
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 256 (2014) 3335–3364

www.elsevier.com/locate/jde

The evolution of traveling waves in a simple isothermal
chemical system modeling quadratic autocatalysis

with strong decay

Sheng-Chen Fu a,∗, Je-Chiang Tsai b

a Department of Mathematical Sciences, National Chengchi University, 64, S-2 Zhi-nan Road, Taipei 116, Taiwan
b Department of Mathematics, National Chung Cheng University, 168, University Road, Min-Hsiung,

Chia-Yi 621, Taiwan

Received 11 March 2013; revised 2 October 2013

Available online 28 February 2014

Abstract

In this paper, we study a reaction–diffusion system for an isothermal chemical reaction scheme governed
by a quadratic autocatalytic step A+B → 2B and a decay step B → C, where A, B, and C are the reactant,
the autocatalyst, and the inner product, respectively. Previous numerical studies and experimental evidences
demonstrate that if the autocatalyst is introduced locally into this autocatalytic reaction system where the
reactant A initially distributes uniformly in the whole space, then a pair of waves will be generated and will
propagate outwards from the initial reaction zone. One crucial feature of this phenomenon is that for the
strong decay case, the formation of waves is independent of the amount of the autocatalyst B introduced
into the system. It is this phenomenon of KPP-type which we would like to address in this paper. To study
the propagation of reactant and autocatalyst analytically, we first use the tail behavior of waves to construct
a pair of generalized super-/sub-solutions for the approximate system of the autocatalytic reaction system.
Note that the autocatalytic reaction system does not enjoy comparison principle. Together with a family
of truncated problems, we can establish the existence of a family of traveling waves with the minimal
speed. Second, we use this pair of generalized super-/sub-solutions to show that the propagation of waves
is fully determined by the rate of decay of the initial data at infinity in the sense of Aronson–Weinberger
formulation, which in turn confirms the aforementioned numerical and experimental results.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study a simple system to model the isothermal chemical reaction scheme
governed by the quadratic autocatalytic step and the decay step (see [27,30,21,29], for exam-
ple),

A + B → 2B (rate k1ab, autocatalysis step), (1.1a)

B → C
(
rate k2b

q, decay step
)
, (1.1b)

where a and b stand for the concentrations of the reactant A and the autocatalyst B , respec-
tively, C is a stable product, k1 and k2 are the rate constants, and q > 0 is the order of the
decay. In general, the reaction order q in realistic models is determined empirically, and so q is
not necessarily an integer. The quadratic autocatalytic reaction (1.1a) appears in several impor-
tant chemical reactions such as the Belousov–Zhabotinskii reaction [16], and the radical chain
branching in gas-phase oxidation reactions [14,26]. On the other hand, it is believed [12] that if
the autocatalyst is not indefinitely stable and itself undergoes a further reaction, then the decay
step (1.1b) must be added to the scheme. More details on the effect of the decay step (1.1b) can
be found in [13,21]. Experimental results indicate that chemical reaction scheme (1.1) may sup-
port the generation of propagating waves [16,36]. Precisely, if the reactant A initially distributes
uniformly in the whole space, and a quantity of the autocatalyst, B , is added locally into this
system, then waves of the reactant A (and the autocatalyst B) will be generated and propagate
outwards from this initial zone into the unreacted state. This is the phenomenon which we would
like to explore in this paper.

1.1. The model

Assume that the mechanism of wave propagation is based on the interplay between chemical
reaction and molecular diffusion. Then the governing equations for the reactant A and the auto-
catalyst B under the chemical reaction scheme (1.1) can be formulated in the reaction–diffusion
setting, which reads

ut = δuxx − uv, (1.2a)

vt = vxx + uv − Kvq, (1.2b)

with the initial condition

u(x,0) = u∗, v̄(x,0) =
{

β0 · g0(x), |x| � l0,

0, |x| > l0.
(1.2.ini)

Here u and v are dimensionless concentrations of A and B , respectively; δ is the ratio of the
diffusion rate of u to that of v; K measures the strength of the decay step (1.1b) relative to that
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of the autocatalytic step (1.1a); g0(·) is a positive continuous function on [−l0, l0] with a maxi-
mum value of unity and g0(±l) = 0; u∗ is a positive constant; β0 is a positive control parameter
and measures the maximum concentration of the autocatalyst input; x is the dimensionless dis-
tance and t is the dimensionless time. We remark that system (1.2) with modification in reaction
kinetics also arises in the context of epidemiology [22,3] and bio-reactor model [4].

In the context of the aforementioned wave phenomenon, we concern whether or not the solu-
tion of the initial problem (1.2)–(1.2.ini) can lead to the formation of waves. For the linear decay
case q = 1, the analysis of Merkin, Needham and Scott [27] indicates that for any K ∈ (0, u∗)
and β0 > 0, the solution of the initial value problem (1.2)–(1.2.ini) with δ = 1 develops into a
pair of diverging traveling waves with wave speed equal to 2

√
u∗ − K as t → ∞, and thus there

is a trigger mechanism for the initiation of waves for any positive K ∈ (0, u∗) and β0 > 0, while
Needham [31] analytically shows that for K > u∗, the solution (u, v) of the initial value prob-
lem (1.2)–(1.2.ini) with δ = 1 tends to (u∗,0) as t → ∞. We remark that for the linear decay
case q = 1, the existence of traveling waves of system (1.2) has been established via the shoot-
ing arguments [18,19,33,20]. However, for the strong decay case q > 1, the study of Needham
and Merkin [30,28] indicates that there is no restriction on K for the initiation of waves and the
wave speed is, in fact, equal to 2

√
u∗, which is independent of K . Moreover, the u-component

of waves is nonzero at the rear of waves for the linear decay case q = 1, whereas it is zero for
the strong decay case q > 1. Hence the strong decay case differs from the linear decay case in
the initiation of waves and their associated wave profiles. For the weak decay case q ∈ (0,1),
the investigation of McCabe, Leach, and Needham [24,25] indicates that system (1.2) is an ex-
citable system, and so waves are unique, which implies that the properties of waves of the weak
decay case are different from those of the case with q � 1. Based on these discussion, we will
mainly focus on the strong decay case q > 1. Hereafter, we always assume that q > 1. Note
that the previous studies [30,28] for the strong decay case are based on the asymptotic analysis
and numerical simulation, and so are not rigorous. Now we mention some results for the case
without decay step (i.e., K = 0). The existence of traveling waves was studied by Billingham
and Needham [6] (see also [9]). The evolution of the solution of (1.2)–(1.2.ini) with K = 0 was
investigated by Billingham and Needham [7] via asymptotic analysis and numerical computation
and by Chen and Qi [10] via a rigorous analysis. Finally, for the bounded spatial domain, the dy-
namics and the steady state solutions of system (1.2) was recently studied by Zhao, Wang, and
Shi [37].

1.2. Main result

For the strong decay case q > 1, the numerical evidence that a pair of diverging traveling
waves would be generated no matter how small the initial input of autocatalyst suggests that
the initial value problem (1.2)–(1.2.ini) has very similar dynamical behavior as the well-known
Kolmogorov–Petrovsky–Piscounov equation (KPP) [23]. Hence one might expect that there is a
family of waves of system (1.2) with minimal wave speed, and that under the assumption on the
initial data which decays exponentially as x → ±∞, the corresponding solution of system (1.2)
develops into a pair of diverging traveling waves as t → ∞ moving at the speed determined by
the rate of decay of the initial data as x → ±∞. In view of the above discussion, in this paper
we would like to address two issues: (i) the existence of a family of waves of system (1.2) with
minimal wave speed, and (ii) the evolution of system (1.2) with the initial data imposed by the
following constraint:
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u(x,0) = u∗, v(x,0) :
{

β0 · g0(x), |x| � l0,

C±
1 e−λ±|x| � v(x,0)� C±

2 e−λ±|x|, ±x > l0,
(1.3)

where β0, u∗ and g0 are defined as in (1.2.ini), and λ±, C±
1 and C±

2 are positive constants. We
remark that the v-component of the initial data (1.3) differs from that of the initial data (1.2.ini)
only for |x| > l0. In below, we will state the main results for these two issues.

First, we observe that for each u∗ � 0, (u∗,0) is a homogeneous equilibrium point of system
(1.2). Then for each given u∗ > 0, by a traveling wave solution of system (1.2) we mean a
solution of system (1.2) of the form

(
u(x, t), v(x, t)

) = (
U(z),V (z)

)
, z = x − ct,

with the boundary condition (U,V )(−∞) = (u∗,0) and (U,V )(+∞) = (u∗,0), where the wave
speed c and u∗ ∈ [0, u∗) are constants to be determined, and the wave profile (U,V ) ∈ C2(R) ×
C2(R) is a pair of nonnegative functions. Substituting the ansatz on (U,V ) into (1.2), we have

δU ′′ + cU ′ − UV = 0, (1.4a)

V ′′ + cV ′ + UV − KV q = 0 (1.4b)

on R, together with the boundary conditions

(U,V )(−∞) = (u∗,0), (U,V )(+∞) = (
u∗,0

)
. (1.5)

Here the prime denotes the differentiation with respect to z. The main result on the existence of
traveling waves for the case q > 1 is stated as follows.

Theorem 1 (Existence of traveling waves). Let q > 1 and u∗ > 0 be given. Then the following
hold.

(i) Suppose that (U,V ) is a nonnegative solution (U,V ) of system (1.4)–(1.5). Then we have
(U,V )(−∞) = (0,0) (i.e., u∗ = 0).

(ii) For each c < c∗ = c∗(u∗) := 2
√

u∗, there are no nonnegative solutions (U,V ) of system
(1.4)–(1.5).

(iii) For each c � c∗, system (1.4)–(1.5) admits a nonnegative solution (U,V ). Moreover, 0 <

U,V < u∗ on R, U ′ > 0 on R, and V ′ > 0 on (−∞, ξ0) and V ′ < 0 on (ξ0,+∞) for some
ξ0 ∈ R. Further, for c > c∗, we have V (z) =O(e−λz) as z → ∞ where λ is given by

λ = λ(c) := 1

2
· (c −

√
c2 − 4u∗ )

. (1.6)

(iv) For q ∈ (1,2], the nonnegative solution of system (1.4)–(1.5) is unique (up to a translation).

We make two remarks. First, the minimal speed c∗ of waves of system (1.2) is independent
of the ratio δ of the diffusion rate of u to that of v, and the decay parameter K . Second, the
constraint on the parameter q for the uniqueness of waves is technical, and the remaining case
q > 2 will be left as our future study. Also the proof for the uniqueness part is based on the
scaling argument [28], and hence the proof is deferred to Appendix A (see Appendix A.3).
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Fig. 1. The solution as a function of the spatial variable x is plotted at t = 0, t = 5, t = 15, and t = 25. The u component
of the initial data (u0, v0) is 1. The v component of the initial data (u0, v0) is chosen so that v0 is of the hump shape,
v0 ∼ e0.3(x−100) for x close to the left end, and v0 ∼ e−0.3(x−100) for x close to the right end. The parameter values are
δ = 2, K = 1.5, and q = 1.5.

Next, we turn to the long time behavior of the solution of system (1.2)–(1.3). As mentioned
before, we expect that the solution of system (1.2)–(1.3) evolves into a pair of diverging trav-
eling waves as t → ∞ with wave speed determined by the rate of decay of the initial data as
x → ±∞ (see Fig. 1). Due to the lack of the comparison principle for system (1.2), it would
be difficult to analytically establish such a convergence to a pair of diverging traveling waves
in the usual sense if not completely impossible. However, one can still obtain the convergence
to waves by adopting a less restrictive description. Indeed, one can characterize propagation of
the solution by looking at the evolution of the leading edge. This approach is first introduced
by Aronson and Weinberger [1,2] and proven to be successful in a number of studies of wave
propagation [35,15].

Before proceeding to state the convergence result, we make two remarks about the rela-
tion (1.6). To begin with, from the relation (1.6), one can verify that λ(c) is decreasing in
c ∈ [2√

u∗,∞). Moreover, limc→(2
√

u∗ )+ λ(c) = √
u∗ and limc→+∞ λ(c) = 0. Therefore, we

have the decay rate λ(c) ∈ (0,
√

u∗ ] for each admissible wave speed c � 2
√

u∗. Next, it is easy
to see that the relation (1.6) between the wave speed c and the decay rate λ is one-to-one corre-
spondence. Motivated by this observation, we have the following definition.

Definition 1.1. For each λ ∈ (0,
√

u∗ ), let the wave profile (U,V ) with V (z) = O(e−λz) as
z → ∞ and the associated wave speed c established in Theorem 1 be denoted by (Uλ,Vλ) and
cλ, respectively.

Now in the following theorem, we state the result that the solution of system (1.2)–(1.3) with
λ± ∈ (0,

√
u∗ ) develops into a pair of waves propagating at the speed cλ± in the sense of Aronson

and Weinberger [1,2]:
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Theorem 2 (Evolution of traveling waves). Let q > 1. Suppose that (u, v) is the solution of
system (1.2)–(1.3) with λ± ∈ (0,

√
u∗ ). Then we have the following.

(i) For each c > cλ+ and each x ∈R, (u, v)(x + ct, t) → (u∗,0) as t → ∞;
(ii) There exists a pair of non-negative continuous functions (ψ+

λ+ , φ+
λ+) with (ψ+

λ+ , φ+
λ+)(x) →

(u∗,0) as x → ∞ such that the following hold:
(a) ψ+

λ+ vanishes in (−∞, ζ+
1 ] and is strictly increasing in [ξ+

1 ,∞) for some constant
ζ+

1 > 0, and

u(x + cλ+ t, t) � ψ+
λ+(x), ∀(x, t) ∈R× [0,∞);

(b) φ+
λ+ vanishes in (−∞, ξ+

1 ], and is strictly increasing in [ξ+
1 , ξ+

2 ] and strictly decreasing
in [ξ+

2 ,∞) for some constants ξ+
2 > ξ+

1 > 0, and

v(x + cλ+ t, t) � φ+
λ+(x), ∀(x, t) ∈R× [0,∞);

(iii) For each t > 0, (u, v)(x + cλ+ t, t) → (u∗,0) as x → ∞;
(iv) For each c > cλ− and each x ∈R, (u, v)(x − ct, t) → (u∗,0) as t → ∞;
(v) There exists a pair of non-negative continuous functions (ψ−

λ− , φ−
λ−) with (ψ−

λ− , φ−
λ−)(x) →

(u∗,0) as x → −∞ such that the following hold:
(c) ψ−

λ− vanishes in [ζ−
1 ,∞] and is strictly decreasing in (−∞, ζ−

1 ] for some constant
ζ−

1 < 0, and

u(x − cλ− t, t) � ψ−
λ−(x), ∀(x, t) ∈R× [0,∞);

(d) φ−
λ− vanishes in [ξ−

2 ,∞), and is strictly decreasing in [ξ−
1 , ξ−

2 ] and strictly increasing
in (−∞, ξ−

1 ] for some constants ξ−
1 < ξ−

2 < 0, and

v(x − cλ− t, t) � φ−
λ−(x), ∀(x, t) ∈R× [0,∞);

(vi) For each t > 0, (u, v)(x − cλ− t, t) → (u∗,0) as x → −∞.

We make two remarks. First, roughly speaking, Theorem 2 states that (I) if one is in the
moving coordinate z = x − ct (reps. z = x + ct) with c larger than the wave speed cλ+ (resp.
cλ− ), then one will see the unstable state (u∗,0); (II) if one is in the moving coordinate z = x −ct

(reps. z = x + ct) with c equal to the wave speed cλ+ (resp. cλ− ), then one will see a wave-like
profile. Note that, in a rough sense, (I) and (II) suggest that the long time behavior of the solution
(u, v) of the initial value problem (1.2)–(1.3) is a pair of diverging traveling waves whose speed
is determined by the rate of decay of the initial data as x → ±∞ (see Fig. 1). From this, we
can infer that (u(x, t), v(x, t)) → (0,0) as t → ∞ for any given x ∈ R. Second, we turn to the
solution (u, v) of the initial value problem (1.2)–(1.2.ini). Following the proof of Theorem 2(i),
(iii), (iv) and (vi), the conclusion of Theorem 2(i), (iii), (iv) and (vi) with cλ± replaced by c∗ holds
for (u, v). However, due to the restriction of the generalized sub-solution, we cannot deduce that
the assertions (ii) and (iv) of Theorem 2 with cλ± replaced by c∗ hold for (u, v). Nevertheless,
the conclusion of Theorem 2 suggests that system (1.2) possesses the wave propagation feature
of KPP-type equation.
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Now we briefly sketch our method for the proof of the results. Previous studies [9,18,19,33,20]
on the existence of waves of system (1.2) for the linear decay case (q = 1) and the case without
decay step (K = 0) are based on the dynamical system approach. However, such approaches
cannot give any information about the evolution of the solution of system (1.2). Therefore,
in this paper we will employ PDE approach, instead of dynamical system approach, to estab-
lish the existence of traveling waves, which in turn can describe the long time behavior of the
solution of system (1.2)–(1.3). In fact, both of the proofs for Theorem 1 and Theorem 2 are
based on a pair of the generalized super-/sub-solutions of system (1.2). Note that system (1.2)
does not enjoy comparison principle. Hence traveling waves of system (1.2) do not qualify as
super-/sub-solutions (unless they coincide), and so we cannot bound solutions of system (1.2)
componentwise by translates of traveling waves. On the other hand, this pair of the generalized
super-/sub-solutions are related to the solutions of a family of approximate linear inhomoge-
neous systems of system (1.2), and the construction of the generalized sub-solution is based
on the generalized super-solution. With the aid of a family of truncated problems on the finite
interval whose solutions can be proven to be sandwiched between the pair of the generalized
super-/sub-solutions, one can establish the existence of a family of traveling waves with the min-
imal speed of system (1.2) through the limit process. We remark that the idea of the framework
of the proof for the existence of waves is based on [5]. Next, via the comparison principle for a
single equation, the solution of system (1.2)–(1.3) can be shown to be squeezed between the pair
of the generalized super-/sub-solutions, from which the assertions of Theorem 2 can be proven.

The remaining parts of this paper are organized as follows. In Section 2, we derive basic prop-
erties of waves. Section 3 is devoted to the solutions of truncated problems of system (1.2). These
approximate solutions are building blocks for the existence of traveling waves of system (1.2)
which is established in Section 4. Finally, the asymptotic behavior of system (1.2)–(1.3) is inves-
tigated in Section 5.

2. Lower bound for the minimal speed of waves and decay rate of waves

To begin with, we establish the assertion of Theorem 1(ii) and the decay rate of v-component
of waves near infinity.

Lemma 2.1. Suppose that (U,V ) is a nonnegative solution of system (1.4)–(1.5). Then we have

(i) c � 2
√

u∗, and
(ii) V (z) =O(e−λz) as z → ∞ where λ is given by

λ = 1

2
· (c ±

√
c2 − 4u∗ )

.

Proof. Linearizing (1.4b) around (1,0) leads to the equations

δu′′ + cu′ − u∗v = 0, (2.1a)

v′′ + cv′ + u∗v = 0. (2.1b)

Note that (2.1b) has two eigenvalues

λ1 = 1 · (−c +
√

c2 − 4u∗ )
, λ2 = 1 · (−c −

√
c2 − 4u∗ )

.

2 2
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Suppose that c � −2
√

u∗. Then we have λi > 0, i = 1,2, and so V (z) is unbounded as
z → ∞, which is a contradiction. Therefore, we have c > −2

√
u∗. On the other hand, if

|c| < 2
√

u∗ holds, then λ1 and λ2 form a complex conjugate pair. This would imply that V (z)

cannot be of the same sign for z near infinity, a contradiction again. Hence we have c � 2
√

u∗,
which completes the proof of assertion (i). The assertion (ii) follows from the above linearized
equation and the definitions of λ1 and λ2. The proof of this lemma is thus completed. �
3. Truncated problem on the finite interval [−l, l]

To show the existence of a nonnegative solution (U,V ) of system (1.4)–(1.5), we introduce
the function pairs (U±(·),V ±(·)) satisfying the following properties:

(i) U±(·) and V ±(·) are continuous functions on R.
(ii) 0 � U−(·) � U+(·) and 0 � V −(·) � V +(·) on R.

(iii) (U−,V −)(∞) = (U+,V +)(∞) = (u∗,0).
(iv) U−(·) and V −(·) vanish in (−∞,0) and are positive in (z1,∞) for some z1 > 0.

The strategy is to construct a family of solutions of (1.4) on a finite interval Il := [−l, l] such that
they are sandwiched between (U−,V −) and (U+,V +). Then, by passing to the limit l → ∞, we
can obtain a nonnegative solution (U,V ) of (1.4) on the whole line R with (U,V )(∞) = (u∗,0),
which serves as a candidate of a nonnegative solution (U,V ) of system (1.4)–(1.5). Throughout
this subsection, we always assume c > c∗ = 2

√
u∗.

3.1. The setting of the truncated problem

To this end, for each l > z1 we consider the truncated problem of system (1.4)–(1.5)

δU ′′ + cU ′ − UV = 0 in (−l, l),

V ′′ + cV ′ + UV − KV q = 0 in (−l, l), (3.1)

together with the boundary conditions

(U,V )(−l) = (
U−,V −)

(−l), (U,V )(l) = (
U−,V −)

(l). (3.2)

We will apply the Schauder fixed point theorem to show the existence of solutions of
(3.1)–(3.2). For this, we first introduce the working space

E := {
(U,V ) ∈ X := C(Il) × C(Il)

∣∣ U− � U � U+ and V − � V � V + in Il

}
,

which is closed and convex in the Banach space X equipped with the norm ‖(ψ1,ψ2)‖X =
‖ψ1‖C(Il) + ‖ψ2‖C(Il). Since U− and V − are nonnegative, it follows that U � 0 and V � 0 for
any (U,V ) ∈ E. Next, we consider the mapping F = (F1,F2) on E: given (U0,V0) ∈ E,

F1(U0,V0) := U ; F2(U0,V0) := V,

where (U,V ) is the classical solution of the boundary value problem
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δU ′′ + cU ′ − UV0 = 0 in (−l, l), (3.3a)

V ′′ + cV ′ + U0V0 − K(V0)
q = 0 in (−l, l), (3.3b)

(U,V )(−l) = (
U−,V −)

(−l), (U,V )(l) = (
U−,V −)

(l). (3.3c)

One can easily see that any fixed point of F is a solution of the problem (3.1)–(3.2). Hence
the existence of solutions of (3.1)–(3.2) is reduced to verifying that the mapping F satisfies the
conditions of the Schauder fixed point theorem.

First, we have the basic properties of the mapping F as stated in the following lemma.

Lemma 3.1. The mapping F is well-defined and any function in F1(E) is positive and strictly
increasing in (−l, l) with l > z1; that is, for a given (U0,V0) ∈ E, (3.3) admits a unique solution
(U,V ). In addition, U > 0 and U ′ > 0 in (−l, l) with l > z1.

Proof. Note that the system (3.3) is not a coupled system and the equations for U and V are
linear. The existence and uniqueness of U and V can be easily obtained by [17, Theorem 3.1 of
Chapter 12]. Since l > z1, the assumption on U−(·) implies that U−(−l) = 0 and U−(l) > 0.
Then it follows from the maximum principle that U > 0 in (−l, l).

Now it remains to show that U ′ > 0 in (−l, l). Since U(−l) = U−(−l) = 0 and U > 0 in
(−l, l), it follows that U ′(−l) � 0. Indeed, U ′(−l) > 0 since otherwise U(−l) = U ′(−l) = 0.
Then the uniqueness gives that U ≡ 0, which contradicts the boundary condition U(l) > 0. Using
(3.3a), one can easily deduce that

(
ecz/δU ′(z)

)′ = 1

δ
U(z)V0(z)e

cz/δ.

Then an integration of the above equation gives

ecz/δU ′(z) = U ′(−l)e−cl/δ + 1

δ

z∫
−l

U(τ )V0(τ )ecτ/δ dτ, (3.4)

which, together with the fact that U,V0 � 0 in (−l, l) and U ′(−l) > 0, implies that U ′ > 0 in
(−l, l). Hence we complete the proof of this lemma. �
3.2. Super-/sub-solutions and maximum principle

To show that F maps into itself, we need to choose the function pairs (U±,V ±) carefully.
For this, we will use the iteration process to construct the super-/sub-solutions of system (3.3)
in Section 3.2.1. With the aid of this pair of super-/sub-solutions, we can verify that if (U0,V0)

is sandwiched between this pair of super-/sub-solutions, then so is F(U0,V0), which yields that
F maps into itself. The idea of such a construction is motivated by [5]. Specifically, we first
construct a super-solution V + for the V -component, which is then used to build a sub-solution
U− for the U -component. The sub-solution U− is in turn employed to produce a sub-solution
V − for the V -component. The super-solution U+ for the U -component is always chosen as the
constant u∗. The maximum principle for the comparison between the solution of system (3.3)
and the super-/sub-solutions (U±,V ±) is given in Section 3.2.2.
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3.2.1. Construction of super-/sub-solutions
Before proceeding to the construction of super-/sub-solutions, we remark that in order to

facilitate the discussion of the long time behavior of the solution of system (1.2), the constructed
super-/sub-solutions may depend on the auxiliary parameters x0 and x1 and the rate parameter λ.

Now we construct super-/sub-solutions. For simplicity, we set

p(s) := s2 − cs + u∗.

Since c > 2
√

u∗, the equation p(s) = 0 has two positive roots λ and λ + d , where

λ = 1

2
· (c −

√
c2 − 4u∗ )

and d =
√

c2 − 4u∗.

In addition, p(s) < 0 when s ∈ (λ,λ + d).

Lemma 3.2. For a fixed x0 ∈R, the function V +
λ (z;x0) := e−λ(z−x0) satisfies the equation

(
V +

λ (z;x0)
)′′ + c

(
V +

λ (z;x0)
)′ + u∗V +

λ (z;x0) = 0, (3.5)

for all z ∈ R, where the prime denotes the differentiation with respect to z.

Proof. Since p(λ) = 0, it follows that

(
V +

λ (z;x0)
)′′ + c

(
V +

λ (z;x0)
)′ + u∗V +

λ (z;x0) = p(λ)V +
λ (z;x0) = 0, ∀z ∈R. �

Remark. We note that the characteristic polynomial of Eq. (2.1b) is

p̃(s) := s2 + cs + u∗,

which differs from p(s) in the sign of the coefficient of the term s. Here we use the function
p(s), instead of p̃(s), in order to make the rate constant λ positive.

Select 0 < γ < min{c/δ,λ}. Then c − δγ > 0 and γ − λ < 0. Since e(γ−λ)z → 0 as z → ∞,
there exists z0 = z0(x0) > 0 such that

e(γ−λ)z+λx0 � γ (c − δγ ), ∀z � z0,

which yields

γ (c − δγ )e−γ z � V +
λ (z;x0), ∀z � z0. (3.6)

Set M = M(x0) := u∗eγ z0(x0). Then M > u∗ since γ, z0 > 0. In the sequel, we retain the nota-
tion z0.

Lemma 3.3. The function U−
λ (z;x0) := max{0, u∗ − Me−γ z} satisfies the inequality

δ
(
U−

λ (z;x0)
)′′ + c

(
U−

λ (z;x0)
)′ − U−

λ (z;x0)V
+
λ (z;x0)� 0, (3.7)

for all z �= z0, where the prime denotes the differentiation with respect to z.
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Proof. For z < z0, the inequality (3.7) holds immediately since U−
λ (z;x0) ≡ 0 in (−∞, z0). For

z > z0, U−
λ (z;x0) = u∗ − Me−γ z. Using (3.6) and the fact that M > u∗, we deduce that

δ
(
U−

λ (z;x0)
)′′ + c

(
U−

λ (z;x0)
)′

= Mγ(c − δγ )e−γ z � u∗V +
λ (z;x0)� U−

λ (z;x0)V
+
λ (z;x0).

Hence (3.7) holds. �
Choose 0 < η < min{γ,λ(q − 1), d}. Then η − γ < 0, λ+η −λq < 0, and p(λ+η) < 0. For

a fixed x1 ∈R, select

L = L(x1, x0) > max

{
M

u∗ · eλx1 ,− (Meλx1 + Keλqx0)

p(λ + η)

}
. (3.8)

Set

z1 = (lnL − λx1)/η. (3.9)

Then z1 > z0 > 0 since z0 = ln(M/u∗)/γ , L > M
u∗ · eλx1 , and η < γ . In the sequel, we retain the

notation z1 and L.

Lemma 3.4. The function V −
λ (z;x1, x0) := max{0,V +

λ (z;x1)−Le−(λ+η)z} satisfies the inequal-
ity

(
V −

λ (z;x1, x0)
)′′ + c

(
V −

λ (z;x1, x0)
)′ + U−

λ (z;x0)V
−
λ (z;x1, x0) − K

(
Ṽ +

λ (z;x0)
)q � 0

(3.10)

for all z �= z1, where Ṽ +
λ (z;x0) = V +

λ (z, x0) ·H(z − z1) with H(·) being the Heaviside function,
and the prime denotes the differentiation with respect to z.

Proof. For z < z1, the inequality (3.10) holds immediately since V −
λ ≡ 0 in (−∞, z1). For

z > z1, V −
λ (z;x1, x0) = V +

λ (z;x1) − Le−(λ+η)z and U−
λ (z;x0) = u∗ − Me−γ z. A simple com-

putation gives that

(
V −

λ (z;x1, x0)
)′ = (

V +
λ (z;x1)

)′ + (λ + η)Le−(λ+η)z,(
V −

λ (z;x1, x0)
)′′ = (

V +
λ (z;x1)

)′′ − (λ + η)2Le−(λ+η)z,

and

U−
λ (z;x0)V

−
λ (z;x1, x0) = (

u∗ − Me−γ z
)(

V +
λ (z;x1) − Le−(λ+η)z

)
� u∗V +

λ (z;x1) − u∗Le−(λ+η)z − Meλx1−(λ+γ )z.

Together with (3.5) and definition of p, we get
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(
V −

λ (z;x1, x0)
)′′ + c

(
V −

λ (z;x1, x0)
)′ + U−

λ (z;x0)V
−
λ (z;x1, x0) − K

(
V +

λ (z;x0)
)q

� e−(λ+η)z
[−p(λ + η)L − Meλx1+(η−γ )z − Keλqx0+(λ+η−λq)z

]
� e−(λ+η)z

[
eλx1M

(
1 − e(η−γ )z

) + eλqx0K
(
1 − e(λ+η−λq)z

)]
� 0(

since L > −(
Meλx1 + Keλqx0

)
/p(λ + η), and η − γ < 0 and λ + η − λq < 0

)
.

The proof of this lemma is thus completed. �
3.2.2. The maximum principle

In this subsection, we will develop the maximum principle which allows us the compare
the solution of system (3.3) with the super-/sub-solutions (U±,V ±) constructed in the previous
subsection.

To begin with, the following lemma is the maximum principle for a function w ∈ C([a, b]) ∩
C2((a, b)) whose proof can be found in [32].

Lemma 3.5. Suppose that w ∈ C([a, b]) ∩ C2((a, b)) satisfies the differential inequality

w′′(z) + g(z)w′(z) + h(z)w(z) � 0, ∀z ∈ (a, b), (3.11)

where g and h are functions in (a, b) with h � 0. If w(a) � 0 and w(b) � 0, then w � 0 on
[a, b].

For a function w /∈ C([a, b]) ∩ C2((a, b)) possessing some nice properties, we still have the
following maximum principle. Since we cannot locate the proof of such results in the literature,
we give the proof here.

Lemma 3.6. Let z∗ ∈ (a, b). Suppose that w ∈ C([a, b]) satisfies the following properties:

(i) both w′ and w′′ are continuous in (a, b) except for z∗ and satisfy the differential inequality

w′′(z) + A�w′(z) � 0, ∀z ∈ (a, b) \ {
z∗}, (3.12)

where A� is a positive constant;
(ii) both w′(z∗+) := limz→z∗+ w′(z) and w′(z∗−) := limz→z∗− w′(z) exist and

w′(z∗+) − w′(z∗−)
� 0. (3.13)

If w(a) � 0 and w(b) � 0, then w � 0 on [a, b].

Proof. Let

ρ1(z) := 1

A�

(
eA�(z−a) − 1

)
and ρ2(z) := 1

A�

(
1 − eA�(z−b)

)

be the unique solutions of the second-order linear equation L[y] := y′′ −A�y′ = 0 on [a, b] such
that
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ρ1(a) = 0, ρ′
1(a) = 1 (3.14)

and

ρ2(b) = 0, ρ′
2(b) = −1. (3.15)

From definitions of ρ1 and ρ2, we see that

ρ1 > 0, ρ2 > 0, (3.16)

ρ′
1 − A�ρ1 = 1, (3.17)

and

ρ′
2 − A�ρ2 = −1, (3.18)

in (a, b).
Now we claim that for any z ∈ (a, b),

ρ1
(
z∗)ρ2(z)

(
w′(z∗−) − w′(z∗+)) − (

ρ1(z) + ρ2(z)
)
w(z) + w(a)ρ2(z) + w(b)ρ1(z) � 0.

(3.19)

For this, we first consider z∗ < z < b. Multiplying (3.12) by ρ1, integrating the resulting inequal-
ity from a to z, and then using integration by parts, we get that

ρ1
(
z∗)(w′(z∗−) − w′(z∗+)) + ρ1(z)w

′(z) − w(z) + w(a) � 0, (3.20)

where we have used (3.14), (3.17), and the fact that L[ρ1] = 0. Similarly, multiplying (3.12)
by ρ2, integrating the resulting inequality from z to b, and then using the integration by parts, we
deduce that

−ρ2(z)w
′(z) − w(z) + w(b)� 0, (3.21)

where we have used (3.15), (3.18), and the fact that L[ρ2] = 0. Multiplying (3.20) and (3.21) by
ρ2 and ρ1 respectively and then summing up, we finally get (3.19). For a < z � z∗, the inequality
(3.19) can be obtained by a similar argument.

Finally, rearranging the inequality (3.19) and using (3.13), (3.16) and the assumption that
w(a)� 0 and w(b)� 0, we discover that

w(z) � w(a)ρ2(z) + w(b)ρ1(z) + ρ1(z
∗)ρ2(z)(w

′(z∗−) − w′(z∗+))

ρ1(z) + ρ2(z)
� 0,

for all z ∈ (a, b). The proof of this lemma is therefore completed. �
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3.3. The verification of the Schauder fixed point theorem

In this section, we will use the super-/sub-solutions V +
λ (·;x0), U−

λ (·;x0), and V −
λ (·;x1, x0)

with x0 = x1 = 0 established in Section 3.2.1 to verify the conditions of the Schauder fixed point
theorem. For simplicity, in the remaining of this section, we assume c > c∗, x0 = x1 = 0, and set
U−

λ (z;x0), V −
λ (z;x1, x0), and V +

λ (z;x0) as U−(z), V −(z), and V +(z), respectively.

Lemma 3.7. F maps E into E.

Proof. For a given (U0,V0) ∈ E, let (U,V ) := F(U0,V0). We first claim that V − � V � V +
on Il . Since 0 � U− � U0 � U+ ≡ u∗ and 0 � V − � V0 � V +, it follows that U−V − −
K(V +)q � U0V0 − K(V0)

q � u∗V +. As a consequence, V satisfies the following differential
inequalities

V ′′ + cV ′ + U−V − − K
(
V +)q � 0, (3.22)

and

V ′′ + cV ′ + u∗V + � 0, (3.23)

for all z in (−l, l). Now we consider the function w1 = V − V −. From (3.3c), we know that
w1(−l) = w1(l) = 0. In addition, (3.10) and (3.22) give that w′′

1(z) + cw′
1(z) � 0 for all z ∈

(−l, l) \ {z1}. Note that V ′(z1+) = V ′(z1−) due to V ∈ C2((−l, l)). Together with the fact that
(V −)′(z1−) = 0 and (V −)′(z1+) > 0, we obtain that w′

1(z1+) − w′
1(z1−) < 0. Then it follows

from Lemma 3.6 that w1 � 0 in [−l, l]. This implies that V − � V in Il . With a similar argument
and using Lemma 3.5, we also get that V � V + in Il .

Next, we show that U− � U in Il . Since U− ≡ 0 in [−l, z0] and U � 0 in [−l, z0], it follows
that

U � U− in [−l, z0]. (3.24)

Hence it remains to show that U � U− in (z0, l]. Since V0 � V +, it follows that

δU ′′ + cU ′ − UV + � 0 in (z0, l). (3.25)

Then (3.7) and (3.25) imply that the function w2 := U − U− satisfies δw′′
2 + cw′

2 − V +w2 � 0
in (z0, l). In addition, from (3.24) and (3.3c), we know that w2(z0) � 0 and w2(l) = 0. Hence
Lemma 3.5 asserts that w2 � 0 in [z0, l]. Hence U− � U in [z0, l].

Finally, we show that U � U+ in Il . Since U+ ≡ u∗ and V0 � 0, we see that U+ satisfies

δ
(
U+)′′ + c

(
U+)′ − U+V0 � 0 in (−l, l),

and U+(±l) = u∗ � U−(±l) = U(±l). By a similar argument as the proof for U− � U in [z0, l],
we get that U � U+ in Il . �
Lemma 3.8. F is a continuous mapping.
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Proof. For given (U0,V0) and (Ũ0, Ṽ0) in E, let

(U,V ) =F(U0,V0) and (Ũ , Ṽ ) =F(Ũ0, Ṽ0). (3.26)

We first consider the function w1 := U − Ũ . It is easy to see that w1(−l) = w1(l) = 0 and

w′′
1 + c

δ
w′

1 + g(z)w1 = h1(z),

where

g(z) = −1

δ
V0(z) and h1(z) = 1

δ
Ũ(z)

(
V0(z) − Ṽ0(z)

)
.

Note that

−1

δ
eλl � g � 0 and |h1| � u∗

δ
· ‖V0 − Ṽ0‖C(Il)

since 0 � V0 � V + � ‖V +‖C(Il) = eλl and 0 � Ũ � U+ ≡ u∗. In addition, from definition of λ,
we know that the value of λ depends only on u∗ and c. Then Lemma A.1 in Appendix A asserts
that there exists a positive constant C1, depending only on δ, u∗, c, and l, such that

‖w1‖C(Il) � C1 · ‖V0 − Ṽ0‖C(Il),

which, together with definition of w1, implies that

‖U − Ũ‖C(Il) � C1 · ‖V0 − Ṽ0‖C(Il). (3.27)

Next, we consider the function w2 = V − Ṽ . One can easily see that w2 satisfies w2(−l) =
w2(l) = 0 and

w′′
2 + cw′

2 = h2(z),

where

h2 = Ũ0Ṽ0 − U0V0 + K
(
V

q

0 − Ṽ
q

0

)
.

Note that

h2 = Ṽ0(Ũ0 − U0) + U0(Ṽ0 − V0) + K
(
V

q

0 − Ṽ
q

0

)
. (3.28)

Since 0 � V0, Ṽ0 � ‖V +‖C(Il) = eλl , we can apply the mean-value theorem to get that

∣∣V q

0 − Ṽ
q

0

∣∣� qeλl(q−1)|Ṽ0 − V0|.

Together with the fact that
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|Ṽ0|� eλl and |U0| � u∗,

we deduce from (3.28) that

|h2|� eλl‖U0 − Ũ0‖C(Il) + (
u∗ + Kqeλl(q−1)

)‖V0 − Ṽ0‖C(Il).

Then Lemma A.1 in Appendix A asserts that there exists a positive constant C2, depending only
on u∗, c, K , q , and l, such that

‖w2‖C(Il) � C2
(‖U0 − Ũ0‖C(Il) + ‖V0 − Ṽ0‖C(Il)

)
,

which, together with definition of w2, implies that

‖V − Ṽ ‖C(Il) � C2
(‖U0 − Ũ0‖C(Il) + ‖V0 − Ṽ0‖C(Il)

)
. (3.29)

Finally, we use (3.26), (3.27), (3.29), and definition of the norm ‖ · ‖X to deduce that

∥∥F(U0,V0) −F(Ũ0, Ṽ0)
∥∥

X

= ∥∥(U,V ) − (Ũ , Ṽ )
∥∥

X

= ‖U − Ũ‖C(Il) + ‖V − Ṽ ‖C(Il)

� C3
(‖U0 − Ũ0‖C(Il) + ‖V0 − Ṽ0‖C(Il)

)
= C3

∥∥(U0,V0) − (Ũ0, Ṽ0)
∥∥

X
, (3.30)

where C3 = C1 + C2. Thus, for a given ε > 0, we choose 0 < δ1 < ε/C3. Then, by (3.30), we
have

∥∥F(U0,V0) −F(Ũ0, Ṽ0)
∥∥

X
< ε,

for any (U0,V0), (Ũ0, Ṽ0) ∈ E such that ‖(U0,V0) − (Ũ0, Ṽ0)‖X < δ1. This shows that F is a
continuous mapping. Hence the proof of this lemma is completed. �
Lemma 3.9. FE is precompact.

Proof. For a given sequence {(U0,n,V0,n)}n∈N in E, let (Un,Vn) = F(U0,n,V0,n). Since U−
and U+ are bounded in Il , we can easily see from definition of the set E and Lemma 3.7 that the
sequences

{U0,n}, {V0,n}, {Un}, {Vn}, {UnV0,n}, {U0,nV0,n} and
{
V

q

0,n

}

are uniformly bounded in Il . Then, by Lemma A.2 in Appendix A, it follows that the sequences

{
U ′

n

}
and

{
V ′

n

}
,

are also uniformly bounded in Il . Therefore, we can use Arzela–Ascoli theorem to get a subse-
quence {(Un ,Vn )} of {(Un,Vn)} such that
j j
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(Unj
,Vnj

) → (U,V ),

uniformly in Il as j → ∞, for some (U,V ) ∈ E. Hence the set FE is precompact. �
Since F is a continuous mapping of E into itself such that the image FE is precompact, it

follows from the Schauder fixed point theorem that F has a fixed point, which is a nonnegative
solution of system (3.1)–(3.2). So we have the following lemma.

Lemma 3.10. If c > c∗, then system (3.1)–(3.2) admits a solution (U,V ) satisfying

0 � U− � U � u∗ and 0 � V − � V � V + (3.31)

on Il , and U ′ > 0 in (−l, l).

4. Existence of traveling waves of system (1.2)

Again, for simplicity, throughout this section, we assume x0 = x1 = 0, and write U−
λ (z;x0),

V −
λ (z;x1, x0), and V +

λ (z;x0) as U−(z), V −(z), and V +(z), respectively.
Now we are in a position to prove Theorem 1. First, we defer the proof of the assertion of

Theorem 1(i) and (iv) to Appendix A. Second, the proof of the assertion of Theorem 1(ii) is given
in Lemma 2.1(i). Hence we only need to establish the existence and the associated properties of
traveling wave solutions. We divide the proof into two parts. Precisely, the proof for the case of
non-critical waves (c > c∗) is given in Section 4.1, and the case of the critical wave (c = c∗) is
shown in Section 4.2.

4.1. Existence of non-critical waves of system (1.2)

We first establish the existence of non-critical traveling waves of system (1.2).

Lemma 4.1. Let q > 1. For a given u∗ > 0, if c > c∗, then system (1.4)–(1.5) admits a solution
(U,V ) satisfying (3.31) on R. Moreover, 0 < U,V < u∗ on R, U ′ > 0 on R, V ′ > 0 on (−∞, ξ0)

and V ′ < 0 on (ξ0,+∞) for some ξ0 ∈ R, and (U,V )(−∞) = (0,0). Further, we have V (z) =
O(e−λz) as z → ∞ where λ is given by (1.6).

Proof. Let {ln}n∈N be an increasing sequence in (z1,∞) such that ln → ∞ as n → ∞ and let
(Un,Vn), n ∈ N, be a solution of system (3.1)–(3.2) with l = ln. For any fixed N ∈ N, since the
function V + is bounded above in [−lN , lN ], it follows from (3.31) that the sequences

{Un}n�N, {Vn}n�N, {UnVn}n�N and
{
V

q
n

}
n�N

are uniformly bounded in [−lN , lN ]. Then we can use [11, Lemma 3.3] to infer that the sequences

{
U ′

n

}
n�N

and
{
V ′

n

}
n�N

are also uniformly bounded in [−lN , lN ]. Using (3.1), we can express U ′′
n and V ′′

n in terms of Un,
Vn, U ′

n and V ′
n. Differentiating (3.1), we can use the resulting equations to express U ′′′

n and V ′′′
n

in terms of Un, Vn, U ′
n, V ′

n, U ′′
n and V ′′

n . Consequently, the sequences
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{
U ′′

n

}
n�N

,
{
V ′′

n

}
n�N

,
{
U ′′′

n

}
n�N

and
{
V ′′′

n

}
n�N

are uniformly bounded in [−lN , lN ]. With the aid of Arzela–Ascoli theorem, we can use a diag-
onal process to get a subsequence {(Unj

,Vnj
)} of {(Un,Vn)} such that

Unj
→ U, U ′

nj
→ U ′, U ′′

nj
→ U ′′,

and

Vnj
→ V, V ′

nj
→ V ′, V ′′

nj
→ V ′′,

uniformly in any compact interval of R as n → ∞, for some functions U and V in C2(R). Then
it is easy to see that (U,V ) is a nonnegative solution of system (1.4) and satisfies (3.31) and
U ′ � 0 over R. From the definitions of U− and V +, we see that U−(z) → u∗ and V +(z) → 0 as
z → ∞. This, together with (3.31), implies that V (z) = O(e−λz) as z → ∞ where λ is given by
(1.6). Hence we have

(U,V )(+∞) = (
u∗,0

)
. (4.1)

Furthermore, we claim that U,V > 0 and U ′ > 0 over R. For contradiction, we assume that
U(z̃1) = 0 for some z̃1 ∈ R. In this case, U ′(z̃1) = 0. Then the uniqueness gives that U ≡ 0,
which contradicts the fact that U(∞) = u∗ > 0. Hence U > 0 over R. Arguing as above and
noting that V � V − > 0 on (z1,∞), we also have V > 0 over R. To prove U ′ > 0 over R, we
also use a contradictory argument and assume that U ′(z̃2) = 0 for some z̃2 ∈ R. In this case, we
have U ′′(z̃2) = 0 since U ′ � 0 over R. Using (1.4), we get U(z̃2)V (z̃2) = 0, which contradicts
the positivity of U and V .

Now it remains to show that V < u∗ over R and (U,V )(−∞) = (0,0). We divide the proof
into four steps:

Step 1: We claim that

U ′(+∞) = 0 and V ′(+∞) = 0. (4.2)

Integrating Eq. (1.4a) from s to z gives that

U ′(z) = e− c
δ
(z−s)U ′(s) + 1

δ
e− c

δ
z

z∫
s

e
c
δ
τU(τ)V (τ) dτ. (4.3)

From the equality (4.3) one immediately deduces that, by fixing s and letting z → ∞,

lim sup
z→∞

∣∣U ′(z)
∣∣ � 1

δ

(
max
τ�s

(
U(τ)V (τ)

)) · lim sup
z→∞

e− c
δ
z

z∫
s

e
c
δ
τ dτ � 1

c
max
τ�s

(
U(τ)V (τ)

)

for s ∈ R. Together with the fact that U(∞)V (∞) = 0, we can deduce that U ′(∞) = 0. Similarly,
integrating Eq. (1.4b) from 0 to z and arguing as above, we also get V ′(∞) = 0.
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Step 2: We claim that

U(−∞) = u∗ and U ′(−∞) = 0 (4.4)

for some u∗ ∈ [0, u∗). Since U is increasing and 0 < U � u∗, it follows that u∗ := U(−∞) exists
and 0 � u∗ � u∗. Moreover, U(−∞) �= u∗ since U ′ > 0 over R. Hence u∗ ∈ [0, u∗). Now we
show that U ′(−∞) = 0. Integrating Eq. (1.4a) from z to ∞ and recalling that U(∞) = u∗ and
U ′(∞) = 0, we get

−δU ′(z) + c
[
u∗ − U(z)

] =
∞∫
z

U(τ)V (τ) dτ. (4.5)

Since U > 0 and U ′ > 0, Eq. (4.5) implies that

∞∫
z

U(τ)V (τ) dτ � cu∗.

Hence the improper integral

∞∫
−∞

U(τ)V (τ) dτ

converges. Letting z → −∞ in (4.5) and recalling the fact that U(−∞) exists, we infer that
U ′(−∞) exists. Furthermore, since U ′ > 0, it follows that U ′(−∞) � 0. Indeed, U ′(−∞) = 0.
Otherwise, U ′(−∞) > 0, which implies U(−∞) = −∞, a contradiction to the fact that U(−∞)

exists.
Step 3: We show that V < u∗ on R. Summing up (1.4a) and (1.4b), we deduce that

δU ′′ + V ′′ + c
(
U ′ + V ′) = KV q � 0 on R, (4.6)

which implies that the function δU ′ + V ′ + c(U + V ) is nondecreasing. Since (4.1) and (4.2)
imply that δU ′ + V ′ + c(U + V ) → cu∗ as z → ∞, we obtain that

δU ′ + V ′ + c(U + V ) � cu∗ on R,

and therefore,

δU ′ + V ′ + c
(
U + V − u∗)� 0 on R. (4.7)

For δ � 1, we consider the function W1 := U + V − u∗. Since U � u∗, we can use (3.31) to get
that

W1(z) � V (z) � V +(z) � e−λz, ∀z ∈R. (4.8)
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In addition, since U ′ > 0, we can use (4.7) to deduce that

W ′
1 + cW1 = (1 − δ)U ′ � 0 on R,

which follows that [eczW1(z)]′ � 0 over R. This, together with (4.8), implies that

eczW1(z) � ecz∗
W1

(
z∗)� e(c−λ)z∗

,

for any −∞ < z∗ < z < ∞. Letting z∗ → −∞ in the above inequality and noting that
e(c−λ)z∗ → 0 due to λ < c, we get W1(z) � 0 and therefore U + V � u∗ on R. This, together
with the fact that U > 0, implies that V < u∗ on R. Now we consider the case 0 < δ < 1. Set
W2 := δU + V − u∗. Since U � u∗ and δ < 1, it follows from (3.31) that

W2(z) � V (z) � V +(z) � e−λz, ∀z ∈ R.

In addition, since c > 0, δ < 1, and U > 0, we can use (4.7) to deduce that

W ′
2 + cW2 = c(δ − 1)U � 0 on R.

Arguing as the proof for W1 � 0, we can easily get W2 � 0 and therefore δU + V � u∗ on R.
This, together with the fact that U > 0, implies that V < u∗ on R.

Step 4: We show that V (−∞) = 0. To this end, we first claim that B� := (V ′ + cV )(−∞)

exists. Integrating (4.6) over R and using (4.1), (4.2), and (4.4), we obtain that

c
(
u∗ − u∗

) − (
V ′ + cV

)
(−∞) = K

∞∫
−∞

V q(z) dz. (4.9)

Note that the improper integral

∞∫
−∞

V q(z) dz (4.10)

converges since otherwise it diverges to ∞ and therefore (V ′ + cV )(−∞) = −∞. This, together
with the boundedness of V , implies that V ′(−∞) = −∞, which contradicts the boundedness
of V . Hence the limit (V ′ + cV )(−∞) exists.

Now we show that V (−∞) = 0. Since V > 0 on R, the convergence of the improper inte-
gral (4.10) implies that lim infz→−∞ V (z) = 0. Recall that V is bounded. For contradiction we
assume that ξ := lim supz→−∞ V (z) is a positive number. Select two sequences {sn}n∈N ↘ −∞
and {tn}n∈N ↘ −∞ such that sn > tn > sn+1, V (sn) < ξ/2, V (tn) > ξ/2 for all n ∈ N, and

lim
n→∞V (sn) = 0 and lim

n→∞V (tn) = ξ. (4.11)

For each n ∈ N, the continuity of V implies that there exist s∗
n ∈ [sn+1, sn] and t∗n ∈ [tn+1, tn]

such that
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V
(
s∗
n

) = max
z∈[sn+1,sn]V (z) and V

(
t∗n

) = min
z∈[tn+1,tn]V (z).

It is easy to see that s∗
n and t∗n are critical points, so that

V ′(s∗
n

) = 0 and V ′(t∗n ) = 0. (4.12)

Since sn+1 ∈ [tn+1, tn], the minimality of V at t∗n gives that 0 < V (t∗n )� V (sn+1). Together with
(4.11), we get that

lim
n→∞V

(
t∗n

) = 0. (4.13)

Using (4.12), (4.13), and the fact that B� = (V ′ + cV )(−∞) = limn→∞(V ′ + cV )(t∗n ), we get
B� = 0. Hence limn→∞(V ′ + cV )(s∗

n) = (V ′ + cV )(−∞) = 0. Then, by (4.12), we conclude
that

lim
n→∞V

(
s∗
n

) = 0. (4.14)

Since tn ∈ [sn+1, sn], the maximality of V at s∗
n gives that V (s∗

n) � V (tn) � 0. Together with
(4.14), we get limn→∞ V (tn) = 0, which contradicts (4.11). Therefore, we have V (−∞) = 0.

Finally, the proof of the assertion that U(−∞) = 0 (i.e., u∗ = 0) follows a similar argument
as that of [28, Proposition 4.2]. For the reader’s convenience, we sketch it in Appendix A.2
of Appendix A. For the assertion that V ′ > 0 on (−∞, ξ0) and V ′ < 0 on (ξ0,+∞) for some
ξ0 ∈ R, the proof follows from that of [30], and so we omit it. Hence the proof of Theorem 1(iii)
for the case of non-critical waves is completed. �
4.2. Existence of critical waves of system (1.2)

Next we establish the existence of traveling waves of system (1.2) with critical speed c = c∗.

Lemma 4.2. Let q > 1. For a given u∗ > 0, if c = c∗, then system (1.4)–(1.5) admits a solution
(U,V ) on R. Moreover, 0 < U,V < u∗ on R, U ′ > 0 on R, V ′ > 0 on (−∞, ξ0) and V ′ < 0 on
(ξ0,+∞) for some ξ0 ∈ R, and (U,V )(−∞) = (0,0).

Proof. Firstly, we select a sequence {cn}n∈N ↘ c∗. For each n ∈ N, Lemma 3.2 asserts that the
function V +

n (z) := e−λnz, where

λn = 1

2
·
(
cn −

√
c2
n − 4u∗

)
,

satisfies

(
V +

n

)′′ + cn

(
V +

n

)′ + u∗V +
n = 0, ∀z ∈R.

Choose 0 < γ ∗ < min{c∗/δ,λ1}. Then c∗ − δγ ∗ > 0 and γ ∗ − λ1 < 0. Since e(γ ∗−λ1)z → 0 as
z → ∞, there exists z∗ > 0 such that
0
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e(γ ∗−λ1)z � γ ∗(c∗ − δγ ∗), ∀z � z∗
0,

which, together with the fact that λn > λ1 and cn > c∗, yields

e(γ ∗−λn)z � γ ∗(cn − δγ ∗), ∀z � z∗
0.

Hence,

(
cn − δγ ∗)γ ∗e−γ ∗z � V +

n (z), ∀z � z∗
0.

Set M∗ = u∗eγ ∗z∗
0 . Then M∗ > u∗ since γ ∗, z∗

0 > 0. Hence Lemma 3.3 asserts that the function
(U∗)−(z) := max{0, u∗ − M∗e−γ ∗z} satisfies the inequality

δ
((

U∗)−)′′ + cn

((
U∗)−)′ − (

U∗)−
V +

n � 0, ∀z �= z∗
0 and n ∈N.

Then, for each n ∈ N, Lemma 4.1 asserts that there exists a solution (Un,Vn) to system
(1.4)–(1.5) with c = cn such that

0 < Un(z),Vn(z) � u∗, (4.15)

U ′
n(z) > 0, (4.16)

and

0 �
(
U∗)−

(z) �Un(z) � u∗, and 0 � Vn(z) � V +
n (z), (4.17)

for all z ∈R. Thus the sequences

{Un}n�N and {Vn}n�N

are uniformly bounded in R and also we have

δU ′′
n + cnU

′
n − UnVn = 0,

V ′′
n + cnV

′
n + UnVn − KV

q
n = 0 (4.18)

in R. For each n ∈N, since U ′
n(±∞) = 0 and V ′

n(±∞) = 0, there exists ξ∗
n and η∗

n such that

U ′
n

(
ξ∗
n

) = ∥∥U ′
n

∥∥
L(R)

and
∣∣V ′

n

(
η∗

n

)∣∣ = ∥∥V ′
n

∥∥
L(R)

. (4.19)

Then U ′′
n (ξ∗

n ) = 0 and V ′′
n (η∗

n) = 0. Together with (4.18) and (4.15), we obtain that

U ′
n

(
ξ∗
n

) = 1

cn

Un

(
ξ∗
n

)
Vn

(
ξ∗
n

)
� 1

c∗
(
u∗)2 (4.20)

and

∣∣V ′
n

(
η∗

n

)∣∣ = 1 ∣∣−Un

(
η∗

n

)
Vn

(
η∗

n

) + KVn

(
η∗

n

)q ∣∣� 1
∗
[(

u∗)2 + K
(
u∗)q]

. (4.21)

cn c
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Hence (4.19), (4.20), and (4.21) give that

∥∥U ′
n

∥∥
L(R)

� (u∗)2

c∗ and
∥∥V ′

n

∥∥
L(R)

� 1

c∗
[(

u∗)2 + K
(
u∗)q]

, ∀n ∈ N.

This means that the sequences

{
U ′

n

}
n�N

and
{
V ′

n

}
n�N

are also uniformly bounded in R. Note that the sequence {cn}n�N is bounded. Using (4.18),
we can express U ′′

n and V ′′
n in terms of cn, Un, Vn, U ′

n and V ′
n. Differentiating (4.18), we can

use the resulting equations to express U ′′′
n and V ′′′

n in terms of cn, Un, Vn, U ′
n, V ′

n, U ′′
n and V ′′

n .
Consequently, the sequences

{
U ′′

n

}
n�N

,
{
V ′′

n

}
n�N

,
{
U ′′′

n

}
n�N

and
{
V ′′′

n

}
n�N

are uniformly bounded in R. With the aid of Arzela–Ascoli theorem, we can use a diagonal
process to get a subsequence {(Unj

,Vnj
)} of {(Un,Vn)} such that

Unj
→ U, U ′

nj
→ U ′, U ′′

nj
→ U ′′,

and

Vnj
→ V, V ′

nj
→ V ′, V ′′

nj
→ V ′′,

uniformly in any compact interval of R as n → ∞, for some functions U and V in C2(R). Then
it is easy to see that (U,V ) is a solution of system (1.4). Moreover, (4.15), (4.16), and (4.17)
implies that

0 � U(z),V (z) � u∗,

U ′(z) � 0,

and

0 �
(
U∗)−

(z) �U(z) � u∗, and 0 � V (z) �
(
V ∗)+

(z), (4.22)

for all z ∈ R, where (V ∗)+(z) := limn→∞ V +
n (z) = e−c∗/2z. From the definitions of (U∗)− and

(V ∗)+, we see that (U∗)−(z) → u∗ and (V ∗)+(z) → 0 as z → ∞. This, together with (4.22),
implies that (U,V )(+∞) = (u∗,0).

Now we show that (U(−∞),V (−∞)) = (0,0). To do this, we first claim that V �≡ 0. Indeed,
using (4.9) with V = Vnj

and recalling that u∗ = 0, we have cnj
u∗ = K

∫ ∞
−∞ V

q
nj

(z) dz for j ∈N,
which, together with Lebesgue dominated convergence theorem, yields

∞∫
V q(z) dz = c∗u∗/K > 0.
−∞



3358 S.-C. Fu, J.-C. Tsai / J. Differential Equations 256 (2014) 3335–3364
Hence V �≡ 0. Next we claim that V > 0 on R. For contradiction, we assume that V (z�
1) = 0

for some z�
1 ∈ R. Since V (·) � 0 on R, we have V ′(z�

1) = 0. Then the uniqueness theorem for
differential equations gives that V ≡ 0, which contradicts the fact that V �≡ 0. Hence V > 0
over R. Then with the aid of the fact that V > 0 on R, we can follow the argument in the
paragraph right after Eq. (4.1) to deduce that U > 0 and U ′ > 0 over R. Finally, we can follow
the proof of Lemma 4.1 to infer that 0 < U,V < u∗ on R, U ′ > 0 on R, V ′ > 0 on (−∞, ξ0)

and V ′ < 0 on (ξ0,+∞) for some ξ0 ∈ R, and (U,V )(−∞) = (0,0). This completes the proof
of Theorem 1(iii) for the case of the critical wave. �
5. Propagation of traveling waves

In this section, we give the proof of Theorem 2. The proof is based on the construction of
positive functions propagating with the speed cλ.

5.1. Comparison lemmas

To begin with, we can use the argument of [30] to establish the invariant region for the solution
of system (1.2).

Lemma 5.1. Let (u, v) be the solution of system (1.2) on R× [0, T ] with the initial data (u0, v0)

satisfying that 0 � u0(·) � u∗ and v0(·) � 0 on R. Then there exists a constant χ > 0, indepen-
dent of T , such that

0 � u(x, t) � u∗ and 0 � v(x, t)� χ for all x ∈R and t ∈ [0, T ].

Proof. First, using the argument of [30, p. 270], we have that 0 � u(x, t) � u∗ and v(x, t) � 0
for all x ∈R and t ∈ [0, T ].

To establish the upper bound for v, we use the above assertion for (u, v) and Eq. (1.2a) to
deduce that v(x, t) is a sub-solution of the equation

vt = vxx + u∗v − Kvq (5.1)

for (x, t) ∈ R × (0, T ]. Since q > 1, Eq. (5.1) is the generalized KPP equation. Taken together,
we can find a constant χ > 0, independent of T , such that v(x, t) � χ for (x, t) ∈ R × (0, T ].
This completes the proof of this lemma. �

We remark that with the use of Lemma 5.1, we can follow the standard argument of [34] to
establish the global existence and regularity of solutions of system (1.2) with the initial condi-
tion (1.3).

Next we show that if the v-component of the initial data (1.3) is squeezed between
V −

λ (·;x1, x0) and V +
λ (·;x0) for some x0 and x1 ∈ R, then the solution of system (1.2)

with the initial data (1.3) is squeezed between (U−
λ (x − cλt;x0),V

−
λ (x − cλt;x1, x0)) and

(u∗,V +
λ (x − cλt;x0)) for all t > 0.

Lemma 5.2. Let (u, v) be the solution of system (1.2) on R × [0,∞) with initial data (u0, v0)

satisfying
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u0(x) = u∗ and V −
λ (x;x1, x0) � v0(x) � V +

λ (x;x0) (5.2)

for all x ∈R, and for some x0, x1 ∈ R and λ ∈ (0,
√

u∗ ). Then we have

U−
λ (x − cλt;x0)� u(x, t) � u∗, (5.3a)

V −
λ (x − cλt;x1, x0) � v(x, t)� V +

λ (x − cλt;x0) (5.3b)

for all (x, t) ∈R× [0,∞).

Proof. We first establish (5.3b). To do this, we use Lemma 5.1 to deduce that 0 � u(x, t) � u∗
and v(x, t) � 0 for all (x, t) ∈ R × [0,∞). Hence from Eq. (1.2b), v(x, t) is a sub-solution of
the equation

vt = vxx + u∗v. (5.4)

From Lemma 3.2, V +
λ (x − cλt;x0) is a solution of Eq. (5.4). Together with the fact that v0(·) �

V +
λ (·;x0) on R, we can apply the comparison principle to Eq. (5.4) to deduce that v(x, t) �

V +
λ (x − cλt;x0) for all (x, t) ∈R× [0,∞).

Now we prove u(x, t) � U−
λ (x − cλt;x0) for all (x, t) ∈ R × [0,∞). For this, we use

Eq. (1.2a) and the right-hand side inequality of (5.3b) to conclude that u(x, t) is a super-solution
of the equation

ut = δuxx − uV +
λ (x − cλt;x0). (5.5)

From Lemma 3.3, U−
λ (x − cλt;x0) is a sub-solution of Eq. (5.5). Hence, together with the fact

that u0(·) � U−
λ (·;x0) on R, we can apply the comparison principle to Eq. (5.5) to conclude that

u(x, t) � U−
λ (x − cλt;x0) for all (x, t) ∈R× [0,∞).

Finally we show v(x, t) � V −
λ (x −cλt;x1, x0) for all (x, t) ∈ R×[0,∞). To do this, we recall

the definition of z1 given in Section 3.2.1. For each t � 0, we set xt := cλt + z1. Then for (x, t)

with x � xt , since V −
λ (x − cλt;x1, x0) = 0, it is obvious that v(x, t) � V −

λ (x − cλt;x1, x0). Next
we consider the region {(x, t): x � xt , t � 0}. Note that Eq. (5.3a), the right-hand side inequality
of (5.3b), and Eq. (1.2b) yield that v(x, t) is a super-solution of the equation

vt = vxx + U−
λ (x − cλt;x0)v − K

(
V +

λ (x − cλt;x0)
)q

. (5.6)

From Lemma 3.4, V −
λ (x − cλt;x1, x0) is a sub-solution of Eq. (5.6). Recall that v0(·) �

V −
λ (·;x1, x0) on R and v(x, t) � V −

λ (x − cλt;x1, x0) for (x, t) = (xt , t) and t � 0. There-
fore, with the aid of the maximum principle, we have v(x, t) � V −

λ (x − cλt;x1, x0) for x � xt

and t � 0. Together with the fact that V −
λ (z1;x1, x0) = 0, we conclude that v(x, t) � V −

λ (x −
cλt;x1, x0) for all (x, t) ∈R× [0,∞). The proof of this lemma is thus completed. �
5.2. The proof of Theorem 2

Now we are in a position to establish Theorem 2. It suffices to show assertions (i), (ii), and
(iii) of Theorem 2 since the other three assertions can be proven in a similar way. Now using
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condition (1.3), we can find sufficiently large numbers x0 and x1 with x1 < 0 such that condition
(5.2) in Lemma 5.2 holds. Hence Lemma 5.2 and the definitions of U−

λ+ and V ±
λ+ imply that

max
{
0, u∗ − Me−γ (x−cλ+ t)

}
� u(x, t) � u∗,

max
{
0, e−λ+(x−cλ+ t−x1) − Le−(λ++η)(x−cλ+ t)

}
� v(x, t)� e−λ+(x−cλ+ t−x0), (5.7)

for all (x, t) ∈ R × [0,∞), where M = M(x0), L = L(x1, x0) and η are positive constants de-
fined in Section 3.2.1. Set ψ+

λ+ := max{0, u∗ − Me−γ x} and φ+
λ+(x) := max{0, e−λ+(x−x1) −

Le−(λ++η)x}. Then assertions (i), (ii), and (iii) of Theorem 2 follows from the inequality
(5.7). �
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Appendix A

A.1. A priori estimates for the inhomogeneous linear equation

In this section, we collect some a priori estimates in [11] for solutions of the inhomogeneous
linear equation

w′′(z) + Aw′(z) + g(z)w(z) = h(z). (A.1)

Lemma A.1. (See Lemma 3.2 of [11].) Let A be a positive constant and let g and h be continuous
functions on [a, b]. Suppose that w ∈ C([a, b]) ∩ C2((a, b)) satisfies the differential equation
(A.1) in (a, b) and w(a) = w(b) = 0. If

−C1 � g � 0 and |h| � C2 on [a, b],

for some constants C1, C2, then there exists a positive constant C3, depending only on A, C1,
and the length of the interval [a, b], such that

‖w‖C([a,b]) � C2C3. (A.2)

Lemma A.2. (See Lemma 3.3 of [11].) Let A, g, and h be as in Lemma A.1. Suppose that
w ∈ C([a, b]) ∩ C2((a, b)) satisfies (A.1) in (a, b). If ‖w‖C([a,b]) � K0 for some constant C0,
then there exists a positive constant C4, depending only on A, C0, C1, C2, and the length of the
interval [a, b], such that

∥∥w′∥∥
C([a,b]) � C4. (A.3)
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A.2. The proof for U(−∞) = 0

In this section, we show the assertion U(−∞) = 0 which is stated in Lemma 4.1 and which is
equivalent to the assertion u∗ = 0. Again the proof follows the lines of [28, Proposition 4.2]. For
the reader’s convenience, we sketch it here. For contradiction, we assume that u∗ > 0. In view
of the fact that q > 1 and V (−∞) = 0, we can choose a z∗ < 0 such that KV q−1(z) − U(z) < 0
for z � z∗. Now integrating (1.4b) from −∞ to z � z∗, we obtain

V ′(z) + cV (z) =
z∫

−∞

(
KV q−1(τ ) − U(τ)

)
V (τ) dτ < 0

for z � z∗, which yields (eczV (z))′ < 0 for z � z∗. Together with V (−∞) = 0, this implies that
V (z) < 0 for z � z∗, a contradiction. Hence the assertion that u∗ = 0 is established. �
A.3. The uniqueness of waves of system (1.2) for q ∈ (1,2]

In this section, we establish the uniqueness of waves of system (1.2) for q ∈ (1,2]. We note
that the uniqueness of waves with large wave speed for the case q = 2 is shown in [28]. Since
the argument is similar to that of [28, pp. 543–547], we will only state the necessary ingredients
and modification.

To begin with, we denote the problem (1.4)–(1.5) as P [u∗, c,K] to specify the dependence of
the problem (1.4)–(1.5) on the parameters (u∗, c,K). Then we have the crucial scaling observa-
tion, as stated below.

Lemma A.3. Let u∗, c, and K be positive numbers. Suppose that the problem P [u∗, c,K] has a

unique solution, then the problem P [ε, ((u∗)− 1
2 c)ε

1
2 , ((u∗)q−2K)ε2−q ], where ε > 0, also has a

unique solution and vice versa.

Proof. For ε > 0, consider the invertible linear transformation Tε : (U,V, z)t → (Û , V̂ , ẑ)t by

Û = ε
(
u∗)−1

U, V̂ = ε
(
u∗)−1

V, ẑ = ε− 1
2
(
u∗) 1

2 z.

One can verify that Tε transforms the solution of the problem P [u∗, c,K] into the solution of

the problem P [ε, ((u∗)− 1
2 c)ε

1
2 , ((u∗)q−2K)ε2−q ], and vice versa via the transformation T −1

ε .
Hence the assertions of the lemma follows. �

Next, by putting

u := U, v := V, w := Uz, y := Vz,

we rewrite system (1.4) as the first-order system:

uz = w, vz = y, wz = −c
w + 1

uv, yz = −cy − uv + Kvq . (A.4)

δ δ
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Note that each point (u,0,0,0) with u � 0 is an equilibrium point of system (A.4). With
this observation, a nonnegative solution of P [u∗, c,K] is equivalent to a heteroclinic or-
bit of system (A.4) connecting (0,0,0,0)t to (u∗,0,0,0) which lies entirely in the region
{(u, v,w, y): u � 0, v � 0}. Hence there is a one-to-one correspondence between nonnegative
solutions of P [u∗, c,K] and solutions of Q[u∗, c,K], where Q[u∗, c,K] denotes the problem
consisting of system (A.4), the constraint that (u, v)(z) � 0 for z ∈ R, and the boundary condi-
tions that (u, v,w, y)(−∞) = (0,0,0,0) and (u, v,w, y)(∞) = (u∗,0,0,0).

Now we explore the dynamical behavior of system (A.4) around the origin. Indeed, the lin-
earization of system (A.4) around the origin reveals that the eigenvalues are 0, 0, −c, and −c/δ.
Hence the local behavior of system (A.4) around the origin can be determined by the local dy-
namics on the centre manifold at the origin. The local form of the centre manifold at the origin
can be represented by a surface

Wc
(ψ1,ψ2)

(0) := {(
u, v,ψ1(u, v),ψ2(u, v)

) ∈ R
4
∣∣ u � 0, v � 0,

√
u2 + v2 < δ0

}

for some smooth functions ψi with ψi(0,0) = ∂1ψi(0,0) = ∂2ψi(0,0) = 0, i = 1,2, and suffi-
ciently small δ0. Employing the standard centre manifold theory [8], we can derive the asymptotic
expansion of ψ1 and ψ2 as follows:

ψ1(u, v) = (1/c)uv +O
(
u3, v3),

ψ2(u, v) = −(1/c)uv + (K/c)vq +O
(
u3, v3)

as (u, v) → (0,0). Further, the governing system on the centre manifold Wc
(ψ1,ψ2)

(0) is given by

uz = (1/c)uv +O
(
u3, v3),

vz = −(1/c)uv + (K/c)vq +O
(
u3, v3) (A.5)

as (u, v) → (0,0). Up to the leading order, the dynamics of the reduced system (A.5) is well un-
derstood [28,30]. Recall that the dynamics of system (A.4) can also be deduced via the dynamics
of the reduced system (A.5). With the aid of these discussion, one key conclusion which can be
drawn from the arguments of [28,30] is stated in the following lemma.

Lemma A.4. (See [28,30].) For each c� > 0 and K� > 0, we can find a small ε0 > 0 such that
for each (ε, c,K) ∈ (0, ε0) × (0, c�) × (0,K�), there exists a unique solution to the problem
Q[ε, c,K].

Now we are in a position to show the uniqueness of waves of system (1.2) whose exis-
tence is established in Theorem 1. Recall that it suffices to show the uniqueness of a solution
of P [u∗, c,K] with u∗ > 0, c � 2

√
u∗, and K > 0. For fixed u∗ > 0, c � 2

√
u∗, and K > 0, set

cε := ((
u∗)− 1

2 c
)
ε

1
2 ∈ (0, c) and Kε := ((

u∗)q−2
K

)
ε2−q ∈ (0,2K)

for ε ∈ (0, u∗). Here we use the assumption q ∈ (1,2]. Then Lemma A.4 indicates that there
exists a small ε0 ∈ (0, u∗) such that for each ε ∈ (0, ε0), Q[ε, cε,Kε] has a unique solution, which
together with the one-to-one correspondence between P [ε, cε,Kε] and Q[ε, cε,Kε], yields that
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P [ε, cε,Kε] admits a unique nonnegative solution. Finally, with the use of Lemma A.3, we
can conclude the uniqueness of the solution of P [u∗, c,K]. This completes the proof of the
uniqueness of waves of system (1.2). �
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