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PRICING AND HEDGING OF

QUANTO RANGE ACCRUAL

NOTES UNDER GAUSSIAN HJM
WITH CROSS-CURRENCY LEVY

PROCESSES

SZU-LANG LIAO*
PAO-PENG HSU

This study analyzes the pricing and hedging problems for quanto range accrual
notes (RANs) under the Heath-Jarrow-Morton (HJM) framework with Levy
processes for instantaneous domestic and foreign forward interest rates. We con-
sider the effects of jump risk on both interest rates and exchange rates in the 
pricing of the notes. We first derive the pricing formula for quanto double interest
rate digital options and quanto contingent payoff options; then we apply the
method proposed by Turnbull ( Journal of Derivatives, 1995, 3, 92–101) to repli-
cate the quanto RAN by a combination of the quanto double interest rate digital
options and the quanto contingent payoff options. Using the pricing formulas
derived in this study, we obtain the hedging position for each issue of quanto
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RANs. In addition, by simulation and assuming the jump risk to follow a com-
pound Poisson process, we further analyze the effects of jump risk and exchange
rate risk on the coupons receivable in holding a RAN. © 2009 Wiley Periodicals,
Inc. Jrl Fut Mark 29:973–998, 2009

INTRODUCTION

A range accrual note (RAN) is a structured product that offers a coupon calcu-
lated by the number of days in which the reference interest rate falls inside a
corridor times the pre-specified fixed rate (e.g. fixed RAN) or an interest rate
specified at the start of each period (e.g. floating range accrual note (FRAN)).
The returns from such notes will be higher than traditional fixed-rate deposits
if the reference rate (for example, six-month LIBOR) moves within a pre-
determined range during the lifetime of the note. Hence, in a low-interest-rate
environment, RANs are more attractive compared with treasury bonds. The total
volume of RAN derivatives has a 15% share of total issuances of structured
notes issued around the world as of November 2008.1

As investors receive coupons each period for how often the reference
interest rate stays within a certain range, investors should be concerned about
the risk of the short rate jumping outside the range. However, few studies have
considered the jump risk of reference rates while pricing RANs. The pioneering
study of Turnbull (1995) explicitly priced each coupon of a FRAN using a one-
factor Gaussian model. Then, Navatte and Quittard-Pinon (1999) reevaluated
each coupon of a FRAN with the same approach as Turnbull (1995) using a
modified numeraire technique. Then, Nunes (2004) generalized the solutions
above with a multifactor Gaussian model.

However, the aforementioned three studies did not consider the fact that
the geometric Brownian motion (GBM) is generally a misspecification of asset
prices (Merton, 1976). He relaxed the assumption about the diffusion part of
random processes by introducing a mixture of GBM with randomly (Poisson)
arriving rare events to replace GBM. Since Merton, many went to observe
whether jump components existed in markets, where in the literature jumps
were mostly documented in stock and exchange rate markets, for example, in
Bates (1996, 2000).

The fixed income market is also significantly affected by informational
shocks (which causes jumps). As cited in Das (2002), a number of researchers
have found that the announcements of economic news and other releases of
information have impacts on the treasury bond market. Such findings include

1Based on data from Bloomberg, as of November 26, 2008, structured notes issued around the world are
classified into 30 types; excluding those callable structure notes, RAN derivative issues total to 7741, which
has a 0.15 share of total issuances, and RAN derivative types include RANs, spread RANs, dual RANs, multi-
RANs, countdown RANs, and digital RANs.
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Hardouvelis (1988), Dwyer and Hafer (1989), Naik and Lee (1990), Das
(1995), and Heston (1995). These studies suggest that discontinuous processes
do a better job of describing the movements of short-term interest rates than the
commonly used diffusion processes (such as GBM). Also, some jump diffusion
models for interest rates are proposed and analyzed, for example, by Björk,
Kabanov, and Runggaldier (1997), Glasserman and Kou (2003), and Shirakawa
(1991). As more and more articles include jump characteristics into their ran-
dom processes, Levy process is the one that has both a jump and a continuous
part, which makes it more general than GBM, and numerous studies are start-
ing to assume their underlyings to follow Levy processes. For example, Cont and
Tankov (2004), Eberlein and Raible (1999) and Eberlein and Ozkan (2005) fur-
ther presented a LIBOR forward rate approach with Levy process. Eberlein and
Kluge (2006) generalized some results of RAN with a multivariate Levy term
structure model but did not consider exchange rate risks. Hence, in this study a
RAN will be priced with the forward rate following a Levy process.2 In addition,
an exchange rate process is incorporated and driven by Levy processes as well.

In options on foreign assets, contracts on an underlying that is subject to a
fixed exchange rate are known as quantos (Reiner, 1992). Quanto-structured
notes allow the investors to gain access to foreign bond markets using their
own domestic currency with the foreign exchange rate fixed at the date of entry.
Therefore, quanto-structured notes provide a solution for investors seeking
protection from changes in exchange rate, that is, excluding exchange rate
risks. Huang and Hung (2005) priced foreign equity options under multidi-
mensional Levy process. Koval (2005) provided a cross-currency model in
which the combination of foreign exchange and interest rate risk is specified by
Levy processes. As the underlyings of RANs are usually interest rates in inter-
national financial markets, such as LIBOR, the investors may not receive
returns directly in their own domestic currencies. For example, a domestic
investor holding a RAN may receive coupons denominated in a foreign currency,
which exposes the investor to exchange rate risk. In this study, quanto-structured
notes will be analyzed to avoid this risk.

The pricing formula provided in this article can be used to develop a hedg-
ing strategy for quanto floating range accrual note (QFRAN) issuers, and the
bucket hedging strategy will be adopted. Jarrow and Turnbull (1994) presented
the bucket hedging of interest rate instruments, which is sophisticated in that
there is more than one factor describing the evolution of the term structure of
interest rates when there are multiple term structures underneath. Hence, some
derivatives with multiple underlying term structures (e.g. swaptions) are hedged
by the bucket hedging strategy (Driessen, Klaassen, & Melenberg, 2000).
2The pricing of a fixed RAN is skipped in this study because the pricing of a fixed RAN can be regarded as a
special case for the pricing of a FRAN.
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Considering an international security market, this study prices the
QFRAN under the Gaussian HJM with Levy process. We will derive the closed-
form solution of QFRAN and also find its hedging strategies. This study not
only generalizes the results in the past literature with GBM diffusion processes
but also generalizes the results to cover both situations of with and without
exchange rate risk. The effects of jump risk and exchange rate risk are also
illustrated by assuming the jump components to be compound Poisson
processes, i.e. the distribution of jump size is specified explicitly, during simu-
lation. Our numerical results show that the QFRAN has higher return than tra-
ditional FRAN in some states. For instance, situations of increasing volatility in
exchange rate, increasing jump intensity, and increasing volatility of foreign
zero coupon bond (ZCB) prices will increase the coupons of QFRANs.

The rest of this article is organized as follows. The second section presents
the framework for Levy processes in an international security economy and
introduces the method of changing numeraires. The third section provides a
closed-form solution for the quanto interest rate digital options that would be
used to price the QFRANs. We then derive the hedging strategy in the fourth
section, which includes the hedging of exchange rate and jump risks.
Numerical evaluations under the assumption that the jump component is a
compound Poisson process are presented in the fifth section. We will compare
between the FRAN under the HJM model and the FRAN under the HJM–
compound Poisson model and then compare the FRAN to the QFRAN. The
last section concludes the article.

THE SETTING

Let T* � 0 be a fixed time horizon. All processes considered hereafter are
defined on a common probability space (�, , P), endowed with a canonical
filtration associated with a d-dimensional Levy process .
More specifically, L � (L1, . . . , Ld) is a process with independent increments
and absolutely continuous characteristics, which can be expressed by the 
following characteristic function, in which and its transpose is denoted
by u�:

Here Fs with s � [0, T*] is a probability distribution on , which sati-
sfies Fs({0}) � 0 for all s � 0 and integrates ; bs is a vector in 

; Cs is a symmetric positive semi-definite d � d matrix such that �d
( 0 x 0 2 ¿ 0 x 0 ) �d

� �
�d

(exp(iu�x) � 1 � iu�x)Fs(dx)b dsb.
E[exp(iu�Lt)] � expa �

t

0

aiu�bs �
1
2
u�Csu

u � �d

(Lt)0	t	T*(�t)0	t	T*

�T*
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, , where �
� denotes

the Euclidean vector norm and ��
�� denotes any norm on the set of d � d matri-
ces and cs is a measure version of the square root of Cs. Assume that there are

constants M, e � 0 such that for every u �

[�(1 � e)M, (1 � e)M]d. We denote by the filtration generated by L
and assume . Thus, the canonical representation of L is

where Ws is a d-dimensional Brownian motion, mL is the random measure asso-
ciated with the jumps of L, and nL(ds, dx) � Fs(dx)ds is L’s compensator.

Let ws denote the cumulant associated with the infinitely divisible distribu-
tion characterized by the Levy–Khinchin triplet (bs, cs, Fs), i.e. for z � [�(1 � e)M,
(1 � e)M]d,

Introducing f by Fs(dx) � lf(dx), the Levy–Khinchin formula becomes

(1)

We can extend ws to complex numbers with Re(zj) � [�(1 � e)M, (1 �
e)M] for j � {1, . . . , d} and then write the characteristic function of Lt as

The multidimensional Levy processes are formally introduced below.3 The
dynamics of the instantaneous domestic/foreign forward rates 0 	 T 	 T*
under the original P measure are given by

(2)f(t, T) � f(0, T) � �
t

0

a(s, T)ds � �
t

0

�(s, T)�dLs

E[eiu�Lt] � expa �
t

0

ws(iu)dsb.

ws(z) � z�bs �
1
2

z�Csz � �
�d

(exp(z�x) � 1)Fs(dx).

ws(z) � z�bs �
1
2

z�Csz � �
�d

(exp(z�x) � 1 � z�x)Fs(dx).

Lt � �
t

0

bsds � �
t

0

csdWs � �
t

0
�
�d

x(mL � nL)(ds, dx)

� � �T*

(�s)0	s	T*

�
T*

0
�5 0x 0�16

exp(u�x)Fs(dx)ds � 

�
T*

0

�Cs�dt � �
T*

0

a 0bs 0 � �Cs� � �
�d

( 0x 02 ¿ 0x 0 )Fs(dx)b ds � 

3During the process of pricing, all parameter settings are initially under original measure P, and are then
transformed to the domestic risk-neutral measure. The conditions that the three random processes, domes-
tic and foreign interest rates and exchange rate, must satisfy when the measure P is transformed to domestic
risk-neutral measure Q are provided in Appendix A.
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(3)

The initial values f(0, T) and f*(0, T) are both deterministic and bounded in
T. Also, a(s, T), a*(s, T) and �(s, T), �*(s, T) are deterministic functions with val-
ues in and , respectively, and defined on {(s, T) � [0, T*] � [0, T*] : s 	 T}.
Domestic and foreign ZCB prices can be recovered from the forward rates via

and , respectively.

The domestic money market account , where r(s) � f(s, s),

denotes the domestic short rate, whereas the foreign money market account

, where r*(s) � f*(s, s), denotes the foreign short rate. 

Next, we want to transform the original measure P to domestic risk-neutral
measure Q (a similar approach can also be found in Koval, 2005). Let Z(t, T) be
equal to p(t, T)/B(t). Under Q measure, Z(t, T) is a martingale, that is, the drift
term of dZ(t, T)/Z(t, T) equals zero. The condition that A(t, T) in p(t, T) must
satisfy when the measure P is transformed to Q measure is given in the follow-
ing equation4:

(4)

Therefore, the domestic ZCB price is given by the following representation:

(5)

Set z in Equation (1) to be equal to �(t, T). Then Equation (4) can be
rewritten as A(t, T) � wt(�(t, T)).5 The exchange rate S(t) represents the units
of the domestic currency per unit of foreign currency at time t. Under measure
Q, the drift term of dS(t)/S(t) equals r(t) � r*(t). The condition that m(t) in S(t)
must satisfy when the measure P is transformed to Q measure is given in the
following equation6:

�
t

0

m(s)ds � �
t

0

b�ss(s)ds �
1
2 �

t

0

s(s)�Css(s)ds

p(t, T) � p(0, T)B(t)exp a �
t

0

� A(s, T)ds � �
t

0

©(s, T)�dLQs b.

� �
t

0
�
�d

(exp(©(s, T)�x) � 1)Fs(dx)ds.

�
t

0

A(s, T)ds � �
t

0

b�s©(s, T)ds �
1
2 �

t

0

©(s, T)�Cs©(s, T)ds

B*(t) � expa �
t

0

r*(s)dsb

B(t) � expa �
t

0

r(s)dsb

p*(t, T) � expa��
T

t

f*(t, s)dsbp(t, T) � expa��
T

t

f(t, s)dsb

�d�

f*(t, T) � f*(0, T) � �
t

0

a*(s, T)ds � �
t

0

�*(s, T)�dLs.

4The proof is in Appendix A and Equation (4) is the same as (A4).
5The setting A(t, T) � wt(�(t, T)) guarantees that domestic ZCB discounted by the domestic money market
account is a martingale also had been shown in Eberlein and Kluge (2006).
6The proof is in Appendix A and Equation (6) is the same as (A7).
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(6)

Therefore, the exchange rate follows the following representation:

(7)

Set z in Equation (1) to be equal to s(t). Then Equation (6) can be rewrit-
ten as m(t) � wt(s(t)). Finally, the condition that A*(t, T) in p*(t, T) must sat-
isfy when P measure is transformed to Q measure is given as follows:

(8)

The drift term can be obtained from the fact that the ZCB

price relative to the money market account is a martingale (see Appendix A for
details). Hence, p*(t, T) can be expressed as

(9)

Note that A*(t, T) is not equal to w(�*(t, T)). The following equation is
another representation of Equation (9) that will be useful later:

(10)

where we have used the abbreviations

(11)

and

(12)

Tools for Changing Measures

In order to price digital options and QFRANs, we change the numeraire and
switch from the domestic spot martingale measure Q to a domestic forward mar-
tingale measure QT or some other adequate measure. Notice that all adopted

©*(s, t, T) � ©*(s, T) � ©*(s, t).

A*(s, t, T) � A*(s, T) � A*(s, t)

p*(t, T) �
p*(0, T)

p*(0, t)
 exp a��

t

0

A*(s, t, T)ds � �
t

0

©*(s, t, T)�dLQs b

p*(t, T) � p*(0, T)B*(t)expa �
t

0

� A*(s, T)ds � �
t

0

©*(s, T)�dLQs b.

�
t

0

A*(S, T)ds

� �
t

0
�
�d

[es(s)�x(e©*(s,T)�x � 1)]Fs(dx)ds.

�
t

0

A*(s, T)ds � �
t

0

©*(s, T)�bs ds � �
t

0

©*(s, T)�Css(s)ds �
1
2 �

t

0

0©*(s, T)�cs 02ds

S(t) �
S(0)B(t)

B*(t)
expa �

t

0

� m(s)ds � �
t

0

s(s)dLQs b.

� �
t

0
�
�d

(exp(s(s)�x) � 1)Fs(dx)ds.
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measures are denominated in domestic currencies. In addition, the pricing 
formulas are expressed in terms of characteristic functions. Therefore, the
characteristic functions under each relevant measure will also be derived.

Define F(t, s, T) to be the forward price denominated in domestic curren-
cy, i.e.

(13)

The domestic forward martingale measure for the settlement date T,
denoted by QT, is defined by the Radon–Nikodym derivative

Usually, this measure is defined on (�, ). Q and QT are equivalent and
from (7) and (9) we have the explicit expression

We need the result of when we price a

QFRAN. Therefore, let us define 

We have Proposition 1.

Proposition 1: ws(u) satisfies (1). We then have an explicit expression for 7:

where

and

H(0, T; T) � expa �
T

0

� A*(s, T)dsbEQ c expa �
T

0

©*(s, T)�dLQs b d

Mx
T�u(z) � H(0, T � u; T � u)Hz(t, T; T � u)

Mx
T�u

Mx
T�u(z) � EQT�u

cexpaz�
T

t

©*(s,T,T� u)�dLQsbd .

EQT�u
cexpaz�

T

t

©*(s,T, T� u)�dLQs bd

dQT

dQ
� expa �

T

0

(�m(s) � A*(s, T) )ds � �
T

0

(s(s)� � ©*(s, T)� )dLQs b.

�T*

dQT

dQ
0�t � EQ c S(T)

S(0)B(T)p*(0, T)
`�t d �

S(t)p*(t, T)
S(0)B(t)p*(0, T)

.

dQT

dQ
�

S(T)p*(T, T)�B(T)

S(0)p*(0, T)�B(0)
�

S(T)
S(0)B(T)p*(0, T)

F(t, s, T) �
S(t)p*(t, s)

S(t)p*(t, T)
.

7Even though could not be expressed as an analytic form and could only be represented by a form of
expected function, the expected function under measure Q is sufficient to be calculated.

Mx
T�u
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Proof:

(14)

For T � T � u we define the adjusted forward measure QT,T�u on (�, )
via

According to the result of Eberlein and Kluge (2006), we divide the time
period into two segments. For 0 	 t 	 T, restricting this density to , we have

(15)

For T 	 t 	 T � u, restricting this density to , we have�t

dQT,T�u

dQ
` �t � expa �

t

0

(�m(s) � A*(s, T) )ds � �
t

0

(s(s)� � ©*(s, T)� )dLQs b.

�
S(t)p*(t, T)

S(0)B(t)p*(0, T)

�
S(t)p*(t, T � u)

S(0)B(t)p*(0, T � u)

p*(0, T � u)p*(t, T)

p*(0, T)p*(t, T � u)

dQT�u

dQ

dQT,T�u

dQT�u

` �t �
dQT,T�u

dQ
` �t

�t

dQT,T�u

dQT�u

` �t �
F(t, T, T � u)
F(0, T, T � u)

�
p*(0, T � u)p*(t, T)
p*(0, T)p*(t, T � u)

.

dQT,T�u

dQT�u

:�
F(T, T, T � u)
F(0, T, T � u)

�
p*(0, T � u)

p*(0, T)p*(T, T � u)

�T*

� EQ cexpa �
T�u

0

©*(s, T � u)�dLQs � z�
T

t

©*(s, T, T � u)�dLQs b d .

� expa �
T�u

0

�A*(s, T � u)dsb

� expa �
T�u

0

(s(s)� � ©*(s, T � u)�)dLQs � z�
T

t

©*(s, T, T � u)�dLQs b d

� EQ c expa �
T�u

0

(�m(s) � A*(s, T � u) )dsb

Mx
T�u(z, t, T; T � u) � EQT�u

c expaz�
T

t

©*(s, T, T � u)�dLQs b d

Hz(t, T; T � u) � EQ c expaz�
T

t

©*(s, T, T � u)�dLQs b d .



982 Liao and Hsu

Journal of Futures Markets DOI: 10.1002/fut

(16)

Again, we find under delayed measure QT,T�u

and we have Proposition 2.

Proposition 2: Set . Then 

where 1{
} is an indicator function.

Proof: Similar to the proof of Proposition 1.

DIGITAL OPTIONS

According to Turnbull (1995), a FRAN includes a series of interest rate digital
options. The payoff of a QFRAN can be expressed in terms of the payoffs from
a digital call spread: long one digital call option with strike price equal to the
lower bound and short one digital call option with strike price equal to the
upper bound. We can now price a QFRAN by summing up its digital spreads.

First, we discuss the pricing of interest rate digital options and then intro-
duce the delayed digital option (see Navatte & Quittard-Pinon, 1999). The
time T price of a standard European interest rate digital call option with strike
rate m is given by

(17)

A delayed interest rate digital option is the case that the option maturity T
and payment date T1, e.g. T1 � (T � u), are different with T1 � T. The time T1

price of a delayed digital option is given by

L*(T, T � u) �
1
u
c 1
p*(T, T � u)

� 1 d .
SDT(L*(T, T � u); m; T) � 15L*(T,T�u)�m6,

T � u)],Mx
T,T�u(z)� H(0, T; T)Hz(t, T; T � u)[150	s	T6�15T	s	T�u6H(T, T � u;

Mx
T,T�u(z) � EQT,T�u

c expaz�
T

t

©*(s, T, T � u)�dLQs b d

expaz�
T

t

©*(s,T, T� u)�dLQs b

� expa��
t

T

A*(s, T � u)ds�
t

T

©*(s, T � u)�dLQ
s
b.

� expa��
T

0

A*(s, T)ds � �
T

0

©*(s, T)�dLQs b

� expa �
t

T

�m(s)ds � �
t

T

s(s)�dLQs b

dQT,T�u

dQ
` �t �

S(t)p*(t, T � u)
S(T)p*(T, T � u)B(t)p*(0, T)
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(18)

The price of a European quanto range digital option on the LIBOR rate 
L*(T, T � u), with the upper bound M, the lower bound m, and the maturity at
time T1(�T), is equal to

(19)

Hence,

(20)

From (18), we can also obtain

(21)

where is the forward measure using p(t, T1) as the numeraire.
Formula (20) is the payoff of the quanto range digital option, which is how

much coupon investors receive at the next payment date, based on how often
the underlying stays within the range [m, M]. Next, we will derive the delayed
digital option in Theorem 1.

Theorem 1: Choose an R � 0 such that . The value at time
t � T of a delayed digital option with strike m and expiry date at time T1 under
the Gaussian HJM with cross-currency Levy process is

with

Proof: Let L[v](z) be the bilateral Laplace transform of v for a complex number
z defined by

K �
1

um � 1
expa �

T

t

A*(s, T, T � u)dsb.

1
p

p(t, T1) �


0

Re c a p*(t, T)
p*(t, T � u)

KbR�iu 1
R � iu

MxT1
(�R � iu)ddu

DDt(L*(T, T � u); m; T1) �

Mx
T1

(�R) � 

QT1

� p(t, T1)EQT1

[15(p*(t,T�u)�p*(t,T))exp(��T
t
A*(s,T,T�u)ds� �T

t
©*(s,T,T�u)�dLs)� (1�um)�16 0�t]

� p(t, T1)EQT1

[15p*(T,T�u)� (1�um)�16 0�t]
� p(t, T1)EQT1

[15L*(T,T�u)�m6 0�t]
DDt[L*(T, T � u); m; T1] � B(t)EQ c 1

B(T1)
15L*(T,T�u)�m6 `�t d

� DDT1
(L*(T, T � u); M; T1).

QDVT1
[L*(T, T � u); m, M; T1] � DDT1

(L*(T, T � u); m; T1)

QDVT1
[L*(T, T � u); m, M; T1] � 15L*(T,T�u)�[m,M]6.

DDT1
(L*(T, T � u); m; T1) � 15L*(T, T�u)�m6.
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According to Theorem 3.2 in Raible (2000), the initial price of an option
V(�) can be obtained by

(22)

Let y � p*(t, T � u)/p*(t, T) and EQT1[.] in Equation (21) be h(y). Our goal
is to calculate h(y) and express it in the form of Fourier conversion V(�). Next, we 

want to find v(x), which corresponds to h(y). Let 

, and denote the distribution

of X under measure . Therefore,

If this distribution possesses a Lebesgue density f then

with

We have v � f y*f, with the convolution denoted by *. Substitute f y*f into
Equation (22). The bilateral Laplace transform of fy and f can be described as

The proof has been done.

Valuation of Quanto Floating Range Accrual Notes

We derive the formula for pricing QFRANs under the Gaussian HJM with
cross currency in this section. Suppose the current time is t(T0 	 t 	 T). Set

, Tji � Tj � i, and . We denote by mj and Mj the lower and
upper bounds, respectively, for the ith day of the ( j � 1)th period. H(Tj, Tj�1)�

Tji� � Tji � ujT�j � Tj � uj

L[15ex�K�y6](R � iu) �
1

R � iu
aK

y b
R�iu

.

L[f](z) � Mx
T�u(�R � iu)

fy(x) � 15e�x�K�y6(x).

h(y) � �15eX�K�y6f(x)dx � � fy(�x)f(x)dx

h(y) � �15eX�K�y6dPT1
� �15eX�K�y6dPx

T1
(x).

PT1

Px
T1

K � (1�um � 1)expa �
T

t

A*(s, T, T � u)dsb

X � �
T

t

g*(s, T, T � u)�dLs,

V(�) �
1

2pi �
R�i

R�i

e�zL[v](z)dz.

L[v](z) � �


�

e�zxv(x)dx.
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denotes the number of days in the ( j � 1)th period with

j � 0, . . . , N � 1. The value of the ( j � 1)th coupon at time Tj�1 is equal to

where �j represents the spread over the reference interest rate paid by the bond
during the ( j � 1)th compounding period, whereas Dj indicates the number of
days in a year.

To derive the closed-form solution of the QFRAN, we separate the first peri-
od [T0, T1] from the following period [Tj, Tj�1], and n0 represents the number of
days between t and T1. In fact, during the first period, the value of the reference
interest rate is known at t. This will not be the case for the future periods. The
value of this note V1(t) at the first reset date T1 can be expressed as follows:

(23)

For any future coupon Vj�1(t)( j � 1, . . . , N � 1), Vj�1(t) is as follows:

�
1
ujDj
a
nj

i�1
p(t, Tj�1)EQTj�1

[p*(Tj, Tj � uj)
�115m(Tji)	L*(Tji,T�ji)	M(Tji)6 0�t]

� a¢j

Dj
�

1
ujDj
b a

nj

i�1
p(t, Tj�1)EQTj�1

[15m(Tij)	L*(Tji,T�ji)	M(Tij)6 0�t]

�a
nj

i�1

p(t, Tj�1)

Dj
EQTj�1

[L*(Tj, Tj � uj)15m(Tij)	L*(Tji,T�ji)	M(Tij)6 0�t]

�a
nj

i�1

¢j

Dj
p(t, Tj�1)EQTj�1

[15m(Tji)	L*(Tji,T�ji)	M(Tji)6 0�t]

Vj�1(t) � p(t1, Tj�1)EQTj�1

c L*(Tj, Tj � uj) � ¢j

Dj
a
nj

i�1
15m(Tji)	L*(Tji,T�ji)	M(Tji)6 `�t d

� ep(t, T1)H(T0, t)�a
n0

i�1
QDVt[L*(t � i, t � i � u0); m(T0t�i), M(T0t�i); T1] f .

�
L*(T0, T0 � u0) � ¢0

D0

� eP(t, T1)H(T0, t) � P(t, T1)EQT1

c a
n0

i�1
15m(T0t�i)	L*(t�i,t�i�u0)	M(T0t�i)6 `�t d f

�
L*(T0, T0 � u0) � ¢0

D0

V1(t) � P(t, T1)EQT1

c L*(T0, T0 � u0) � ¢0

D0
H(T0, T1) `�t d

Vj�1(Tj�1) �
L*(Tj, Tj � uj)�¢j

Dj

H(Tj, Tj�1)

a
nj

i�1
15mj	L*(Tji,Tji�uji)	Mj6
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(24)

where

Then becomes the following using Theorem 1:

The summations on the right-hand side look very similar to the time t value
of a range digital option, the only difference is that the expectation is taken under
the adjusted forward measure. We can proceed on in the same way as we
did for digital options and use the independence of the increments of L to obtain

(25)

Here,

with given by

and where

Kji
M �

1
um(Tji) � 1

 expa �
Tji

t

A*(s, Tji, T�ji)dsbXji � �
Tji

t

g*(s, Tji, T�ji)dLs,

hji(y) � �15(1�y)Kji
M	eX	 (1�y)Kji

M6dPXji

QTj,Tj�1

(x)

hji:�S [0, 1]

� EQTj,Tj�1

[15Kji
M	p*(t,T�ji)�p*(t,Tji)	Kji

M6 0�t] � hjiap*(t, T�ji)

p*(t, Tji)
b

Dji
t � EQTj,Tj�1

[15m(Tji)	L*(Tji,T�ji)	M(Tji)6 0�t] � EQTj,Tj�1

[151�1�uM(Tji)	p*(Tji,T�ji)	1�1�um(Tji)6 0�t]

v2
j�1(t) �

1
ujDj
a
nj

i�1
p(t, Tj�1)

p*(t, Tj)

p*(t, Tj�1)
Dji

t .

v2
j�1(t)

�
1
ujDj

a
nj

i�1
p(t, Tj�1)

p*(t, Tj)

p*(t, Tj�1)
EQTj,Tj�1

[15m(Tji)	L*(Tji,T�ji)	M(Tji)6 0�t].

�
1
ujDj

a
nj

i�1
p(t,Tj�1)

p*(0, Tj)

p*(0, Tj�1)

p*(0,Tj�1)p*(t,Tj)

p*(0, Tj)p*(t,Tj�1)
EQTj,Tj�1

[15m(Tji)	L*(Tji,T
�
ji)	M(Tji)6 0�t]

v2
j�1(t) �

1
ujDj
a
nj

i�1
p(t, Tj�1)

p*(0, Tj)

p*(0, Tj�1)
EQTj�1

c F(Tj, Tj, Tj�1)

F(0, Tj, Tj�1)
 15m(Tji)	L*(Tji,T

�
ji)	M(Tji)6 `�t]
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Dj
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1
ujDj
b a

nj
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j�1(t)
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j�1(t) �

1
ujDj
a
nj

i�1
p(t, Tj�1)EQTj�1

[p*(Tj, Tj � uj)
�115m(Tji)	L*(Tji,T�ji)	M(Tji)6 0�t].
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j�1(t) � a¢j

Dj
�

1
ujDj
b a

nj

i�1
p(t, Tj�1)EQTj�1

[15m(Tji)	L*(Tji,T�ji)	M(Tji)6 0�t]

� v1
j�1(t) � v2

j�1(t)



Pricing and Hedging of Quanto RANs 987

Journal of Futures Markets DOI: 10.1002/fut

and denotes the distribution of Xji with respect to 

There are some other dynamics implied in (24). The “floating” indicates
that the coupon not only depends on the underlying rates but also depends on
other dynamics. The following theorem is from formulas (24) and (25).
Theorem 2: Under the HJM with cross-currency Levy process, the time t price
of a QFRAN, with its last coupon paid at time T0 (	 t), and N future coupons
Vj�1(t) paid at times Tj�1 (�t), j � 0, . . . , N � 1, is equal to

with

and

where

In Theorem 2, the results for the first period can be derived from Theorem 1
if the value of the reference interest rate is known at t. Vj(t) is the jth coupon
payment received at Tj�1 and QV(t) includes both the coupon payments and
the principal.

�
1
p �



0

Re c a p*(t, Tji)

p*(t, Tji � u)
KjiMb

R�iu 1
R � iu

MXTj,Tj�uj(�R � iu) ddu.

Dji
t �

1
p �



0

Re c a p*(t, Tji)

p*(t, Tji � u)
Kjimb

R�iu 1
R � iu

MXTj,Tj�uj(�R � iu) ddu

�
1
ujDj

a
nj

i�1
P(t, Tj�1)

p*(t, Tj)

p*(t, Tj�uj)
D ji

t

Vj�1(t) � a¢j

Dj
�

1
ujDj
b a

nj

i�1
QDVt[L*(Tji, T�ji); m(Tji), M(Tji); Tj�1]

� ep(t, T1)H(T0, t) � a
n0

i�1
QDVt[L*(t � i, t � i � u0); m(T0t�i), M(T0t�i); T1] f

V1(t) �
L*(T0, T0 � u0) � ¢0

D0

QV(t) � p(t, TN) � V1(t) � a
N�1

j�1
Vj�1(t)

QTj,Tj�1
.PXji

QTj,Tj�1

Kji
M �

1
uM(Tji) � 1

 expa �
Tji

t

A*(s, Tji, T�ji)dsb



988 Liao and Hsu

Journal of Futures Markets DOI: 10.1002/fut

HEDGING QUANTO FLOATING RANGE 
ACCRUAL NOTES

In this section we will obtain the delta of QFRANs. The delta parameter can be
used to dynamically hedge the market risk component of the QFRAN.
Therefore, we implement bucket hedging as suggested by Jarrow and Turnbull
(1994). Suppose we divide the life of a QFRAN into N buckets [T0, T1], [T1,
T2], . . . , [TN�1, TN]. When using the bucket approach in hedging, cash flows of
a portfolio must be assigned to a particular bucket. Consider a portfolio with N
cash flows. Cash flow aj or bj occurs at date Tj, j � 1, . . . , N. The value of this
portfolio (t) is

The QFRAN price QV(t) satisfies the following stochastic differential
equation under domestic measure Q:

(26)

where and 

Equation (26) shows that the hedging ratio can be directly used to hedge
the QFRAN with N domestic ZCBs and foreign ZCBs with maturities T1,
T2, . . . , TN as

This is exactly the hedging strategy of bucket hedging and the ajs and bjs
are deltas of delta hedging. The delta of the portfolio can be decomposed into
two parts. The delta of the domestic ZCB in the jth bracket is

aj � a¢j

Dj
�

1
ujDj
b a

nj

i�1
¶Tj

(Tji, Tji�; m(Tji), M(Tji) )

a1 �
L*(T0, T0 � u0) � ¢0

D0
H(T0, t) � a

n0

i�1
¶T1

(t � i, t � i � u0; m(T0t�i), M(T0t�i) )x

dQV(t) � . . . dt � a
N

j�1

0QV

0p(t, Tj)
dp(t, Tj) � a

N

j�1

0QV

0p*(t, Tj)
dp*(t, Tj).

Sf(t, T) � �
T

t

©*(t, s)ds.Sd(t, T) � �
T

t

©(t, s)ds

� a
N

j�1

0QV

0p*(t,Tj)
p*(t, Tj)Sf(t, Tj) ddWQ(t)

d√ (t) � �dQV(t) � r(t)QVdt � c a
N

j�1

0QV

0p(t, Tj)
p(t, Tj)Sd(t, Tj)

√ (t) � �QV(t) � a
N

j�1
ajp(t, Tj) � a

N

j�1
bjx(t) p*(t, Tj).
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where

The delta of the foreign ZCB in the jth bracket is

where

�
1
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p*(t, Tj)
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Consider a financial institution that has written a QFRAN with start date
t and end date TN. Corresponding to the QFRAN, the long position of the hedg-
ing portfolio is composed of domestic ZCBs with weights aj and foreign ZCBs
with weights bj, for j � 1, . . . , N.

NUMERICAL ANALYSIS

Our pricing formulas are applied to QFRANs with jump processes, and we now
investigate how the value of QFRAN changes when parameter values change.
We use the method “fast Fourier transform (FFT)” proposed by Carr and
Madan (1999) to evaluate the formulas in Theorem 2. We assume that: (1) the
short-term interest rate follows the Vasicek (1977) model, which is a special
case of the one-factor Gaussian HJM model, i.e. d � 1, (2) the jump compo-
nent is a compound Poisson process with jump size normally distributed with
mean g and variance d2. The Levy density of this jump component then
becomes

The jump component of the characteristic function of compound Poisson
is , where z is a complex number.

In Table I, each coupon of a FRAN is obtained, which can serve as a
benchmark for us to compare against results for QFRAN without jump. 

exp5lT(ezgT�(1�2)z2d2T)6

f(x) � l
1

22pd
expa�(x � g)2

2d2 b.

�
1
p

P(t, Tj�1)
p*(t, Tj)

p*(t, Tj � uj)
�



0

Re c a p*(t, Tji)

p*(t, Tji � u)
KjiMb

R�iu MxT1
(�R � iu)

p*(t, Tji � u)
ddu.

TABLE I

The Coupon Payments of Floating Range Accrual Note and Quanto Floating Range Accrual
Note Without Jump

m–M (%) First Coupon Second Coupon Third Coupon Fourth Coupon

Floating range accrual note
3–6 0.018267 0.014026 0.011798 0.010143
2–7 0.020901 0.017977 0.015306 0.014516
1–8 0.022885 0.021795 0.019278 0.017811

Quanto floating range accrual note
3–6 0.010284 0.010047 0.009277 0.009205
2–7 0.016769 0.014552 0.013188 0.012910
1–8 0.022701 0.021516 0.018904 0.017337

Note. We set (bd, Bd, kd) � (0.1, 0.04, 0.02) and (bf, Bf, kf) � (0.1, 0.045, 0.3), s � 0.5, and the initial domestic interest rate and the
initial foreign interest rate are 0.034.
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In Table II, we give the results for Theorem 2 under our setting. In Table III,
the effects of various parameters on the QFRAN are provided.

We use the formulas in Theorem 2 and consider a two-year QFRAN with a
reset date every 180 days (the number of days in a year is 360); hence, there are
four periods before maturity. The face value of the note is assumed to be one
dollar. Assume that mji � mj and Mji � Mj for every j � 1,2,3,4, and for all i in
the same j. The spread � is assumed to be constant and is equal to 100 basis
points (�1%).

The parameter set (bs, cs, l, g, d) determines the cumulants of ZCB process.
The set (bs, cs, l, g, d) is the same for both domestic and foreign countries.

TABLE II

The Coupon Payments of Quanto Floating Range Accrual Note Under HJM–Compound
Poisson Jump Model

m–M (%) First Coupon Second Coupon Third Coupon Fourth Coupon

Quanto floating range accrual note with jump
3–6 0.010678 0.010535 0.009886 0.009422
2–7 0.017350 0.015141 0.013891 0.013790
1–8 0.023400 0.022328 0.019811 0.018353

Note. We set (bd , Bd , kd ) � (0.1, 0.04, 0.02) and (bf, Bf, kf ) � (0.1, 0.045, 0.3), s � 0.3, and the initial domestic interest rate and
the initial foreign interest rate are 0.034.

TABLE III

The Impact of Jump Intensity, Volatility of Exchange Rate, and Volatility of Foreign ZCB
Under HJM–Compound Poisson Jump Model

m–M (%) First Coupon Second Coupon Third Coupon Fourth Coupon

l � 0.3
3–6 0.011048 0.010975 0.010425 0.010053
2–7 0.017891 0.015668 0.014507 0.013297
1–8 0.024047 0.023055 0.020602 0.019222

s� 0.6
3–6 0.012019 0.011907 0.011769 0.011613
2–7 0.019298 0.016990 0.016020 0.014908
1–8 0.025710 0.024864 0.022527 0.021303

kf � 0.6
3–6 0.011769 0.011544 0.011519 0.010899
2–7 0.018989 0.016271 0.015548 0.014654
1–8 0.025412 0.024581 0.020798172 0.019447

Note. We set (bd, Bd, kd ) � (0.1, 0.04, 0.02), (bf , Bf , kf) � (0.1, 0.045, 0.3), �l � 0.15, �s � 0.3, �kf � 0.3, (bs, cs, l, d) � (0.02,
0.2, 0.01, 0.5), and the initial domestic interest rate and the initial foreign interest rate are 0.034. ZCB, zero coupon bond.
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The volatility is important for the pricing formula, and we assume that �(t, T)
has an exponential form, which is �(t, T) � bdBd exp(�kd(T � t)) and �*(t, T) �

bf Bf exp(�kf (T � t)). Hence, we can get domestic and foreign ZCBs by
Equation (3.13) in Zhang (2006). The volatility of the exchange rate process is
denoted by s, the initial domestic short rate and the initial foreign short rate
are both 0.034, and the initial exchange rate is 1.2.8 The adjustment speed R in
Theorem 2 is �0.9.

From Table I, we first establish the values of the FRAN and the QFRAN
without jump. At the same time we assume s � 0.5 to strengthen the effect of
exchange rate. It shows that present values are a decreasing function of time
for both the QFRAN and the FRAN cases. Because QV(t) is an infinite integral
in Theorem 2, it produces errors when we perform numerical analysis; there-
fore, we show the results of a FRAN, which can serve as a benchmark. The
coupons of the QFRAN received each period are less than that of the FRAN.

Table II illustrates the coupons of the QFRAN received each period under
(bs, cs, l, g, d) � (0.02, 0.2, 0.15, 0.01, 0.5) and s � 0.3. The phenomenon of
decreasing present values in time also holds and coupons received each period
are lower than the corresponding coupons of the FRAN.

From Table III, the first three rows are the cases under increasing l, rows
4–6 are the cases under increasing volatility of exchange rate, and rows 7–9 are
the cases under increasing kf . The impact of increasing kf is equivalent to the
impact of increasing �*(t, T) and reversion rates. To compare the results of
Tables II and III, we find that the parameters l, s, kf positively impact each
coupon. The impact of high s is more relevant than the impact of high l and
high kf on coupon. Higher l and kf may decrease the probability that the under-
lying is in the money.

CONCLUSION

Under the Gaussian HJM with cross-currency Levy processes, we have derived
the closed-form pricing formula for QFRANs. The instantaneous domestic for-
ward interest rates, instantaneous foreign forward interest rates, and exchange
rate are assumed to follow Levy processes. Based on this specification and
using a delayed numeraire, the payoff of a QFRAN can be expressed as a series
of contingent payoff option contracts. Hence, we have also derived the pricing
formulas of the quanto double interest rate digital options and quanto contin-
gent payoff option contracts.

Furthermore, we can obtain hedging strategies using our pricing formulas.
Using the hedging strategy provided in this study, an issuer who has underwritten

8To verify our numerical results, we also simulate the prices by Monte Carlo in Appendix B.
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QFRANs can understand how to hedge if the underlying faces uncertainty of
jumps in the future. Analysis about RAN hedging has yet been discussed in the
existing literature, and it is an important issue for the issuer of RANs especial-
ly when interest rates indeed jump.

The numerical results show some interesting phenomena. The coupons of
a QFRAN are lower than the coupons of a FRAN without jump risk but with
exchange rate risk. The impact of increasing volatility of exchange rate, jump
intensity, and volatility of foreign ZCB will increase the coupons received for
QFRANs. The impact of high volatility on exchange rate is more significant
than the impact of higher jump intensity and volatility of foreign ZCB, as higher
jump intensity and volatility of foreign ZCB may decrease the probability that
the underlying is in the money.

APPENDIX A

Denote Z(t, T) � p(t, T)/B(t) and Z*(t, T) � p*(t, T)S(t)/B(t). Under the
domestic risk-neutral measure Q, the drift terms of dZ(t, T)/Z(t, T) and dZ*
(t, T)/Z*(t, T) must be zero and the drift term of dS(t)/S(t) equals r(t) � r*(t).

First we prove the condition that A(t, T) in the expression of p(t, T) must
satisfy when the measure is changed from the original measure P to the domes-
tic risk-neutral measure Q. According to the assumptions of this study,

(A1)

Substituting (A1) into p(t, T), we can rewrite p(t, T) as

(A2)

Using (A2) and B(t) in Z(t, T), then

(A3)

Let D(s, x, T) � �(s, T)�x. The differential of (A3) can be written as follows:

dZ(t, T)
Z(t, T)

� �A(t, T)dt � ©(t, T)�bt dt � ©(t, T)�ct dWt

� �
t

0
�
�d

©(s, T)�x(mL � nL)(ds, dx)b.

Z(t, T) � Z(0,T)expa �
t

0

� A(s, T)ds � �
t

0

©(s, T)�bsds � �
t

0

©(s, T)�csdWs

� �
�d

x(mL � nL)(ds, dx))b.

p(t, T) � p(0, T)B(t)exp a �
t

0

� A(s, T)ds � �
t

0

©(s, T)�(bsds � csdWs

dLt � bt dt � ct dWt � �
�d

x(mL � nL)(dt, dx).
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Under Q measure the drift term of dZ(t, T)/Z(t, T) equals zero:

(A4)

Next, the condition that the expression m(t) in the exchange rate S(t) must
satisfy when the original measure P is changed to the domestic risk-neutral
measure Q is derived as follows:

(A5)

Substituting (A5) into S(t), we can rewrite S(t) as

(A6)

Let g(s, x, T) � s(s)�x. The differential of (A6) can be expressed as follows:

Under Q measure, the drift term of dS(t)/S(t) equals r(t) � r*(t). Hence 

(A7)

Finally, the condition that A*(t, T) in p*(t, T) must satisfy when P measure
is changed to Q measure is derived as follows:

m(t) � s(t)�bt �
1
2
s(t)�Cts(t) � �

�d

(eg(t, x, T) � 1)Ft(dx).

�
1
2
s(t)�Cts(t)dt � �

�d

(eg(t,x, T) � 1)Ft(dx)dt.

�
t

0
�
�d

es(s)�x(mL � nL)(ds, dx)

dS(t)
S(t)

� �m(t)dt � r(t)dt � r*(t)dt � s(t)�bt dt � s(t)�ct dWt

� �
t

0
�
�d

s(s)�x(mL � nL)(ds, dx) ).

S(t) � S(0)expa �
t

0

(�m(s) � r(s) � r*(s) )ds � �
t

0

s(s)�bsds � �
t

0

s(s)�csdWs

B(t) � expa �
t

0

r(s)dsb and B*(t) � expa �
t

0

r*(s)dsb.

A(t, T) � ©(t, T)�bt �
1
2
©(t, T)�Ct©(t, T) � �

�d

(eD(t, x, T) � 1)Ft(dx).

�
1
2
©(t, T)�Ct©(t, T)dt � �

�d

(eD(t, x, T) � 1)nL(dt, dx).

� �
�d

eD(t,x,T)(mL � nL)(dt, dx)



Pricing and Hedging of Quanto RANs 995

Journal of Futures Markets DOI: 10.1002/fut

(A8)

Substituting (A8) into Z*(t, T), we get

Under Q measure, the drift term is zero:

(A9)

Substituting (A7) into (A9), we obtain

(A10)� �
�d

[es(t)�x(e©*(t, T)�x � 1)]Ft(dx).

A*(t, T) � ©*(t, T)�bt � ©*(t, T)�Cts(t) �
1
2
ƒ ©*(t, T)�ct ƒ 2

� �
�d

(e(D(t, x, T)�g(t, x, T)) � 1)Ft(dx) � 0.

� A*(t, T) � m(t) � (©*(t, T) � s(t) )bt �
1
2
ƒ (©*(t, T)� � s(t)� )ct ƒ 2

�
1
2
ƒ(©*(t, T)� �s(t)�)ct ƒ 2dt � �

�d

(e(D(t, x, T)�g(t, x, T)) �1)Ft(dx)dt.

� s(t)� )ct dWt � �
�d

e(a*(t,T)��s(t)�)x(mL � nL)(dt, dx)

dZ*(t, T)
Z*(t, T)

� �A*(t, T)dt � m(t) dt � (©*(t, T)� � s(t)� )btdt � (©*(t, T)�

� �
t

0

(©*(s, T)� � s(s)�)abs ds � cs dWs � �
�d

x(mL � nL)(ds, dx)bb

� Z*(0, T)expa �
t

0

� (A*(s, T) � m(s) )ds

� Z*(0, T )expa�
t

0

� (A*(s,T)�m(s))ds� �
t

0

(©*(s, T)� s(s))dLQs b

� expa �
t

0

� A*(s, T)ds � �
t

0

©*(s, T)�dLQs b

�
S(0)B(t)

B*(t)

p*(0, T)B*(t)

B(t)
expa �

t

0

� m(s)ds � �
t

0

s(s)dLQs b

Z*(t, T) �
S(t)p*(0, T)B*(t)

B(t)
expa �

t

0

� A*(s, T)dsb � �
t

0

©*(s, T)�dLQs b

p*(t, T) � p*(0, T)B*(t)expa �
t

0

� A*(s, T)ds � �
t

0

©*(s, T)�dLQs b.
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APPENDIX B

We use the Monte Carlo method to simulate the closed-form solution under
the same settings of Tables I and II. First, the prices of foreign ZCBs are simu-
lated by Monte Carlo method using the following equation:

(B1)

Equation (B1) corresponds to Equation (9) and it is a differential form of
Equation (9). The setting of parameters is consistent with this study, v is a com-
pensator and u is a compound Poisson. After the prices of foreign ZCBs are
obtained, the LIBOR rate is also available using bond prices from Monte Carlo
simulation using the following equation:

� ct©(t, T)dWt � (e©(t, T) � 1)u.

dp*(t, T)

p*(t�, T)
� (r*(t) � c2

t©(t, T)s(t) )dt � es(t)(e©(t, T) � 1)v

TABLE IV

The Coupon Payments of Floating Range Accrual Note and Quanto Floating Range Accrual
Note Without Jump by Monte Carlo Simulation

m–M (%) First Coupon Second Coupon Third Coupon Fourth Coupon

Floating range accrual note
3–6 0.018984 0.015260 0.012979 0.010949
2–7 0.021543 0.019413 0.016864 0.015178
1–8 0.023481 0.022166 0.020509 0.019328

Quanto floating range accrual note
3–6 0.010756 0.010167 0.009559 0.009293
2–7 0.017824 0.016053 0.014074 0.013162
1–8 0.022829 0.021533 0.019891 0.018724

Note. All parameters are set the same as in Table I.

TABLE V

The Coupon Payments of Quanto Floating Range Accrual Note Under HJM–Compound
Poisson Jump Model by Monte Carlo Simulation

m–M (%) First Coupon Second Coupon Third Coupon Fourth Coupon

Quanto floating range accrual note with jump
3–6 0.011985 0.011122 0.010304 0.009786
2–7 0.017782 0.016120 0.014932 0.014328
1–8 0.023481 0.022166 0.020509 0.019328

Note. All parameters are set the same as in Table II. 
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(B2)

We summarize some results of Monte Carlo simulation in Tables IV and V.
Tables I, II, IV, and V show that the coupons by Monte Carlo simulation

are higher than the coupons by FFT, but the maximum difference between
the results of FFT and of Monte Carlo simulation is small, which is
0.001558.
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