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In this paper, we propose a hidden Markov switching moving average model (MS-MA model) to
extend themoving average model when the dynamic process of stock returns is predictable. That
is, hiddenMarkov chain can be utilized to better describe the stock return dynamicswhenmoving
averages are correlated. Based on the MS-MA model, a recursive method of EM algorithm for
parameter estimation is proposed and a numerical analysis is demonstrated. Furthermore, we
empirically test the hiddenMarkov chainmodel using Dow Jones thirty stocks' data. The empirical
results show that the dynamic process of stock returns exhibits MS-MA property, meaning the
moving averages of stock returns are correlated. Therefore, the MS-MA model allows us to better
understand and to predict stock return stochastic process. This model also helps in pricing equity
derivatives.
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1. Introduction

Stock returns are not predictable when they follow random walk. However, stock returns may be predictable if they exhibit
mean-reversion property. In the Black–Scholes options pricing model (1973), stock price changes are assumed to follow a
geometric Brownian motion, thus stock price changes include a stochastic and a non-stochastic components, where the stochastic
component assumes that stock price changes are independent, i.e., Cov(St−1, St), where St is the stock price at time t. However, in
recent years many empirical studies have pointed out that stock returns are autocorrelated. For example, Fama and French (1988)
find stock returns of 3–5 months horizon are negatively autocorrelated. Potreba and Summers (1988) find that short-term stock
returns are positively autocorrelated due to the trading of noise traders. Jegadeesh (1991) also find stock return mean-reversion in
the UK and US markets. Similar findings are reported in Beveridge and Oickle (1997), Cassano (1999), Chelley-Steeley (2001), and
Chen, Su, and Huang (2008). Since models of moving average process (MA) have been used to explain the stock return mean-
reversion, this study employs MA(1) to deduce the Markov chain model, leaving MA (q) to future studies.

If stock returns are hidden Markov chain correlated, i.e., moving averages vary over time, then Markov switching moving
average (MS-MA) model can be used to improve the moving average model. The Markov chain was initially proposed by Markov
(1906), which is composed of probable state and state transition probability. Markov discusses only a finite state Markov chain, and
it was applied in the studies of physics. Wiener (1923) establishes a continuous time Markov chain, and Martin (1975) adds Bayes
theory to it. The hidden Markov chain is initially proposed by Baum and Petrie (1966), in which the hidden variable could be
obtained from an observable randomvariable set. Inmore recent years, the hiddenMarkov chain has beenwidely applied in speech
-2416-H-259-021.
tional Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan, ROC. Tel.: +886 3

ang).

All rights reserved.

mailto:gracew@mail.ndhu.edu.tw
http://dx.doi.org/10.1016/j.iref.2008.06.010
http://www.sciencedirect.com/science/journal/10590560


307S.-K. Lin et al. / International Review of Economics and Finance 18 (2009) 306–317
recognition (Korgh, Brown, Mian, Sjolander and Haussler, 1994), signal processing (Elliott, Aggoun and Moore, 1995), DNA
recognition (Churchill, 1989) and image processing (Asa, Eikvil and Huseby, 1999), though less frequently used in the pricing of
financial derivatives. Nevertheless, Liao and Chen (2006) finds that if stock returns are autocorrelated, then an MA(1)-based
options pricing model can be used to estimate the options value. Finally, Kim, Nelson and Startz (1998) suggest the use of Markov
switching model to describe time-series dynamics when the data present heteroskedasticity. They find that test procedures which
ignore the pattern of heteroskedasticity tend to reject the null of no mean reversion too often. Their model is a three state Markov-
switching process estimated by the Bayesian Gibbs sampling approach.

When estimating parameters using the MS-MA model, a state is determined based on observed values. Since random state
variables cannot be observed in advance, as this will cause difficulties when estimating parameters, we employ the Expectation-
Maximization algorithm (EM algorithm) to estimate the maximal likelihood parameters. The EM algorithm is a very efficient
numeric method. Bilmes (1998) mentions that the EM algorithm can be primarily used in the following two scenarios:
(1) constraints during the observation process results in incomplete data set or missing value; and (2) difficulty in finding the
parameter estimates that maximize the likelihood function. To solve these problems, one can assumemissing parameter values for
the empirical purpose. To simplify the solutions, the algorithm allows the incomplete-data likelihood function to become a
complete-data likelihood function after incorporating preset parameters. As such, this method facilitates parameter estimation in
the later stage; hence, a closed form solution can be obtained using regressive parameter estimation method.

The EM algorithm is initially proposed by Newcomb (1886) to study the parameter estimation of equal-variance mixture
normal distribution models. McKendrick (1926) applies the EM algorithm in the medical industry, while Baum and Petrie (1966),
Baum and Eagon (1967), and Baum, Petrie, Soules and Weiss (1970) study the application of EM algorithm in the Markov model.
These studies put forward some convergence results, which are the predecessors of the applications of the EM algorithm in the
hiddenMarkovmodel. Later, Orchard andWoodbury (1972) propose themissing information principle, which is very similar to the
basic concept of the EM algorithm. Orchard and Woodbury (1972) also introduce general applications of missing information
principle, creating the complete-data likelihood functions and the incomplete-data likelihood functions, and conclude that
maximal likelihood estimate is a constant. Other EM algorithm literature include Hartley (1958); Buck (1960); Efron (1967); Blight
(1970); and Chen and Finberg, (1974). In short, most of the related literature before 1977 discusses only the EM algorithm
application. The importance of the EM regressive theory, especially the converged local maximum likelihood estimates derived
from the EM regression is not established until Dempster, Laird and Rubin (1977).

In this paper, we use the MS-MA model to derive the parameters of stock return generating process, and to test whether the
empirical data is consistent with the MS-MA phenomenon. The rest of this study is organized as follows. Section 2 introduces the
MS-MA model; Section 3 shows the estimation method and test of the EM algorithm. Section 4 presents numerical analyses and
use the EM algorithm to estimate the MS-MA model parameters. Thirty Dow Jones Industrial Average (DJIA) stocks are utilized for
parameter estimation and to find if stock returns exhibit the hidden Markov chain properties. Section 5 concludes.

2. A hidden Markov switching moving average model

The MS-MA model combines geometric Brownian motion and moving average components. When average stock returns are
hidden Markov chain correlated with that of the previous n periods, i.e., when correlations of average stock returns are time-
varying, then the log stock returns follow the MS-MA process. The MS-MA model can be expressed as
Secon
Rt ¼ μ þ σZt þ θiσzt−1; t ¼ 1;2; N ; T; i ¼ 1;2; N ; I; ð1Þ

Rt denotes stock return at time t, μ is the constant expected stock return, σ is the standard deviation of stock return, θi
where
denotes the correlation factor of the stock return between time t−1 and time t, and |θi|b1, Z~N(0,1), Rt~N(μ+θiσzt−1,σ2), t=1,2,⋯, T,
i∈O, O is a state space, O={1, 2,⋯, I}, and i is the correlation state. Assuming that i has two states, 1 and 2 (θ1Nθ2), then this model is
called the MS-MA model. If the correlation with previous period is high, then θi=θ1; if low then θi=θ2.

The state variable in Eq. (1) is a hidden random variable, representing a joint probability distribution of state and log stock
return. Let Rt be an observable discrete or continuous random variable, and St a hidden state discrete random variable with I
possible values, O={1, 2,⋯, I}. In a hidden Markov model, there are two assumptions regarding the relation between these two
variables. First, state at time t is only correlated with state at time t−1, unrelated with any other time periods. That is,
P St jSt−1;Rt−1; N ; S1;R1ð Þ ¼ P St jSt−1ð Þ: ð2Þ

d, log stock return at time t is only correlated with state at time t, i.e.,

P Rt jST ;RT ; ST−1;RT−1; N ; Stþ1;Rtþ1; St ; St−1;Rt−1; N ; S1;R1ð Þ ¼ P Rt jStð Þ: ð3Þ

MS-MA model contains observable and unobservable continuous or discrete random variables. In this study, St is an
The
unobserved (hidden) discrete randomvariable at time t. This paper further assumes that the underlying hiddenMarkov chain defined
by P(St|St−1) is consistentwith the notion that state i is correlated onlywith state j. Therefore, the time-dependent stochastic transition
probability is P=(pij)=P(st+1= j|st= i). To facilitate model inference, let the initial value of state at t=1 be πi, and πi=P(s1= i), i ∈ O. A
particular sequence of states is described by S̃=(s1, s2,⋯, sT) where st∈O is the state at time t. An observed log stock return sequenceR is
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described as R̃=(R1=r1, R2=r2,⋯, RT=rt). The probability of log stock return vector at time t for state i can be described by bi(rt)=p(Rt=rt|
St= i). The complete collection of parameters for all observation distributions is represented by B̃ ={bi(·)}.

3. Estimation and test

EM algorithm can be primarily used in the following two cases: (1) constraints during the observation process results in
incomplete data set ormissing value; and (2) difficulty in finding the parameter estimates thatmaximize the likelihood function. To
solve these problems, one can assumemissing parameter values for the empirical purpose. To simplify the solutions, the algorithm
allows the incomplete-data likelihood function to become a complete-data likelihood function after incorporating preset
parameters. As such, this method facilitates parameter estimation in the latter stage; hence, a closed form solution can be obtained
using regressive parameter estimation method. Since the state setting in the MS-MA model depends on observed values, yet the
state random variable is unobservable, therefore, the EM algorithm is employed to estimate the maximal likelihood parameters.

Let observed random variable set be R̃=(r1, r2,⋯, rT), and unobserved hidden random variable set be S̃=(s1, s2,⋯, sT), then the
complete-data likelihood function L(Θ|R, S)can be expressed as
L ΘjR; Sð Þ ¼ P R; SjΘð Þ ¼ πs0 ∏
T

t¼1
pst−1st bi rtð Þ; ð4Þ

Θ denotes sample space, Θ=(P, B, π)=( pij, μ, σ, θi, πi; 0bpijb1, μ ∈ R, σ2N0, |θi|b1, 0bπib1, i ∈ O, j∈O. From the complete-
where
data likelihood function, Eq. (4), we can obtain the incomplete data likelihood function Lc(Θ|R)as
Lc ΘjRð Þ ¼ P RjΘð Þ ¼ ∑
I

s0 ;s1;: : :;st¼1
P R; SjΘð Þ ¼ ∑

I

s0 ;s1 ; N ;st¼1
πs0 ∏

T

t¼1
pst−1st bi rtð Þ: ð5Þ
3.1. Expectation-maximization algorithm

The EM algorithm is a general method of finding the maximum likelihood parameter estimates from a given data set when the
data are incomplete or have missing values (Bilmes, 1998). The EM algorithm has two main applications: (1) when the data have
missing values due to limitations in the observation process; and (2) when optimizing the likelihood function is analytically
intractable but one can simplify the likelihood function by assuming the existence of additional but hidden parameters and their
values. In this paper, the EM algorithm is used to derive the sample space Θ parameters, pij, μ, σ, θi, πi. The EM algorithm includes
two steps: E-step (expectation step) and M-step (maximization step).

3.1.1. E-step
In the E-step, we take logarithm of the complete-data likelihood function, log P(R, S|Θ), given observable stock return R and last

period parameter Θ(k). We then take the conditional expectation of the unobserved hidden random variable S under known stock
return R and last period parameter Θ(k). That is, we define
Q Θ;Θ kð Þ
� �

¼ E logP R; SjΘð ÞjR;Θ kð Þ
h i

: ð6Þ

bstituting Eq. (5) into Eq. (6), function Q can be modified as
Su
Q Θ;Θ kð Þ
� �

¼ ∑
saS

logπs0P SjR;Θ kð Þ
� �

þ ∑
saS

∑
T

t¼1
logpst−1st

� �
P SjR;Θ kð Þ
� �

þ∑
saS

∑
T

t¼1
logbst rtð Þ

� �
P SjR;Θ kð Þ
� �

¼ ∑
I

i¼1
logπiP s0 ¼ ijR;Θ kð Þ

� �
þ ∑

I

i¼1
∑
I

j¼1
∑
T

t¼1
logpij

� �
P st−1 ¼ i; st ¼ jjR;Θ kð Þ
� �

þ∑
I

i¼1
∑
T

t¼1
logbi rtð Þ

� �
P st ¼ ijR;Θ kð Þ
� �

:

ð7Þ

e ∑i=1
I log πi P(s0= i|R, Θ(k)) is used to derive the initial value πi, the ∑ i=1

I ∑ j=1
I (∑ t=1

T log pij)P(st−1= i, st= j| R, Θ(k)) is used to
Th
derive the transition probability pij, and the ∑ i =1

I (∑ t=1
T log bi(rt))P(st= i| R, Θ(k)) is used to derive the constant expected stock

return, μ; the volatility of stock return σ; and the correlation factor of the stock returns between time t−1 and time t, θi.

3.1.2. M-step
The M-step is used to maximize function Q,
Θ kþ1ð Þ ¼ argmaxQ Θ;Θ kð Þ
� �

:

en we continue the iteration process using the above two steps, likelihood function will continue to increase until it
Wh
converges to local maximum. Lagrange multiplier γ is used to derive the initial value πi, the transition probability pij and the
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probability of log stock return vector at a particular time t for state i, described as bi(rt). To find the initial value πi, we introduce the
Lagrange multiplier λ with the constraint ∑i=1

I πi=1, and solves the following equation
A

Aπi
∑
I

i¼1
logπiP s0 ¼ ijR;Θ kð Þ

� �
þ γ ∑

I

i¼1
πi−1

� �� �
¼ 0;

obtain
We
πi ¼
P s0 ¼ ijR;Θ kð Þ
� �

∑
I

i¼1
P s0 ¼ ijR;Θ kð Þ
� � : ð8Þ

parity of reasoning, the transition probability pij is
By
pij ¼
∑
T

t¼1
P st−1 ¼ i; st ¼ jjR;Θ kð Þ
� �

∑
T

t¼1
P st ¼ jjR;Θ kð Þ
� � : ð9Þ

ally, based on Eq. (7), ∑i =1
I (∑t=1

T log bi(rt))P(st= i|R,Θ(k)) can be rewritten as
Fin
∑
I

i¼1
∑
T

t¼1
logbi rtð Þ

� �
P st ¼ ijR;Θ kð Þ
� �

¼ ∑
I

i¼1
∑
T

t¼1
log

1

2πð Þ1=2σ
exp −

1
2
σ−2 rt−μ−θiσzt−1ð Þ2

� �" #( )
P st ¼ ijR;Θ kð Þ
� �

:

ð10Þ

e partial derivative of Eq. (10) with respect to the constant expected stock return μ and set it equal to 0, we can derive the
Tak
estimation equation of μ as
μ̂ ¼
∑
I

i¼1
∑
T

t¼1
rt− θ̂iσ̂ zt−1
� �

P st ¼ ijR;Θ kð Þ
� �

∑
I

i¼1
∑
T

t¼1
P st ¼ ijR;Θ kð Þ
� � : ð11Þ

ilarly, if we take partial derivative of Eq. (10) with respect to the correlation factor of the stock returns between time t−1
Sim
and time t, θi; and the volatility of stock return, σ; and set it to 0, we can derive the estimation equations of θi and σ as
θ̂ i ¼
∑
T

t¼1
rt−μ̂
� 	

zt−1P st ¼ ijR;Θ kð Þ
� �

σ̂ ∑
T

t¼1
z2t−1P st ¼ ijR;Θ kð Þ

� � ; ð12Þ

σ̂ ¼
∑
I

i¼1
∑
T

t¼1
σ̂

−1
rt− μ̂− θ̂ iσ̂ zt−1
� �2

þ θ̂ izt−1 rt−μ̂− θ̂ iσ̂ zt−1
� �� �

P st ¼ ijR;Θ kð Þ
� �

∑
I

i¼1
∑
T

t¼1
P st ¼ ijR;Θ kð Þ
� � : ð13Þ

pendix A details the derivation process for the initial value πi and the transition probability pij; and Appendix B for the expected
Ap
stock return μ; the volatility of stock returns σ; and the correlation factor of the stock returns between time t−1 and time t, θi.

3.1.3. Efficient calculation of desired quantities
To better estimate parameters in function Q, we adopt the Baum–Welch algorithm, which is a forward–backward algorithm. An

initial value is given to facilitate the parameter estimation. We then iterate using the forward–backward algorithm for the
estimation of P(r̃T| Θ), and followed by γi(t) and ξij(t). The γi(t) and ξij(t) can be substituted into Eqs. (8), (9), (11)–(13) to estimate
parameters πi, pij, μ, σ, and θi. The , μ̂, σ̂ and θ̂ estimated by the MA(1) can be used as the initial values to estimate the expected
stock return μ; the volatility of stock returns σ; and the correlation factor of the stock returns between time t−1 and t, θi. For πi and
the transition probability pij, 1/I is the initial value. Θ(k) can be written as
Θ kð Þ ¼ π kð Þ
i ; p kð Þ

ij ; μ kð Þ;σ kð Þ; θ kð Þ
i

� �
; i; jaO:

e following algorithms use k-period parameters to estimate all k+1 period parameters. Forward step can be used to estimate
Th
P(r̃T|Θ). Assume αi(t)=P(r1, r2,…, rt, st = i|Θ), P(r̃T|Θ), can be estimated in three steps.



310 S.-K. Lin et al. / International Review of Economics and Finance 18 (2009) 306–317
Step 1: Calculate αi(1), i ∈ O,

αi 1ð Þ ¼ P r1; s1 ¼ ijΘð Þ
¼ P r1js1 ¼ i;Θð ÞP s1 ¼ ijΘð Þ
¼ πi/ r1; μ;σ2� 	

:

ð14Þ

Step 2: Calculate αj (t), t=2,3,⋯,T, j ∈ O,

αj tð Þ ¼ ∑
I

i¼1
αi t−1ð Þpij

� �
bj rtð Þ

¼ ∑
I

i¼1
αi t−1ð Þpij

� �
/ rt; μ þ θqtσzt−1;σ2� 	

:

ð15Þ

Step 3: Derive P(r̃T|Θ)

P r̃T jΘð Þ ¼ ∑
I

i¼1
αi Tð Þ:

Backward step can be used to estimate P(r̃T|Θ). Assume βi(t)=P(rt +1, rt+2,…, rT|st= i,Θ), P(r̃|Θ) can be estimated in three steps.

Step 1: At time T, as all states are known, βi(T)=1, i∈O.
Step 2: Calculate βi(t), t=1, 2,…, T−1, i ∈ O,
βi tð Þ ¼ P rtþ1; rtþ2; N ; rT jst ¼ i;Θð Þ ¼ ∑
I

j¼1
pij/ rtþ1; μ þ θqtþ1σzt ;σ2� 	

βj t þ 1ð Þ: ð16Þ

Step 3: Derive P(r̃T|Θ)

P r̃T jΘð Þ ¼ ∑
I

i¼1
βi 1ð Þπibi r1ð Þ ¼ ∑

I

i¼1
βi 1ð Þπi/ r1 : μ;σ2� 	

:

This paper uses αi(t) and βi(t) estimated in the forward and backward steps to calculate γi(t). First, γi(t) is defined as
γi tð Þ ¼ P st ¼ ijr̃T ;Θ kð Þ
� �

:

ing the Bayes theorem, γi(t) can be written as
Us
γi tð Þ ¼ P st ¼ ijr̃T ;Θ kð Þ
� �

¼
P r̃T ; st ¼ ijΘ kð Þ
� �
P r̃T jΘ kð Þ
� � ¼ αi tð Þβi tð Þ

∑
I

j¼1
αj tð Þβj tð Þ:

ð17Þ

also use αi(t), βi(t) and βj(t+1) calculated in the forward and backward steps to estimate ξij(t), where ξij(t) is defined as
We
nij tð Þ ¼ P st ¼ i; stþ1 ¼ jjr̃T ;Θ kð Þ
� �

:

ing the Bayes theorem, ξi(t) can be written as
Us
nij tð Þ ¼
p st ¼ ijr̃T ;Θ kð Þ
� �

p rtþ1; :::; rT ; stþ1 ¼ jjst ¼ i;Θ kð Þ
� �

p rtþ1; :::; rT jst ¼ i;Θ kð Þ
� �

¼ γi tð Þpijbj rtþ1ð Þβj t þ 1ð Þ
βi tð Þ ¼ γi tð Þpijβj t þ 1ð Þ/ rtþ1; μ þ θqtþ1σzt ;σ2

� 	
βi tð Þ :

ð18Þ

estimate the following parameters, we can simply use relative frequencies. This paper defines updated rules as follows:
To
π kþ1ð Þ
i ¼ P s1 ¼ ið Þ ¼ γi 1ð Þ;

p kþ1ð Þ
ij ¼

∑
T

t¼1
P st−1 ¼ i; st ¼ jj r̂T ;Θ kþ1ð Þ
� �

∑
T

t¼1
P st ¼ jj r̂T ;Θ kþ1ð Þ
� � ¼

∑
T−1

t¼1
nij tð Þ

∑
T−1

t¼1
γi tð Þ

; t ¼ 1;2; N ; T; i; jaO:
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Therefore,
Table 1
MS-MA

True va
Simulat
Standar
1μ
kþ1ð Þ ¼

∑
I

i¼1
∑
T

t¼1
rt− θ̂

kð Þ
i σ̂

kð Þ
zt−1

� �
P st ¼ ijR;Θ kþ1ð Þ
� �

∑
I

i¼1
∑
T

t¼1
P st ¼ ijR;Θ kþ1ð Þ
� � ¼

∑
I

i¼1
∑
T

t¼1
rt− θ̂

kð Þ
i σ̂

kð Þ
zt−1

� �
γi tð Þ

∑
I

i¼1
∑
T

t¼1
γi tð Þ

;

θ̂
kþ1ð Þ
i ¼

∑
T

t¼1
rt−μ̂

kþ1ð Þ� �
zt−1P st ¼ ijR;Θ kþ1ð Þ

� �

σ̂
kð Þ
∑
T

t¼1
z2t−1P st ¼ ijR;Θ kþ!ð Þ

� � ¼
∑
T

t¼1
rt− μ̂

kþ1ð Þ� �
zt−1γi tð Þ

σ̂
kð Þ
∑
T

t¼1
z2t−1γi tð Þ

;

σ̂
kþ1ð Þ ¼

∑
I

i ¼ 1
∑
T

t ¼ 1 ½ σ̂ −1; kð Þ rt−μ̂
kþ1ð Þ−θ̂

kþ1ð Þ
i σ̂

kð Þ
zt−1

� �
2

þθ̂ i
kþ 1ð Þ

zt−1 rt−μ̂− θ̂
kþ1ð Þ
i σ̂

kð Þ
zt−1

� � �γi tð Þ

∑
I

i ¼ 1
∑
T

t ¼ 1
γi tð Þ

:

3.2. Likelihood ratio test (LRT)

Because the main objective of this paper is to derive the parameters of stochastic stock return generating process using MS-MA
model when stock returns exhibit hidden Markov property, likelihood ratio test is used to examine whether stock returns follow
hidden Markov phenomenon. The null hypothesis of the likelihood ratio test, H0, is that likelihood function Lc (Θ|R) follows MA(1)
model, and the alternative hypothesis, Ha, is that incomplete-data likelihood function Lc (Θ|R) follows MS-MA model. The
likelihood ratio test can be expressed as
−2ln
L X0ð Þ
L Xað Þ
� �

¼ −2ln
L ΘjRð Þ
Lc ΘjRð Þ
� �

Y
asy

χ2
n−rð Þ; ð19Þ

L(Ω0) is the estimated likelihood value with constraint, H0; and L(Ωa) is the estimated likelihood value without constraint, Ha.
where
Moreover, n is the degree of freedom for L(Ωa); and r is the degree of freedom for L(Ω0). In this paper, the estimation function for the
MS-MAmodel has five parameters, πi, pij, μ, σ, θiwhere the degree of freedom for πi is I−1, the degree of freedom for pij is I(I−1), μ and
σ each has one degree of freedom, and the degree of freedom for θi is I−1. Hence, the degree of freedom for L(Ωa), n, is (2+ I)(I−1)+2,
and the degree of freedom for L(Ω0), r, is 3. Thus, there are a total of (2+ I)(I−1)−1 degrees of freedom for the likelihood ratio test.

4. Numerical analysis and empirical evidence

4.1. Numerical analysis

In this section, we use a numerical analysis to check the convergence of model parameters. Assuming there are two states for
stock returns; preset parameter values (true values) are: π1=0.5, the transition probability p11=p22=0.99, the expected stock
return μ=0.0003, the volatility of stock returns σ=0.01, the correlation factors of the stock returns between time t−1 and t, θ1=0.5
and θ2=0.1, and time length is 1,000 days. We first substitute these numbers into Eq. (5) to simulate stock returns. EM algorithm is
then employed to estimate model parameters. After 200 loop runs, we check if the estimated parameter values are close to the
preset true values. We report some results in Table 1, Figs. 1 and 2. The dotted lines denote true values, the solid lines denote the
estimated parameter values after convergence. As shown, the estimated values are very close to the true values, indicating that EM
algorithm is able to calculate the MS-MA model parameter values effectively. Furthermore, after 1,000 runs of 500 converging
loops, the estimated parameter values are: π̂1=0.51188, p̂11=0.97728, p̂22=0.98255, μ̂=0.00032, σ̂=0.00998, θ̂1=0.50211 and
θ̂ 2=0.08831, which are also very close to the true values.
model parameter estimation

π1 p11 p22 μ σ θ1 θ2

lue 0.5000 0.9900 0.9900 0.0003 0.0100 0.5000 0.1000
ion value (1000 runs) 0.5119 0.9773 0.9826 0.0003 0.0100 0.5021 0.0883
d deviation 0.1871 0.0706 0.0497 0.0004 0.0002 0.0236 0.0991



Fig. 1. EM algorithm is used to estimate π1, p11 and p22. Assuming the initial value π1=0.5 and the transition probability p11=p22=0.99, results converged after 200 loops

Fig. 2. EM algorithm is used to estimate μ, σ, θ1 and θ2. Assuming the expected stock return μ=0.0003, the volatility of stock returns σ=0.01, the correlation factors
of the stock returns between time t−1 and t, θ1=0.5 and θ2=0.1, respectively, results converged after 200 loops.
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4.2. Empirical evidence

We use daily data of 30 DJIA component stocks from September of 2004 to December of 2006 (608 trading days) for the
empirical analysis. In this empirical analysis we show evidence that stock returns exhibit MS-MA property. Data of stock returns
are obtained from the Datastream database.
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As shown inTable 2 using likelihood test, All DJIA component stocks exhibit hiddenMarkovproperty— onlyWal-Mart is significant
at the 5% level; all other 29 stocks (96.67% of the total sample) are significant at the 1% level or better. Based upon our sample,
therefore, hidden Markov property is evident in the stock return stochastic process. The effect of the MS-MAmodel, therefore, must
be considered in predicting stock returns. This MS-MA effect should also be considered when pricing equity derivatives.
Table 2
Parameter estimates and test results for the MS-MA model using DJIA stocks

Company π1 p11 p22 μ σ θ1 θ2 LRT

Alcoa 0.4891 0.9911 0.9886 −0.0001 0.0157 0.1055 0.0539 13.1580⁎⁎
(0.0043)

American Express 0.4952 0.9898 0.9902 0.0003 0.0114 0.0152 −0.0035 13.3480⁎⁎
(0.0039)

AT&T 0.6138 0.9922 0.9872 0.0005 0.0099 0.1897 0.0814 12.9760⁎⁎
(0.0047)

Boeing 0.9995 0.9924 0.9842 0.0010 0.0131 0.0331 −0.4395 19.7624⁎⁎
(0.0002)

Caterpillar 0.5348 0.9905 0.9893 0.0010 0.0164 0.0773 0.0483 12.9154⁎⁎
(0.0048)

Citigroup Inc. 0.4617 0.9899 0.9900 0.0003 0.0087 0.0416 0.0070 13.3803⁎⁎
(0.0039)

Coca Cola 0.5169 0.9899 0.9901 0.0011 0.0143 −0.0286 0.0063 13.3561⁎⁎
(0.0039)

Dupont 0.4455 0.9907 0.9892 0.0003 0.0109 0.0739 0.0423 12.9558⁎⁎
(0.0047)

Eastman Kodak 0.4950 0.9901 0.9899 −0.0001 0.0175 −0.0308 −0.0225 12.9966⁎⁎
(0.0046)

Exxon Mobil 0.5000 0.9900 0.9900 0.0009 0.0127 −0.0040 −0.0041 12.9982⁎⁎
(0.0046)

General Electric 0.5211 0.9898 0.9902 0.0002 0.0085 0.0520 −0.0118 13.6363⁎⁎
(0.0034)

General Motors 0.4974 0.9907 0.9893 −0.0005 0.0254 0.0859 0.0727 14.4708⁎⁎
(0.0023)

Hewlett Packard 0.4965 0.9904 0.9895 0.0015 0.0156 −0.0683 −0.0448 13.6211⁎⁎
(0.0035)

Home Depot 0.4948 0.9900 0.9899 0.0002 0.0123 0.0249 0.0107 12.9045⁎⁎
(0.0048)

Honeywell International 0.4993 0.9900 0.9900 0.0004 0.0123 0.0026 −0.0041 12.7949⁎⁎
(0.0051)

IBM 0.5337 0.9901 0.9898 0.0002 0.0101 0.0488 0.0329 12.7130⁎⁎
(0.0053)

Intel 0.4951 0.9901 0.9899 0.0000 0.0154 0.0363 0.0305 13.2370⁎⁎
(0.0042)

International Paper 0.5097 0.9899 0.9901 −0.0003 0.0129 0.0140 0.0029 12.9765⁎⁎
(0.0047)

Johnson & Johnson 0.4658 0.9898 0.9903 0.0002 0.0085 −0.0108 −0.0300 14.0103⁎⁎
(0.0029)

J. P. Morgan 0.4460 0.9900 0.9899 0.0003 0.0096 0.0062 −0.0050 13.0453⁎⁎
(0.0045)

McDonalds 0.4469 0.9916 0.9881 0.0008 0.0123 −0.1032 −0.0778 14.0868⁎⁎
(0.0028)

Merck 0.0001 0.9999 0.9872 0.0000 0.0203 −0.0580 0.0069 13.5139⁎⁎
(0.0036)

Microsoft 0.4994 0.9901 0.9899 0.0002 0.0111 −0.0258 −0.0166 12.8137⁎⁎
(0.0051)

3M 0.5156 0.9900 0.9899 −0.0001 0.0111 0.0275 0.0273 12.9859⁎⁎
(0.0047)

Philip Morris 0.0000 0.9990 0.9883 0.0009 0.0115 −0.1115 0.2816 25.8419⁎⁎
(0.0000)

Procter Gamble 0.5399 0.9917 0.9872 0.0003 0.0097 −0.1589 −0.0843 14.5350⁎⁎
(0.0023)

SBC Communication 0.9328 0.9433 0.9923 0.0008 0.0161 −0.5132 0.0308 44.3268⁎⁎
(0.0000)

United Technologies 0.0000 0.9867 0.9976 0.0005 0.0101 0.5478 −0.0858 40.6179⁎⁎
(0.0000)

Wal-Mart Stores 0.9999 0.9891 0.9853 0.0002 0.0130 −0.0631 −0.0446 11.1137⁎
(0.0149)

Walt Disney 0.4975 0.9901 0.9899 0.0007 0.0115 −0.0191 −0.0100 12.9181⁎⁎
(0.0048)

Note. 1. ⁎⁎ and ⁎ denote significant at the 1% and 5% levels respectively.
2. (.) is the p value.
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5. Conclusions

In recent years, many empirical studies find autocorrelation in stock returns, hence moving average method have been used to
explain the stock returnmean-reversion (e.g., Fama and French,1988; Potreba and Summers, 1988; Jegadeesh,1991; Beveridge and
Oickle, 1997; Cassano, 1999; Chelley-Steeley, 2001). However, when stock return autocorrelation of two adjacent periods varies
over time, stock returns are hidden Markov correlated. Therefore, this paper studies the case of simultaneous existence of mean-
reversion and hidden Markov phenomenon in stock returns. That is, when stock returns exhibit both the MA and MS properties,
then stock return stochastic process can be better structured in aMS-MAmodel. We use the EM algorithm to estimate themaximal
likelihood parameter values, and use numerical analysis to check whether the EM algorithm effectively calculates the MS-MA
model parameters. Finally empirical analysis is conducted on the 30 DJIA components stocks to investigate whether there is a
hidden Markov phenomenon in stock return stochastic process.

Numerical analysis results indicate that parameter values calculated from the EM algorithm are very close to the preset actual
values, meaning that EM algorithm is capable of calculating parameter values of the MS-MA model effectively. Moreover,
empirical results reveal that all 30 DJIA component stocks exhibit MS-MA property, hence the MS-MA model needs to be
considered to better understand stock return stochastic process and to predict stock returns. This model also helps in pricing
equity derivatives.

Appendix A. Inference of the initial value πi and the transition probability pij

For the ∑i=1
I log πiP(s0= i|R, Θ(k)) in Eq. (7), we can use Lagrange multiplier γ, and let ∑i=1

I πi=1 to derive the initial value
πi,
and
A

Aπi
∑
I

i¼1
logπiP s0 ¼ ijR;Θ kð Þ

� �
þ γ ∑

I

i¼1
πi−1

� �� �
¼ 0: ðA:1Þ

ing partial derivative of Eq. (A.1) with respect to πi; setting it to 0, then
Tak
1
πi

P s0 ¼ ijR;Θ kð Þ
� �

þ γ ¼ 0:

ing transpose, it becomes
Tak
πi ¼
P s0 ¼ ijR;Θ kð Þ
� �

−γ
: ðA:2Þ

cause ∑i =1
I πi=1, then
Be
∑
I

i¼1
πi ¼ ∑

I

i¼1

P s0 ¼ ijR;Θ kð Þ
� �

−γ
¼ 1;

−γ ¼ ∑
I

i¼1
P s0 ¼ ijR;Θ kð Þ
� �

:

us, the estimator of the initial value πi can be obtained as
Th
π̂ i ¼
P s0 ¼ ijR;Θ kð Þ
� �

∑
I

i¼1
P s0 ¼ ijR;Θ kð Þ
� � ðA:3Þ

the ∑ i =1
I ∑ j=1

I (∑t=1
T log pij)P(st−1= i, st= j| R, Θ(k)) in Eq. (7), we can use Lagrangemultiplier γ and let ∑ j=1

I pij=1 to derive the
For
transition probability pij,
A

Apij
∑
I

i¼1
∑
I

j¼1
∑
T

t¼1
logpijP st−1 ¼ i; st ¼ jjR;Θ kð Þ

� �
þ γ ∑

I

j¼1
pij−1

 !" #
¼ 0: ðA:4Þ

ing partial derivative of Eq. (A.4) with respect to the transition probability pij; setting it to 0, we obtain
Tak
1
pij

∑
T

t¼1
P st−1 ¼ i; st ¼ jjR;Θ kð Þ
� �

þ γ ¼ 0:
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Taking transpose, it can be modified as
one ob

then ∑

after d
pij ¼
∑
T

t¼1
P st−1 ¼ i; st ¼ jjR;Θ kð Þ
� �

−γ
: ðA:5Þ

ause ∑ j=1
I pij=1, then
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∑
I

j¼1
pij ¼ ∑

I
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∑
T

t¼1
P st−1 ¼ i; st ¼ jjR;Θ kð Þ
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¼ 1;
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I

i¼1
∑
T

t¼1
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t¼1
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:

us, the estimator of the transition probability pij can be obtained as
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t¼1
P st−1 ¼ i; st ¼ jjR;Θ kð Þ
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∑
T

t¼1
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Appendix B. Derivation of the expected stock return, μ, the correlation factor of the stock returns between time t−1 and t, θi,
and the volatility of stock returns, σ

We can use ∑ i =1
I (∑ t=1

T log bi(rt))P(st= i| R, Θ(k)) in Eq. (7) to derive the expected stock return, μ; the volatility of stock returns, σ;
and the correlation factor of the stock returns between time t−1 and, t θi. Because
bi rtð Þ ¼ / rt : μ þ δizt−1;σ2
� 	 ¼ 1ffiffiffiffiffiffi

2π
p

σ
exp −
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1
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;

ðB:1Þ
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ing partial derivative with respect to the expected stock return μ in Eq. (B.2); setting it to 0, the equation for deriving the
Tak
expected stock return μ becomes
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ifferentiation, we have
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e estimator of the expected stock return μ can be obtained by transposing the above equation
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μ̂ ¼
∑
I

i¼1
∑
T

t¼1
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Taking partial derivative with respect to the correlation factor of the stock returns between time t−1 and t, θi in Eq. (B.2);
setting it to 0, equation to derive the correlation factor of the stock returns becomes
after d

after d
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nsposing the above equation, estimator of the correlation factor of the stock returns between time t−1 and time, t θi, can be
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ing partial derivative with respect to the volatility of stock return, σ, in Eq. (B.2); setting it to 0, equation to estimate the
Tak
volatility of stock return, σ, can be derived as
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nsposing the above equation, the estimator of the volatility of stock return σ can be obtained as
Tra
σ̂ ¼
∑
I

i¼1
∑
T

t¼1
σ̂

−1
rt− μ̂−θ̂ iσ̂ zt−1
� �2

þ θ̂ izt−1 rt− μ̂− θ̂iσ̂ zt−1
� �� �

P st ¼ ijR;Θ kð Þ
� �

∑
I

i¼1
∑
T

t¼1
P st ¼ ijR;Θ kð Þ
� � : ðB:5Þ
References

Asa, K., Eikvil, L., & Huseby, R. B. (1999). Applications of hidden Markov chains in image analysis. The Journal of Pattern Recognition Society, 32, 703−713.
Baum, L. E., & Eagon, J. A. (1967). An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology.

Bulletin of the American Mathematical Society, 73, 360−363.
Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions offinite stateMarkov chains?Annals of the Institute of StatisticalMathematics,37,1554−1563.
Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of hidden Markov

chains. Annals of Mathematical Statistics, 41, 164−171.
Beveridge, S., & Oickle, C. (1997). Long memory in the Canadian stock market. Applied Financial Economics, 7, 667−672.
Bilmes, J. A. (1998, April). A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models.

International Computer Science Institute.
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637−654.
Blight, B. J. N. (1970). Estimation from a censored sample for the exponential family. Biometrika, 57, 389−395.
Buck, S. F. (1960). A method of estimation ofmissing values inmultivariate data suitable for usewith an electronic computer. Journal of the Royal Statistical Society B, 22,

302−306.
Cassano, M. A. (1999). Learning and mean reversion in asset returns. Quarterly Review of Economics and Finance, 39, 529−545.
Chelly-Steeley, P. (2001). Mean reversion in the horizon returns of U.K. portfolios. Journal of Business Finance & Accounting, 28, 107−126.
Chen, T. T., & Finberg, S. E. (1974). Two-dimensional contingency tables with both completely cross-classified data. Biometrics, 30, 629−642.
Chen, C. R., Su, Y., & Huang, Y. (2008). Hourly Index Return Autocorrelation and Conditional Volatility in an EAR-GJR-GARCH Model with Generalized Error

Distribution. Journal of Empirical Finance, 15, 789−798.
Churchill, G. A. (1989). Stochastic models for heterogeneous DNA sequences? Bulletin of Mathematical Biology, 51, 79−94.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistic Society, 39(1), 1−38.
Efron, B. (1967). The two sample problemwith censored data. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 4 (pp. 831−853).

Berkely, California: University of California Press.
Elliott, R. J., Aggoun, L., & Moore, J. B. (1995). Hidden Markov Models: Estimation and Control. New York: Springer.
Fama, E. F., & French, K. R. (1988). Common Factors in the Serial Correlation of Stock Returns, Center for Research in Security Prices. working paper, 200 (University

of Chicago, Chicago, IL).
Hartley, H. O. (1958). Maximum likelihood estimation from incomplete data. Biometrics, 14, 174−194.
Jegadeesh, N. (1991). Seasonality in stock price mean reversion: evidence from the U.S. and the U.K.. Journal of Finance, 45, 1427−1444.
Kim, C. J., Nelson, C. R., & Startz, R. (1998). Testing for mean reversion in heteroskedastic data based on Gibbs-sampling-augmented randomization. Journal of

Empirical Finance, 5, 131−154.



317S.-K. Lin et al. / International Review of Economics and Finance 18 (2009) 306–317
Korgh, A., Brown, M., Mian, I. S., Sjolander, K., & Haussler, D. (1994). Hidden Markov models in computational biology: applications to protein modeling? Journal of
Molecular Biology, 235, 1501−1513.

Liao, S. L., & Chen, C. C. (2006). The valuation of European options when asset returns are autocorrelated. The Journal of Futures Markets, 26(1), 85−102.
Markov, A. A. (1906). Extension of the law of large numbers to dependent events (Russian). Bulletin de la Société Physico-Mathémathique de Kasan, 15(2), 135−156.
Martin, D. L. (1975). Interest rates and occupational choice. Journal of Human Resources, 10(4), 537−543.
McKendrick, A. G. (1926). Applications of mathematics to medical problems. Proceedings of the Edinburgh Mathematical Society, 44, 98−130.
Newcomb, S. (1886). A generalized theory of the combination of observations so as to obtain the best result. American Journal of Mathematics, 8, 343−366.
Orchard, T., & Woodbury, M. A. (1972). A missing information principle: theory and applications. Proceedings of the 6th Berkeley Symposium on Mathematical

Statistics and Probability, 1 (pp. 697−715). Berkeley, California: University of California Press.
Potreba, J. M., & Summers, L. H. (1988). Mean reversion in stock prices: evidence and implications. Journal of Financial Economics, 22, 27−59.
Wiener, N. (1923). Differential space. Journal of Mathematical Physics, 2, 131−174.


	Application of hidden Markov switching moving average model in the stock markets: Theory and em.....
	Introduction
	A hidden Markov switching moving average model
	Estimation and test
	Expectation-maximization algorithm
	E-step
	M-step
	Efficient calculation of desired quantities

	Likelihood ratio test (LRT)

	Numerical analysis and empirical evidence
	Numerical analysis
	Empirical evidence
	Empirical evidence


	Conclusions
	Inference of the initial value πi and the transition probability pij
	Derivation of the expected stock return, μ, the correlation factor of the stock returns between.....
	References




