opti-
mized CAP state with all bond correlations included.56
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FIG. 26: (Color online) Squared antiferromagnetic and VBS
order parameters versus the correlation level in CAP states
optimized for the Q model on a 32× 32 lattice.

this configuration).52 The fluctuations are significant and
have U(1) character up to a very large length scale (larger
than what can currently be studied). As it turns out, the
fully optimized CAP state (using rmax = L/2−1) for this
J = 0 system does not reproduce the VBS order. Instead,
as we will see below, the system is still on the Néel side
of the quantum phase transition.
First, let us again investigate the impact of including

longer bonds in the correlation factor in Eq. (7). The en-
ergy is improved very dramatically with increasing rmax.
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For example, for L = 32 the best optimized AP state
has an energy E0/N = −0.8013. The CAP states have
E/N = −0.8215, −0.8229, and −0.8232, at correlation
levels 1, 2, 3 in the scheme of Fig. 23. Going to rmax = 5
there is only a marginal energy improvement to −0.8233,
which differs by about 0.1% from an unbiased QMC re-
sult; E/N = −0.8240.
Although an energy deviation of 0.1% would normally

be considered excellent in variational calculations, the
order parameters are still not well reproduced. Fig. 26
shows the dependence of both the Néel and VBS order
parameters on rmax. With increasing rmax, the sublattice
magnetization is reduced and the VBS order parameter
increases, as would be expected with CAP states in a
VBS state. However, the VBS order parameter is still
more than 30% too small at rmax = 5, and it appears to
be essentially converged at that point. Accordingly, the
Néel order parameter is instead too large.
Fig. 27 shows both order parameters calculated with

rmax = 3 as a function of the inverse system size, along
with unbiased QMC results. Here one can observe that
the agreement between the two calculations is very good
for small systems, but the agreement becomes worse for
increasing L. Asymptotically, the variational calcula-
tions tend toward a weakly Néel ordered state, with no
VBS long-range order, as opposed to the actual VBS
ground state. This calculation serves to illustrate the
insensitivity of the energy to long-distance correlations
and the related difficulty in using the energy as a reliable
measure of the quality of a state obtained by variational
means (see Ref. 58 for a different example of this issue).
While this result could be seen as a failure of the vari-

ational CAP states, it should be noted again that the
actual Néel–VBS transition takes place at a very small
coupling ratio, (J/Q)c ≈ 0.045, and one cannot expect a
variational calculation to reproduce the critical point ex-
actly. For the CAPs considered here we have confirmed
that the transition is pushed to a small negative J/Q, but
we leave more detailed studies of the transition (which
requires very well optimized states) for a future study.

VI. SUMMARY AND DISCUSSION

In conclusion, we have discussed VBS states and as-
sociated quantum phase transitions in 1D and 2D wave
functions in the VB basis. VBS states appear naturally
within the standard 1D AP states, and we have here char-
acterized the continuous Néel-VBS transition in such a
class of states with amplitudes decaying as a power-law
of the bond length. To stabilize a 2D VBS requires ex-
plicit bond correlations beyond the AP states. We have
introduced the CAP states, where correlations are en-
forced through factors corresponding to bond pairs, as in
the wave function (7). We have shown how tuning of pa-
rameters in 2D CAP states can lead to transitions from
the standard Néel antiferromagnet to a VBS, in some
cases with an intervening spin liquid phase. With the
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FIG. 27: (Color online) Squared antiferromagnetic and VBS
order parameters versus the inverse system length for the 2D
Q model within the CAP states with rmax = 3.

parametrization considered here, the direct Néel–VBS
transition is first-order, while the Néel–liquid and liquid–
VBS transitions are continuous.

The 2D Néel–liquid transition is of the same kind
as in the pure AP states, although the short-distance
VBS fluctuations are enhanced. Interestingly, the liquid–
VBS transition is not associated with an emergent U(1)
symmetry, although the columnar VBS (which is the
VBS variant stabilized with the CAPs studied here) in
principle supports this phenomenon26 and has been ob-
served in QMC studies of J-Q models at the Néel–VBS
transition.33,35,52 Thus, in the states we have studied here
the VBS should be induced by a relevant operator, in-
stead of the dangerously irrelevant operator associated
with the emergent U(1) symmetry in the “deconfined”
criticality scenario.

It remains an interesting challenge to find a
parametrization of the CAP states such that a DQC
point is obtained. In the study with short-bond correla-
tions in Sec. IV we kept the single-bond amplitudes fixed
with the form h(r) = 1/r3 and varied only a correlation
parameter p. In principle we could also use h(r) = 1/rκ

and also vary κ. It would be interesting to study the full
phase diagram in the plane (p, κ) for the two parametriza-
tions of the bond correlations, and also with different
choises of the correlation factors.

We note a recent study of AP states, with a cer-
tain parametrization of the amplitudes, to describe the
Néel to quantum-paramagnetic transition in the bilayer
Heisenberg model.59 The correct 3D classical Heisenberg
exponents were obtained for this transition, i.e., the AP
states contain effectively long-range interactions that al-
low (2+1)-dimensional criticality to be reproduced within
a 2D configuration space. In principle it seems that this
should be possible to achieve also for the DQC transition,
and if such a program to construct a simple CAP wave
function is successful, it would likely lead to further use-
ful insights into the mechanism of spinon deconfinement
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and emergence of the effective U(1) gauge field.
It is possible that CAP states with all parameters ad-

justed to minimize the energy of a model such as the
J-Q model could lead to a DQC point. Here we car-
ried out such variational QMC calculations for the stan-
dard J-Q model with four-spin interactions. This model
has a critical point very close to J/Q = 0, however,
and in the variational calculation the J = 0 system is
still inside the Néel phase. In principle one can still
study the phase transition by going to negative J , but
in that case Marshall’s sign rule cannot be proven rig-
orously (although most likely it should still hold when
J/Q is small and negative). We will investigate this case
in future studies, and also consider the model with six-
spin interactions,36 where the transition point is at much
larger J/Q and should remain well within the range of
positive J/Q values within optimized CAP states. If in-
deed the correct type of criticality can be achieved, then
by examining the bond amplitudes and correlation fac-
tors in the optimized state it may also be possible to
construct a class of CAP states with a single tunable
parameter (instead of all the parameters changing as a
function of J/Q in the variationally optimized states) to
drive this type of criticality—which the parametrization
used in the present paper was not capable of.
Beyond the case (I) and (II) parametrizations of the

CAP states that we considered here, we have also ex-
plored other cases. In particular, with c1 = c3 = p and
c2 = c4 = 1/p, in the notation of Fig. 1, we have found a
plaquette VBS, in contrast to the columnar VBS states
obtaining in cases (I) and (II). In future studies it will
also be interesting to study the nature of the transition
from a Néel antiferromagnet to a VBS in this case.
It is in principle possible to further improve on the

CAP states, by including more correlations. We here con-
sidered pairs of bonds connected to a nearest-neighbor
link only. We have verified that this gives a better
variational energy (for the Heisenberg and J-Q mod-
els) than next-nearest-neighbor links, and therefore, most
likely, the nearest-neighbor links are optimal for intro-
ducing correlations in this kind of CAP states. One could
also combine several types of correlation factors, and in-

clude also factors for correlations between more than two
bonds. In practice this may not be worth the effort, how-
ever, as the main utility of CAP states should be (i) to
have a simple class of states to capture the Néel–VBS
transition and (ii) to use them as “trial states” for pro-
jector QMC calculations in the VB basis.19,60–62 While
the variational states can be improved, in practice it is
better to project out the ground state exactly using QMC
if completely unbiased results are needed, and too many
parameters in a CAP state defeats the purpose of (i).

A very interesting question is whether the phase tran-
sitions we have discussed here can be realized in ground
states of reasonable Hamiltonians, with only local in-
teractions. In particular, the Néel-liquid-VBS series of
phases would be of interest in this regard. We already
know from the worh of Cano and Fendley on the short-
bond RVB that there is a local parent Hamiltonian for
that state. It is then also appears very plausible that
some local pertutbations of this Hamiltonian will effect
the stiffness constant characterizing the RVB21,55 and
governing its critical VBS correlations. Thus, a class of
local Hamiltonians should be able to capture the whole
spin liquid phase in our case (II). Then, it also seems
plausible that other local perturbations can drive the sys-
tem into a Néel or VBS states, e.g., the Q term of the J-Q
model should do this. Since the Cano-Fendley Hamilto-
nian has a sign problem in QMC calculations, some other
methods would be needed to study phase transitions in
perturbations of it.
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