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a b s t r a c t

The Intergovernmental Panel on Climate Change Fourth Assessment Report (2007) indicates that
unanticipated catastrophic events could increase with time because of global warming. Therefore, it
seems inadequate to assume that arrival process of catastrophic events follows a pure Poisson process
adopted by most previous studies (e.g. [Louberge, H., Kellezi, E., Gilli, M., 1999. Using catastrophe-linked
securities to diversify insurance risk: A financial analysis of lCAT bonds. J. Risk Insurance 22, 125–146; Lee,
J.-P., Yu, M.-T., 2002. Pricing default-risky CAT bonds with moral hazard and basis risk. J. Risk Insurance
69, 25–44; Cox, H., Fairchild, J., Pedersen, H., 2004. Valuation of structured risk management products.
Insurance Math. Econom. 34, 259–272; Jaimungal, S., Wang, T., 2006. Catastrophe options with stochastic
interest rates and compound Poisson losses. InsuranceMath. Econom., 38, 469–483]. In order to overcome
this shortcoming, this paper proposes a doubly stochastic Poisson process tomodel the arrival process for
catastrophic events. Furthermore, we generalize the assumption in the last reference mentioned above
to define the general loss function presenting that different specific loss would have different impacts on
the drop in stock price. Based on modeling the arrival rates for catastrophe risks, the pricing formulas
of contingent capital are derived by the Merton measure. Results of empirical experiments of contingent
capital prices as well as sensitivity analyses are presented.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) Fourth
Assessment Report (2007) states that the world’s average surface
temperature has increased by around 0.74 ◦C over the past 100
years (1906–2005). Awarming of about 0.2 ◦C is predicted for each
of the next two decades. This report also indicates that heat waves
will continue to become more frequent with a confidence level of
at least 90% and future tropical cyclones (typhoons and hurricanes)
will become more intense with a confidence level of at least 66%.
Based on the increasing number of natural catastrophes (CATs), the
demand of the CAT risk instruments for the (re)insurance company
with high CAT risk exposure is predicted to rise in the future.
The types of CAT risk instruments include hedging instruments

(such as CAT swaps and CAT bonds) and financing instruments
(such as contingent surplus notes issues (CSNs) and catastrophe
equity put options (CatEPut)). For the overall financing instrument
markets, a number of insurance companies have issued contingent
capital for a total of US$8 billion approximately from the
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mid-1990s. Among the contingent capital markets, there are
some CSNs, such as Hannover Reinsurance Company (US$85
million) in 1994, Nationwide Mutual Insurance Company (US$400
million) in 1995, and Arkwright Company (US$100 million) in
1996. The first CatEPut was issued on behalf of RLI Corporation
in 1996, giving RLI the right to issue up to $50 million of
cumulative preferred shares. Other CatEPut issues include Horace
Mann Educators Company ($100 million) in 1997 and La Salle
Reinsurance Company ($100 million) in 1997. Since unanticipated
catastrophic events increase and change with time, the contingent
capital market is expected to grow rapidly, and thus it is absolutely
crucial to price contingent capital for insurance companies.
However, the previous studies consider little about the valuation
of contingent capital, particularly for the valuation of CSNs. In this
paper, we provide general formulas for contingent capital, which
can derive the formulas for CSNs and CatEPuts.
A Pure Poisson process is used to describe the arrival rate of

catastrophic events and is applied for the pricing of CAT insurance
products (e.g. Cummins and Geman, 1995; Louberge et al., 1999;
Lee and Yu, 2002; Cox et al., 2004; Jaimungal and Wang, 2006).
Cox et al. (2004) use a pure Poisson process tomodel the aggregate
CAT loss of an insurance company, and derive the pricing formula
of CatEPuts with two important assumptions. One is the constant
arrival rates of catastrophic events; the other is the constant
impact on the market price of the insurance company’s stock in
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Fig. 1. Adjusted number of natural CATs in the United States from 1950 to
2004. Note that the dotted line represents an increasing exponential trend in
the frequency of catastrophic events. The solid line denotes the average constant
frequency of catastrophic events.

catastrophic events. Jaimungal and Wang (2006) use a compound
Poisson process to describe the dynamic losses accurately, but
maintain the assumption of the constant arrival rate of a CAT.
Fig. 1 shows the annual number of catastrophic events adjusted
by Commerce Census FixedWeighted Construction Cost index and
population in the United States from 1950 to 2004. Rather than the
average constant frequency of catastrophic events (solid line), this
figure seems to show an increasing exponential trend (dotted line)
in the frequency of catastrophic events.1
The objectives and main contributions of this study are as

follows: (1) to be consistent with the upward exponential trend
for Fig. 1, the doubly stochastic Poisson process with lognormal
intensity is used to capture the uptrend and randomness.
(2) Jaimungal and Wang (2006) denote a constant percentage to
represent the drop in the stock price per unit of the loss, and
this implies that each specific loss has the same effect on the
stock price. However, in practice, different specific losses should
have different impacts on the drop in the underlying asset price.
This paper generalizes the assumption of Jaimungal and Wang
(2006) to define the general loss function, expressing that different
specific loss have different impacts on the drop in the underlying
asset price. Hence, our closed-form expression can reduce to the
pricing formulas of Cox et al. (2004) and Jaimungal and Wang
(2006), where the pure Poisson process drives the arrival rate of
catastrophic events and the general loss function simplifies to a
product of a constant rate and the specific loss. Furthermore, in
terms of several specific cases for the general loss function, the
pricing formulas of contingent capital are also proposed. (3) We
use the data of PCS loss index and the annual number of natural
catastrophic events during 1950 to 2004 to test the quality of
the fitting under the doubly stochastic Poisson process and the
pure Poisson process. The result shows that the doubly stochastic
Poisson process is fitter than the pure Poisson process when
pricing the CatEPut.Moreover, a numerical example shows that the
CatEPut price under the doubly stochastic Poisson process is larger
than that under the pure Poisson process when the instantaneous
growth rate of catastrophic intensity rises. It also reveals that,
based on the numerical example, arrival rate of catastrophic events
dominates the instantaneous growth rate of catastrophic intensity
and the mean and standard deviations of the loss in determining
the CatEPut prices under the doubly stochastic Poisson process.
The remainder of the paper is organized as follows. Section 2

illustrates the contract and the model assumptions. Section 3
shows the equivalentmartingale probabilitymeasures and derives
the pricing formula for contingent capital. Section 4 presents
empirical and numerical analyses. Section 5 summarizes the article

1 The data were obtained by Insurance Service Office. The term ‘‘natural CAT’’
includes hurricanes, storms, floods, waves, and earthquakes. A ‘‘natural CAT’’ event
denotes a natural disaster that affects many insurers, for which claims are expected
to reach a certain dollar threshold. We also find that specific natural catastrophic
events, such as wind and thunderstorm, hurricanes and waves events, display a
trend of increasing CAT event frequency.
and presents the conclusions. For ease of exposition, most proofs
are in an Appendix.

2. The contract and model

2.1. The concept of contingent capital

Contingent capital is an agreement entered into before any
natural CAT losses occur, enabling the insurance company to raise
cash by selling stock or issuing debt at prearranged terms following
a natural CAT loss that exceeds a certain threshold. The insurance
company pays a capital commitment fee (premium) to the party
that agrees in advance to purchase debt or equity following a loss.
Using contingent capital can enhance financial flexibility of the
insurance company. With a contingent capital arrangement, the
insurance company does not transfer its risk of loss to investors.
Instead, after a specifically pre-defined natural CAT occurs, the
company receives a capital injection in the form of debt or equity
to help it pay the loss. Because the terms of the capital injection
are pre-agreed, the insurance company generally receives more
favorable terms than it would receive if it were to raise capital after
a large CAT loss, when it is likely to be in a weakened financial
condition. Contingent capital can be structured in various forms,
but in general, two broad classes are considered: (1) the CSNs and
(2) the CatEPuts.
Considering the issuers’ perspective with the theory of firm’s

capital structure and financing decisions, the ‘‘pecking order
theory’’ developed by Myers (1984) states that companies
prioritize financing sources from internal funds, debt to equity.
Furthermore, the ‘‘information theory’’ developed by Leland and
Pyle (1977) and Myers and Majluf (1984) regards a company’s
issuing stocks as a sign of the coming of bad news, while
debts, good news. According to these theories, the insurance
company may prefer issuing CSNs to issuing CatEPuts. CSNs
are made available to an insurer through a CSN trust, so the
insurer issuing CSNs may incur higher transaction costs, including
the commitment fees (premium), the expense of setting up an
investment trust, and risk-evaluating cost than those issuing
CatEPuts. In light of Generally Accepted Accounting Principles
(GAAP), CSNs would appear on the insurer’s balance sheet as
the liability, whereas GAAP considers CatEPuts as the equity.
The funding received by exercising the CatEPuts can increase the
capital adequacy ratio of the insurance company. Nevertheless,
exercising CatEPuts after a CAT may dilute the value of an
insurer’s outstanding shares. Investors can earn higher returns by
investing in CSNs trusts than those by investing directly in Treasury
securities. CatEPuts can provide investorswith an equity interest in
the insurer in exchange for the capital they provide. As we know,
debts are senior to common stock because they have prior claim
to the issuer’s assets in the event of bankruptcy. Therefore, rather
than purchasing CatEPuts, the investors would tend to purchase
CSNs.

2.2. Structure of contingent capital

In light to the structure of contingent capital, the insurance
company issues surplus notes, common, or preferred shares at a
predetermined price, much like a regular put option. However, this
right is exercisable only in the event when the accumulated losses,
which cause financial distress of the purchaser of protection,
exceed a critical coverage limit during the life time of the option.
Hence, such a contract can be viewed as a special form of a double
trigger put option, where the payoff for the option is a function of
underlying asset price and level of insured losses. If no triggering
catastrophic event occurs, then the insurance company has no
need for additional capital and the facility remains unused. With
C(T ) as the payoff of contingent capital at maturity time T , it is
written mathematically as:
C(T ) = 1{L(T )>L+L(t0)}(K − V (T ))1{V (T )<K}, (1)
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where V (T ) denotes the underlying asset price and L(T ) − L(t0)
denotes the total loss-percentage rate process over the time period
[t0, T )making the underlying asset price to drop. L is the specified
limit of losses, abovewhich the contingent capital becomes in-the-
money; while K represents the strike price, at which the issuer is
obligated to purchase unit shares in the event that losses exceed L.
In the case where V (T ) denotes the stock price, Eq. (1) represents
the payoff of the CatEPut; in the case where V (T ) denotes the
surplus notes price, Eq. (1) becomes the payoff of the CNS, where
K typically expresses the Treasury note.

2.3. Model

Under the original probability measure P , our modeling as-
sumption is supplied by the following dynamics of the underlying
assetV (t), the short interest rate r(t), and the total loss-percentage
rate process causing the drop in underlying asset prices L(t):

V (t) = V (0) exp
{∫ t

0

(
µ(u)−

1
2
σ 2v

)
du+ σvWv(t)− L(t)

}
, (2)

L(t) =
N(t)∑
n=1

h(Yn, τn), (3)

dr(t) = k̃[θ̃ − r(t)]dt + σrdWr(t),
where the drift µ(u) is the instantaneous return of the underlying
asset price at time u. k̃ and θ̃ are the respective constant reversion
rate and long-term mean in the drift coefficient of the Vasicek
dynamics of the interest rate; σv represents the instantaneous
volatility of returns of the underlying asset; σr expresses the
instantaneous volatility of short-term interest rate. TermWv(t) is
the Brownian motion of the returns of the underlying asset price
and it can be used to capture the unanticipated instantaneous
change of the underlying asset price, which is the reflection
of ordinary (non-catastrophic) events. However, the Brownian
motion of the returns of the underlying asset price may not
work so well for loss amounts in excess of CAT threshold. Wr(t)
is the Brownian motion of the short interest rate that satisfies
Cov(Wv(t), Wr(t)) = ρt , where ρ is the correlation coefficient
of the returns of the underlying asset price and the short interest
rate.
h(Yn, τn) represents the loss function when a specific CAT loss

Yn occurs at time τn, with n ≥ 1, which captures the nth loss
ratio that influences the downward jumps in the underlying asset
price. Thus, it expresses that different specific losses have different
impact on the drop in underlying asset price. L(t) denotes the total
loss-percentage rate process that affects the downward underlying
asset price, and the range in [0,∞]. N(t) denotes the CAT number
in [0, t]. For example, Jaimungal and Wang (2006) assume that
V (T ) is the stock price, N(t) stands for a pure Poisson process,
and h(Yn, τn) = αYn, where α ≥ 0 represents the constant rate
drops in the stock price per unit of loss. In other words, per unit
of each specific loss, Yn ≥ 0, n ≥ 1, causes the same effect, α, on
the stock price. We construct our model on a filtered probability
space (Ω, P, F) generated by these three processes; i.e., V (t), r(t)
and L(t). The filtration F = (Ft)t≥0 satisfies Ft = FWt ∨ F

L
t for

any time t , where FWt = σ((Wv(u),Wr(u)), 0 ≤ u ≤ t), and
F Lt = σ(L(u), 0 ≤ u ≤ t). Hence, FWT ∨ F

L
T contains complete

information on Brownian motions of the returns of the underlying
asset price, the short interest rate, and the total loss-percentage
rate process. The interest rate process and the loss process are
assumed to be stochastically independent.

2.4. Doubly stochastic Poisson process

A doubly stochastic Poisson process provides flexibility by
letting the intensity not only depend on time but also allowing
it to be a stochastic process. Hence, the doubly stochastic Poisson
process can be viewed as a two-step randomization procedure. A
process λd(t) is used to generate another processΦ(t) by acting as
its arrival rate. Accordingly, we have:
P(Φ(t) = m|λd(u), 0 ≤ u ≤ t)

=

(∫ t
0 λd(u)du

)m
m!

exp
[
−

∫ t

0
λd(u)du

]
P-a.s.

The equation above means that Φ(t) is P-almost surely equal to
the distribution of a Poisson distribution given arrival rates of
catastrophic events. Then the total loss-percentage rate process
causing the drop in underlying asset prices,

L(t) =
Φ(t)∑
n=1

h(Yn),

is referred to as the compound doubly stochastic Poisson process.
Φ(t) stands for the doubly stochastic Poisson process with the
arrival rate of catastrophic events λd(t). And Yn, where n =
1, 2, . . . are identical incremental distribution random variables,
also independent fromΦ(t).
Due to global warming, the climate change over time will

become more serious, and unanticipated catastrophic events also
increase over time. A homogeneous Poisson process or a non-
homogeneous Poisson process does not adequately explain this
phenomenon of CATs. Nevertheless, using of the doubly stochastic
Poisson process can represent the phenomenon that the arrival
rate of catastrophic events is random and is associated with time.
Referring to Fig. 1, the catastrophic event frequency seems to have
a trend of exponential increase over time. Thus, we assume that
the number of catastrophic events stands for the doubly stochastic
Poisson process with lognormal intensity, and the process of the
stochastic intensity could be expressed as

λd(t) = λd(0) exp
[
µλt −

1
2
σ 2λ t + σλWλ(t)

]
,

where µλ and σλ represent the instantaneous change rate and the
volatilities of change rate of the arrival rate of catastrophic events,
respectively. Wλ(t) is the Brownian motion of the change rate of
the arrival rate of catastrophic events. The Brownian motion for
the arrival rate is assumed to be independent of the Brownian
motion for the underlying asset price and the Brownian motion of
the interest rate.

3. Pricing contingent capital

This section illustrates the martingale probability measure
when the arrival rate of catastrophic events follows the doubly
stochastic Poisson process. There are several choices of equivalent
martingale probability measures to price contingent capital when
the market is incomplete. The popular approaches for the risk
neutral martingale measures are the Merton (1976) measure and
the Esscher transform adopted from Gerber and Shiu (1994). The
Mertonmeasure, introduced byCox et al. (2004) and Jaimungal and
Wang (2006), assumes that the CAT risk presents non-systematic
and diversifiable risk. On the other hand, the Esscher transform
allows for the CAT risk, regarding which as systematic and non-
diversifiable. This paper is not to decide which measure is more
appropriate. Rather, we use the Merton measure to define the
Radon–Nikodym derivative in incomplete market situations such
that contingent capital formula is achieved.

3.1. Equivalent martingale probability measures

Here we compute contingent capital under a risk neutral
probabilitymeasure. If a liquidmarket for contingent capital exists,
then standard derivative pricing theory implies that an equivalent
probability measure Q exists with respect to the real probability
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measure P , where the equivalent probability measure is not
necessarily unique, so that underlying asset prices discounted at
the risk-free rate are Q martingales denoted as the following.

Lemma 1. Let β1(t) denote the Radon–Nikodym process for the
doubly stochastic Poisson process as follows:

logβ1(t) = −
1
2

∫ t

0
[η21(u, r(u))+ η

2
2(u, r(u))]du

+

∫ t

0

[
η1(u, r(u))−

ρ√
1− ρ2

η2(u, r(u))

]
dWr(u)

+

∫ t

0

η2(u, r(u))√
1− ρ2

dWv(u)+

[
Nc (t)∑
n=1

logϕ(Yn, τn)

+

∫ t

0

∫
∞

0
[1− ϕ(y, u)]λd(u)f (y)dydu

]
,

where
∫ t
0 η

2
i (u, r(u))du < ∞, i = 1, 2, and

∫ t
0

∫
∞

0 ϕ(y, u)
λd(u)f (y)dydu < ∞, there exists a probability measure Q for
dQ = β1(t)dP such that the new Wiener process of the interest
rate WQr (t) and the underlying asset price W

Q
v (t) under the risk

neutral probability measure are defined by WQr (t) = Wr(t) −∫ t
0 η1(u, r(u))du, W

Q
v (t) = Wv(t) −

∫ t
0 η2(u, r(u))du, the new

arrival rate under the doubly stochastic Poisson process at time u, u ∈
[0, t] becomes λQd (u) = ϕ(y, u)λd(u)f (y)dy.

η1(u, r(u)) and η2(u, r(u)) may be interpreted as the market
prices of risk associated with the component of the Brownian
motion for the interest rate and underlying asset price at time u.
ϕ(y, u) denotes the CAT risk premium connected with the arrival
of loss y at time u. 2 The processes ηi(u, r(u)), i = 1, 2 and ϕ(y, u)
need to be determinedwhen themartingale condition for discount
underlying asset price is satisfied and the martingale condition
under the doubly stochastic Poisson process can be expressed as:

µ(u)− r(u)+ σvρη1(u, r(u))+ σv
√
1− ρ2η2(u, r(u)),

−

∫
∞

0
[1− e−h(y,u)]ϕ(y, t)λd(u)f (y)dy = 0, ∀u.

Note that as the CAT risk presents non-systematic and
diversifiable risk, and then the Merton measure is used. It follows
that the risk premium for the CAT risk is ϕ(y, u) = 1, meaning
that the investors receive a zero premium for the CAT risk and
the catastrophic arrival rate and distribution are unaffected by the
measure change. Furthermore, the market prices of risk associated
with the component of the Brownian motion for the interest rate
and the underlying asset price are determined respectively as:

η1(u, r(u)) =
1
σr
[kθ − k̃θ̃ + (k̃− k)r(u)],

η2(u, r(u)) = −
[µ(u)− r(u)]

σv
√
1− ρ2

−
ρ√
1− ρ2

η1(u, r(u)).

The Esscher transform is adapted when the CAT risks are sys-
tematic and are non-diversifiable risks, thus ϕ(y, u) = exp(wy),
is the risk premium of the CAT risk and the new catastrophic ar-
rival rate is λQd (dy, u) = exp(wy)λd(dy, u), u ∈ [0, t], where w is
a real number.

2 Bjork et al. (1997) and Glasserman and Kou (2003) refer to the Radon–Nikodym
process of the marked point process which ϕ(y, u) is the jump risk premium of the
forward rate process at time u.
Then, with the Merton measure, the underlying asset price and
interest rate process under Q can be written as:

V (t) = V (0) exp
{∫ t

0

(
r(u)−

1
2
σ 2v

)
du+ σvWQv (t)

−

[
L(t)−

∫ t

0

∫
∞

0
(1− e−h(y,u))λQd (u)f (y)dydu

]}
, (4)

dr(t) = k[θ − r(t)]dt + σrdWQr (t),

where Cov(WQv (t),W
Q
r (t)) = ρt .

In the presence of stochastic interest rates, a similar factoriza-
tion can be obtained by performing a measure change to the for-
ward neutral measure Q T . This measure is defined by choosing the
T -maturity zero coupon bond as the numeraire asset. We assume
that the interest rate follows Vasicek model, thus the price of the
T -maturity zero coupon bond, B(t, T ), in the Vasicekmodel is given
by:

B(t, T ) = exp(A(t, T )− U(t, T )r(t)),

where

A(t, T ) =
(
θ −

σ 2r

2k2

)
(B(t, T )− (T − t))−

σ 2r

4k
B2(t, T ),

U(t, T ) =
1
k
[1− exp(−k(T − t))],

and therefore the bond price process satisfies

dB(t, T )
B(t, T )

= r(t)dt − σrU(t, T )dWQr (t).

Let β2(t) denote the Radon–Nikodym process as follows:

β2(t) =
(
dQ T

dQ

)
t
= exp

{
−
1
2

∫ t

0
σ 2r U

2(u, T )du

−

∫ t

0
σrU(u, T )dWQr (u)

}
,

where β2(0) = 1, and suppose EQ [β2(t)] = 1 for all t . There exists
a forward neutral probability measure Q T with dQ T = β2(t)dQ so
that, under Q T , Girsanov’s theorem of W̃v(t) and W̃r(t) are defined
by

W̃v(t) = WQv (t)+
∫ t

0
ρσrU(u, T )du,

W̃r(t) = WQr (t)+
∫ t

0
σrU(u, T )du,

and

d(W̃v(t), W̃r(t)) = ρdt.

Under Q T , the forward price of the underlying asset under the
doubly stochastic Poisson process is calculated as:

V (T )
B(T , T )

=
V (t)
B(t, T )

exp
[
−
1
2

∫ T

t
σ̃ 2(u, T )du+

∫ T

t
σvdW̃v(u)

+

∫ T

t
σrB(u, T )dW̃r(u)− ((L(T )− L(t))

−

∫ T

t

∫
∞

0
(1− e−h(y,u))λQd (u)f (y)dydu)

]
, (5)

where σ̃ 2(u, T ) = σ 2r B
2(u, t)+ 2ρσvσrB(u, t)+ σ 2v .
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Pd(t; t0) = EQ
T
L

[
1
{L(T )−L(t)>L̃}

{
KB(t, T )N(−dd2)− V (t) exp(−[L(T )

− L(t)−
∫ T

t

∫
∞

0
(1− e−h(y,u))λQd (u)f (y)dydu])N(−d

d
1)

}
|F Lt

]
,

where

dd1,2 =
ln(V (t)/KB(t, T ))± 1

2 σ̃
2(t, T )− (L(T )− L(t)−

∫ T
t

∫
∞

0 (1− e
−h(y,u))λ

Q
d (u)f (y)dydu)

σ̃ (t, T )
,

σ̃ 2(t, T ) ≡
∫ T

t
σ̃ 2(u, T )du = σ 2v (T − t)+

2kρσrσv + σ 2r
k2

[(T − t)− U(t, T )] −
σ 2r

2k
U2(t, T ).

Box I.
3.2. Valuation of contingent capital

Once the equivalent martingale probability measure is decided,
contingent capital can be valued by the discounted expectation of
its various payoffs in a risk neutral world. Let P(t; t0) represent the
value of the option at time t , which was signed at time t0 < t and
matures at time T , we have

P(t; t0) = EQ
T
[B(t, T )1{L(T )>L+L(t0)}(K − V (T ))1{V (T )<K}].

Based on the forward price of the underlying asset of Eq. (5), the
value of contingent capital, Pd(t; t0) at time t , which was signed
at time t0 < t , is given as in Box I. N(·) denotes the cumulative
distribution function of a standard normal random variable and
L̃ = L+ L(t0)− L(t).
Equation in Box I is viewed as the expectation of put options

conditional on that the total loss-percentage rate process exceeds
specified losses under two random variables: the intensity of
catastrophic events and the loss size. The detailed proof is shown
in Appendix A.

Corollary 3.1. Suppose h(Yn) = αYn, α ≥ 0. Then equation in Box I
could boil down to the following pricing formula:

Pds(t; t0) =
∫
∞

0

∫
∞

L̃

∞∑
m=1

e−λ̄(T−t)(λ̄(T − t))m

m!
f mL (x)

× [KB(t, T )N(−dds2 )− V (t) exp(−αx+ λ̄(T − t)κ)

×N(−dds1 )]h(λ̄|λ
Q
d (t))dxdλ̄, (6)

where λ̄ expresses the mean arrival rate of catastrophic events from

time t to maturity T defined by λ̄ =
∫ T
t λ
Q
d (u)du
T−t .h(λ̄|λQd (t)) represents

the conditional distribution density function of λ̄ given λQd (t), and
f mL (x) denotes the m-fold loss distribution density function. κ =∫
∞

0 (1− e
−αY )f (y)dy, dds1,2 =

ln(V (t)/KB(t,T ))± 12 σ̃
2(t,T )−αx+λ̄(T−t)κ

σ̃ (t,T ) .

The detailed proof is shown in Appendix B. Eq. (6) indicates that
the value of contingent capital under the doubly stochastic Poisson
process is regarded as the double integration of the distribution
of arrival rate, and the distribution of loss size for the put option
with the limitation of the total loss-percentage rate process of the
insured exceeds specified losses. If the Esscher transform allowing
for the systematic and non-diversifiable CAT risk is used, it follows
that ϕ(y, u) = exp(−wαy), such that the doubly stochastic
Poisson process has the new arrival rate exp(−wαy)λd(u)f (y)dy,
wherew is a real number.

Remark 3.2. For α → ∞, which implies that the impact of the
level of CAT losses on drops in the stock price is so huge that the
insurance company goes bankruptcy (the stock price goes down
to zero), thus Corollary 3.1 could reduce to the following pricing
formula:

Pdd(t; t0) =
∫
∞

0

∫
∞

L̃

∞∑
m=1

e−λ̄(T−t)(λ̄(T − t))m

m!
f mL (x)[KB(t, T )

− V (t) exp(λ̄(T − t))]h(λ̄|λQd (t))dxdλ̄. (7)

Remark 3.3. Let V (T ) denotes the stock price and let µλ = σλ =
0, the stochastic arrival rate under the doubly stochastic Poisson
process reduces to the constant arrival rate of the pure Poisson
process. In this case, the result of Corollary 3.1 becomes the pricing
formula of Jaimungal andWang (2006). Additionally, ifµλ = σλ =
0, Y = 1, and the interest rate is deterministic, then the result of
Corollary 3.1 reduces to a result similar to Cox et al. (2004).

Corollary 3.4. Assume h(Yn) = ln Yn and the loss Yn is drawn from
the lognormal distribution3 with mean µy and variance σ 2y (Yn ∼
logN(µy, σ 2y )). And let the volatility of change rate of the arrival rate
of catastrophic events σλ = 0, then equation in Box I could reduce to
the following pricing formula of CatEPut, which the underlying asset
price V (t) is the stock price, given by

PDS(t; t0) =
∞∑
m=1

e−λ̃
Q
d (T )(1−κ̃)(λ̃

Q
d (T )(1− κ̃))

m

m!
{KB(t, T )

× exp(−λ̃Qd (T )κ̃(T − t)− lnm(1− κ̃))

×N2(−f1, g1, ρ)− V (t)N2(−f1, g2, ρ)} (8)

where

κ̃ =

∫
∞

0
(1− e− ln Y )f (y)dy,

λ̃
Q
d (T ) =

∫ T

t
λ
Q
d (t)e

µλ(u−t)du =
λ
Q
d (t)
µλ
[eµλ(T−t) − 1],

f1 =
L̃−mµy
√
mσy

,

g1 =
ln(KB(t, T )/V (t))+ 1

2 σ̃
2(t, T )+mµy − λ̃

Q
d (T )κ̃√

σ̃ 2(t, T )+mσ 2y
,

ρ =
−mσ 2y

√
mσy

√
σ̃ 2(t, T )+mσ 2y

,

3 Most previous articles, such as Louberge et al. (1999) and Lee and Yu (2002),
assume that CAT loss follows a mutually independent, identical, and lognormal
distribution. In their empirical studies, Cummins et al. (1999) and Burnecki et al.
(2000) show empirical results that the lognormal distribution seems to give a better
fit for PCS indices.
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Fig. 2. Adjusted PCS loss for catastrophic events in the United States during 1950
to 2004.

g2 =
ln(KB(t, T )/V (t))− 1

2 σ̃
2(t, T )+m(µy − σ 2y )− λ̃

Q
d (T )κ̃√

σ̃ 2(t, T )+mσ 2y
,

and N2(·) is the cumulative distribution function of bivariate normal
random variables with correlation coefficient ρ .

Remark 3.5. Suppose Y → ∞, which implies that the level
of CAT losses is so high that the insurance company might not
have sufficient capital to cover and even goes bankruptcy (the
stock price goes down to zero). For example, Hurricane Andrew
hit Florida caused more than $25 billion losses in 1992 and led
11 insurance companies to go bankrupt. In view of such a case,
Corollary 3.4 could reduce to Eq. (8).

4. Empirical experiments and numerical analyses

4.1. Data description

In this section, we consider that an issuer company issues a
CatEPut contract of which the loss is linked to the Property Claim
Services (PCS) loss in the United States.4 The data adapted comes
from the Insurance Service Office. This section focuses on the
national natural losses, including all natural catastrophic events
in the United States. Prior to estimating the parameters of the
frequency and severity distributions, two adjustments affecting
the frequency and severity of CATs are made to the PCS data. We
follow Cummins et al. (1999) to make changes in construction
costs by using the United States Department of Commerce Census
Fixed Weighted Construction Cost Index and population obtained
from the United States Census Bureau. The adjusted PCS loss for
catastrophic events during 1950 to 2004 is displayed in Fig. 2.
After adjusting for inflation and population, we estimate the

parameters of lognormal distribution for the adjusted PCS loss
severity, and then the mean µy and the standard deviation σy are
estimated to be 0.06 and 0.69, i.e., Yn ∼ logN(0.06, 0.48). The pa-
rameters of lognormal stochastic process for the frequency of the
catastrophic events are also estimated. Given σλ = 0, the instanta-
neous change rate of the arrival rate of catastrophic events µλ and
the initial arrival rate of catastrophic events λQd (0) are estimated
to be 0.05 and 2.22, i.e., λQd (t) = 2.22 exp[0.05(t − 1)], t = 1,
2, . . . 55. We calculate the average arrival rate overall years to be
14.35 and take it as the arrival rate of the pure Poisson process to
reflect the frequencies of all catastrophic events per year.

4.2. Global fit error measurements

This subsection considers the quality of the fitting under the
doubly stochastic Poisson process and the pure Poisson process
when using Eq. (8). In order to compute the value of CatEPut, we
give the parametric values: stock price of the insurance company,
V = 25; exercise price, K = 80; trigger level of losses ratio,
L = 0.1; parameters of the interest rate model are: r(0) = 2%,
k = 0.3, θ = 5%, ρ = −0.1, σr = 15%; stock volatility, σv = 0.2;

4 The PCS has catalogued all CAT losses on national, regional, and state basis in the
United States. The PCS periodically changes the minimum criterion for catastrophe.
Table 1
Global fit error measurements.

DSPP PP

APE 0.310 0.761
AAE 8.364 16.615
ARPE 0.052 0.311
RMSE 11.747 19.721

Table 2
The value of CatEPut under the doubly stochastic Poisson process.

σy µy (λ
Q
d , µλ)

(10, 0) (10, 0.1) (20, 0) (20, 0.1)

0.4 0.05 19.859 20.489 35.561 36.741
0.1 24.482 25.772 40.616 42.026

0.8 0.05 24.851 26.112 42.419 43.729
0.1 31.142 33.056 51.274 53.964

option term, T = 4. The infinite summation over m would be
truncated at level m = 250 so that the respective cumulative
Poisson probabilities are very close to 1. The contract parameters
and the chosen model parameters follow the assumptions of
Jaimungal and Wang (2006). The data of annual number of all
natural catastrophic events in the United States from 1950 to
2004 is used to obtain the real CatEPut value (PR). Furthermore,
the average arrival rate of pure Poisson process (14.35) and the
arrival rate of the doubly stochastic Poisson process (λQd (t) =
2.22 exp[0.05(t − 1)]), t = 1, 2, . . . 55, are used to evaluate
the theoretical CatEPut value (PT ). For comparison and to judge
the goodness (advantage) under the doubly stochastic Poisson
process and the pure Poisson process, we compute four global
measurements of fit, which are: average percentage error (APE),
average absolute error (AAE), the average relative percentage error
(ARPE) and relative mean square error (RMSE):

APE =
1
E(PR)

N∑
n=1

|PR − PT |
N

, AAE =
N∑
n=1

|PR − PT |
N

,

ARPE =
1
N

N∑
n=1

|PR − PT |
PR

, RMSE =

√√√√ N∑
n=1

(PR − PT )2

N
,

where E(PR) is themean of the real CatEPut value andN is the total
number of observations.
Table 1 gives an overview of these measurements to show that

the four measurements of fit under the doubly stochastic Poisson
process are all smaller than those under the pure Poisson process.
This implies that the doubly stochastic Poissonprocess is fitter than
the pure Poisson process to model the arrival rate of catastrophic
events when pricing the CatEPut. In particular, under the doubly
stochastic Poisson process, the largest fit improvement is 8.251
when calculating the AAE. Hence the pricing formula we provide
could be more accurate than that of Jaimungal and Wang (2006).
The parameters of base valuation are V = 25, K = 80, L = 0.1,

r(0) = 2%, k = 0.3, θ = 5%, ρ = −0.1, σv = 0.2, T = 4,m = 250,
µy = 0.06, σy = 0.69, N = 55. The arrival rate of the PP, λ =
14.35. The arrival rate of the DSPP is (λQd (t) = 2.22 exp[0.05(t −
1)]), t = 1, 2, . . . 55. DSPP and PP indicate the doubly stochastic
Poisson process and the pure Poisson process, respectively.

4.3. Numerical analysis

This section considers a numerical analysis for the CatEPut price
under various changes of parameters using the doubly stochastic
Poisson process. Table 2 investigates the value of CatEPut under
the doubly stochastic Poisson process with different parameter
changes. When (λQd , µλ) = (10, 0) and (20, 0), it implies that
the arrival rate of catastrophic events is constant in each year and
equal to 10 and 20, respectively. Hence, they can represent the
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EQL{1{L(T )−L(t)>L+L(t0)−L(t)}KB(t, T )E
Q T
W̃

×{1
{
V (t)
B(t,T ) exp(−

1
2
∫ t
0 σ̃
2(s,T )ds+

∫ t
0 σvdW̃v(s)+

∫ t
0 σrB(s,T )dW̃r (s)−[(L(T )−L(t))−

∫ T
t
∫
∞

0 (1−e−h(y,s))λQd (u)f (y)dydu]<K)}
|F LT ∨ F

W̃
t }|Ft}

= EQL{1
{L(T )−L(t)>L̃}KB(t, T )× E

Q T
W̃ {1

{W̃<−[ln( V (t)KB(t,T ) )−
1
2 σ̃
2(t,T )−[(L(T )−L(t))−

∫ T
t
∫
∞

0 (1−e−h(y,s))λQd (u)f (y)dydu]/σ̃ (t,T )]}
|F LT ∨ F

W̃
t }|Ft}

= EQL{[1
{L(T )−L(t)>L̃}KB(t, T )N(−d

d
2)]|Ft}

where
L̃ = L+ L(t0)− L(t),

dd2 =
ln( V (t)

KB(t,T ) )−
1
2 σ̃
2(t, T )− [(L(T )− L(t))−

∫ T
t

∫
∞

0 (1− e
−h(y,s))λ

Q
d (u)f (y)dydu]

σ̃ (t, T )
.

Box II.
cases under the pure Poisson process. Owing to the increasing
catastrophic events, one can project that the instantaneous growth
rate of catastrophic intensityµλ is positive instead of zero.We find
that the CatEPut price under the doubly stochastic Poisson process
is larger than that under the pure Poisson process in response to
positiveµλ. Moreover, when arrival rate of catastrophic events λ

Q
d

increases, it increases the volatility of CatEPut and further increases
the value of CatEPut. This table also reveals that both higher mean
and standard deviations of the CAT loss result in higher CatEPut
price. As well, it shows that arrival rate of catastrophic events
dominates the instantaneous growth rate of catastrophic intensity,
the mean of the CAT loss, and standard deviation of the CAT loss
in determining the CatEPut prices under the doubly stochastic
Poisson process. The parameters of base valuation are V = 25,
K = 80, L = 0.1, r(0) = 2%, k = 0.3, θ = 5%, ρ = −0.1, σv = 0.2,
T = 4,m = 250.

5. Conclusions

The IPCC Fourth Assessment Report published in 2007 shows
that, due to global warming, the changing of the earth’s climate
in the future would be more serious, with more unanticipated
catastrophic events. In this circumstance, the previous articles’
assumption that catastrophic events occur in terms of the pure
Poisson process seems inappropriate. This paper proposes the
doubly stochastic Poisson process to well grasp the arrival process
for catastrophic events. In addition, we generalize the assumption
of Jaimungal and Wang (2006) to define the general loss function,
presenting that different specific losses have different impacts on
the drop in stock price. Most previous articles focus on the pricing
of hedging instruments rather than on contingent capital. In our
paper, the general pricing formula for contingent capital is derived,
and our pricing formula could reduce to the results of Cox et al.
(2004) or Jaimungal and Wang (2006) when the underlying asset
is stock price.
Based on the data fromPCS loss index and the annual number of

natural catastrophic events during 1950 to 2004, the experiment
result shows that the doubly stochastic Poisson process is fitter
than the pure Poisson processwhen pricing the CatEPut. Numerical
example shows that the CatEPut price under the doubly stochastic
Poisson process is larger than that under the pure Poisson process
as the instantaneous growth rate of catastrophic intensity rises.
Furthermore, with a higher arrival rate, mean of the loss, and
standard deviation of the loss, there is a higher CatEPut price. It
also shows that, based on the numerical example, arrival rate of
catastrophic events dominates the instantaneous growth rate of
catastrophic intensity, themean of the loss, and standard deviation
of the CAT loss in determining the CatEPut prices under the doubly
stochastic Poisson process.
Appendix A

The proof of the formula of equation in Box I is sketched. Let
Pd(t; t0) represent the value of the option at time t , which was
signed at time t0 < t andmatures at time T , we have the following
equation:

Pd(t; t0) = EQ
T
[1{L(T )>L+L(t0)}B(t, T )(K − V (T ))1{V (T )<K}|Ft ] (A.1)

where Q T = (Q TL ,Q
T
W̃
), and Q TL = QL. Using the law of expected

iteration, Eq. (8) can be rewritten as:

EQL [1{L(T )>L+L(t0)}E
Q T
W̃ (KB(t, T )1{V (T )<K}|F LT ∨ F

W̃
t )|Ft ]

−EQL [1{L(T )>L+L(t0)}E
Q T
W̃ (V (T )B(t, T )1{V (T )<K}|F LT ∨ F

W̃
t )|Ft ]

where F LT ∨ F
W̃
t contains complete information on Brownian

motions of the returns of the underlying asset price, the short inter-
est rate, and the total loss-percentage rate process under the for-
ward probability measure. EQL denotes the expectation under the
risk neutral probability measure Q conditional on the information
of L(t), and EQ

T
W̃ denotes the expectation under the forward prob-

ability measure Q T conditional on the information of W̃ (t).
Firstly, the equation

EQL [1{L(T )>L+L(t0)}E
Q T
W̃ (KB(t, T )1{V (T )<K}|F LT ∨ F

W̃
t )|Ft ]

is computed. Given the information of F LT ∨ F
W̃
t , we have the

equations as in Box II.
Similarly, using the same computing procedures, we can also

obtain that

EQL [1{L(T )>L+L(t0)}E
QT
W̃ (V (T )B(t, T )1{V (T )<K}|F LT ∨ F

W̃
t )|Ft ]

= EQL
[
1
{L(T )−L(t)>L̃}E

QT
W̃ (V (t) exp

{
−
1
2

∫ t

0
σ̃ 2(s, T )ds

+

∫ t

0
σvdW̃v(s)+

∫ t

0
σrB(s, T )dW̃r (s)−

[
(L(T )− L(t))

−

∫ T

t

∫
∞

0
(1− e−h(y,s))λQd (u)f (y)dydu

]}
1{V (T )<K}|F LT ∨ Ft

W̃ )|Ft

]
.

(A.2)

Denote the Radon–Nikodym process for Brownianmotion is given
by the following formula:(
dR
dQ T
W̃

)
T−t

= exp
{∫ T

t
σv(s, T )dW̃v(s)

+

∫ T

t
σr(s, T )B(s, T )dW̃r(s)−

1
2

∫ T

t
σ̃ 2(s, T )ds

}
.

Hence, Eq. (A.2) can be rewritten as in Box III.
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EQL
{
1
{L(T )−L(t)>L̃}E

Q T
W̃

(
V (t) exp

(
−

[
(L(T )− L(t))−

∫ T

t

∫
∞

0
(1− e−h(y,s))λQd (u)f (y)dydu

])
×1
{W̃<−[ln( V (t)KB(t,T ) )+

1
2 σ̃
2(t,T )−[(L(T )−L(t))−

∫ T
t
∫
∞

0 (1−e−h(y,s))λQd (u)f (y)dydu]/σ̃ (t,T )]}
|F LT ∨ F

W̃
t

)
|Ft

}
= EQL

{
1
{L(T )−L(t)>L̃}V (t) exp

(
−

[
(L(T )− L(t))−

∫ T

t

∫
∞

0
(1− e−h(y,s))λQd (u)f (y)dydu

])
N(−dd1)|Ft

}
where

dd1 =
ln( V (t)

KB(t,T ) )+
1
2 σ̃
2(t, T )− [(L(T )− L(t))−

∫ T
t

∫
∞

0 (1− e
−h(y,s))λ

Q
d (u)f (y)dydu]

σ̃ (t, T )
.

Box III.
Appendix B

The proof for the closed-form formula of Eq. (6) is sketched. The
present value of the expected terminal value of contingent capital
discounted at the zero coupon bond under the forward probability
measure is shown as follows:

Pds(t; t0) = EQ
T
[1{L(T )>L+L(t0)}B(t, T )(K − V (T ))1{V (T )<K}|Ft ]

≡ F

(
V (t),

Φ(t)∑
n=1

Yn, λ
Q
d (t)

)

= B(t, T )
∫
∞

0
F

(
V (T ),

Φ(T−t)∑
n=1

Yn, λ
Q
d (T )

)

× f

(
V (T )|

Φ(T−t)∑
n=1

Yn, λ
Q
d (t)

)
dV (T )

where the condition distribution of V (T ), conditional on Φ(T −
t) = m, Y1 = y1, Y2 = y2, . . . , Yn = yn, λ

Q
d (t), can be shown as:

f (V (T )|Φ(T − t) = m, Y1 = y1, Y2 = y2, . . . , Yn = yn, λ
Q
d (t))

=

∫
∞

0
f mL (x)dx

∞∑
m=0

Prob(Φ(T − t) = m)f (V (T )|λQd (t)) (B.1)

where f mL (x) denotes m-fold loss probability density function and

Prob(Φ(T − t) = m) = exp(−
∫ T
t λ
Q
d (u)du)(

∫ T
t λ
Q
d (u)du)

m

m! .
Following the pricing procedure of Hull and White (1987), de-

fine that λ̄ =
∫ T
t λ
Q
d (u)du
T−t is themean arrival rate over the time [t, T ],

and make use of the fact that, for any three related random vari-
ables x, y, and z, the conditional density functions are related by

f (x|y) =
∫
g(x|z)h(z|y)dz.

Then Eq. (B.1) can be rewritten as∫
∞

0
f mL (x)dx

∞∑
m=0

Prob(Φ(T − t) = m)f (V (T )|λQd (t))

=

∫
∞

0
f mL (x)dx

∞∑
m=0

Prob(Φ(T − t) = m)

×

∫
∞

0
g(V (T )|λ̄)h(λ̄|λQd (t))dλ̄

where h(λ̄|λQd (t)) represents the conditional distribution density
function of λ̄ given λQd (t), and g(V (T )|λ̄) denotes the conditional
distribution density function of V (T ) given λ̄.
Hence, if the loss function simplifies to h(Yn) = αYn, the value

of contingent capital under the doubly stochastic Poisson process,
Pds(t; t0) can be represented as

Pds(t; t0) =
∫
∞

0
1{L(T )>L+L(t0)}B(t, T )(K − V (T ))

× 1{V (T )<K}f (V (T )|
Φ(T−t)∑
n=1

Yn, λ
Q
d (t))dV (T )

=

∫
∞

0
B(t, T )(K − V (T ))1{V (T )<K}

∫
∞

L̃
f mL (x)dx

×

∞∑
m=0

Prob(Φ(T − t) = m)
∫
∞

0
g(V (T )|λ̄)h(λ̄|λQd (t))dλ̄dV (T )

=

∫
∞

0

∫
∞

L̃
f mL (x)dx

∞∑
m=0

Prob(Φ(T − t) = m)

×

[
B(t, T )

∫
∞

0
(K − V (T ))1{V (T )<K}g(V (T )|λ̄)dV (T )

]
× h(λ̄|λQd (t))dλ̄

where the inner term[
B(t, T )

∫
∞

0
(K − V (T ))1{V (T )<K}g(V (T )|λ̄)dV (T )

]
represents the put option price at time t on the underlying asset
with a mean arrival rate λ̄. By the similar pricing procedure of
Appendix A, we have:∫
∞

0

∫
∞

L̃

∞∑
m=1

exp
(
−
∫ T
t λ

Q
d (u)du

) (∫ T
t λ

Q
d (u)du

)m
m!

f mL (x)

[KB(t, T )N(−dds2 )− V (t) exp(−αx+ λ̄(T − t)κ)N(−d
ds
1 )]

× h(λ̄|λQd (t))dxdλ̄ =
∫
∞

0

∫
∞

L̃

∞∑
m=1

e−λ̄(T−t)(λ̄(T − t))m

m!
f mL (x)

× [KB(t, T )N(−dds2 )− V (t) exp(−αx+ λ̄(T − t)κ)N(−d
ds
1 )]

× h(λ̄|λQd (t))dxdλ̄

where

λ̄ =

∫ T
t λ

Q
d (u)du
T − t

, κ =

∫
∞

0
(1− e−αY )f (y)dy,

dds1,2 =
ln(V (t)/KB(t, T ))± 1

2 σ̃
2(t, T )− αx+ λ̄(T − t)κ

σ̃ (t, T )
.
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