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ABSTRACT

We derive the pricing formula for catastrophe equity put options (CatEPuts)
by assuming catastrophic events follow a Markov Modulated Poisson pro-
cess (MMPP) whose intensity varies according to the change of the Atlantic
Multidecadal Oscillation (AMO) signal. U.S. hurricanes events from 1960 to
2007 show that the CatEPuts pricing errors under the MMPP(2) are smaller
than the PP by 30 percent to 66 percent. The scenario analysis indicates that
the MMPP outperforms the exponential growth pattern (EG) if the hurricane
intensity is the AMO signal, whereas the EG may outperform the MMPP if
the future climate is warming rapidly.

INTRODUCTION

The increasing number of catastrophe (CAT) events, particularly hurricane activity in
the early 1990s, has created large fluctuations in the price and availability of reinsur-
ance and several CAT-linked instruments (e.g., CAT Bonds, CatEPuts, etc). Increases
in Atlantic hurricane activity over recent decades are believed to reflect simultaneous
increases in tropical Atlantic warmth (e.g., Emanuel, 2005). Some recent studies (e.g.,
Goldenberg et al., 2001; Landsea, 2005) attribute these increases to a natural climate
cycle termed the Atlantic Multidecadal Oscillation (AMO), which is a climate signal
measuring the change in the sea surface temperature (SST, and salinity) of the North
Atlantic,1 whereas the other studies suggest that climate change is instead playing the
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1Aside from the AMO signal, AIR Worldwide Corporation in 2006 argues that there are three
key climate mechanisms that affect hurricane activity: El Nino/Southern Oscillation (ENSO),
Quasi-Biennial Oscillation (QBO), and North Atlantic Oscillation (NAO). ENSO measures
temperature anomalies in the Pacific Ocean off the coast of Peru. La Niña years are typically
characterized by increased hurricane activity, while such activity is lower in El Niño years.
However, the period of ENSO is too irregular to make it very useful for forecasting hurricane
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dominant role (Emanuel, 2005; Webster et al., 2005). Therefore, it is crucial to model
the dynamic process of hurricane activity properly and price CAT-linked instruments
(e.g., CatEPuts) corresponding to the global climate change or the change of the AMO
signal for the development of the (re)insurance market.

CatEPuts are a form of options that give the owner the right to sell a specified
amount of its stock to investors at a predetermined price if CAT losses surpass a
specified trigger. Thus, CatEPuts can provide insurers with additional equity capital
precisely when they need funds to cover CAT losses. The first CatEPut was issued
on behalf of RLI Corporation in October 1996, giving RLI the right to issue up to
$50 million of cumulative convertible preferred shares. In 1997, Horace Mann Educa-
tors Corporation and LaSalle Re Educators Corporation also entered into a multi-year
$100 million CatEPut, respectively. In 2001, the Trenwick Group contracted the right
to issue up to $55 million of cumulative convertible preferred shares to European
Reinsurance Company of Zurich, a subsidiary of Swiss Re. The CatEPut was exer-
cised in the next year to add equity to Trenwick’s balance sheet. Hence, in practice
CatEPuts have provided insurance firms with a useful channel to raise additional
capital to hedge against CAT losses.

When pricing CatEPuts, it is prudent to develop a model that depicts the joint dynam-
ics of the share value and losses process. Cox, Fairchild, and Pedersen (2004) assume
that the share price process is driven by a geometric Brownian motion with additional
downward jumps of a specific size in a CAT event. Their model assumes that only a
CAT event affects the stock price, whereas the size of the CAT is irrelevant. Jaimungal
and Wang (2006) extend the results of Cox, Fairchild, and Pedersen (2004) to analyze
the pricing of CatEPuts under stochastic interest rates with losses generated by a
compound Poisson process (PP). In addition to Cox, Fairchild, and Pedersen (2004)
and Jaimungal and Wang (2006), others, for example, Cummins and Geman (1995)
and Chang, Chang, and Yu (1996) look at CAT futures options, Louberge, Kellezi, and
Gilli (1999) investigate a CAT bond with a pure PP, and Vaugirard (2003a, 2003b) and
Lee and Yu (2002, 2007) research a CAT bond with a compound PP.2

activity over a 5-year time horizon. QBO is a climate signal that tracks the direction of the
equatorial winds in the stratosphere. While the QBO is the easiest signal to forecast, it has the
weakest correlation with hurricane activity. NAO is a low-pressure ridge that, in a positive
phase, typically forms off of the coast of Greenland, allowing a high-pressure ridge to form in
the Northeastern Atlantic (“Bermuda High”). The position of the NAO and the Bermuda High
are very important in steering tropical storm tracks and the risk of “land-falling” hurricanes.
However, the predictability of the NAO decays quickly, rendering it virtually useless for
forecasting hurricane activity 5 years out. Therefore, we focus on the relationship between
hurricane activity and the change in the AMO signal.

2The recent development of CAT risk also focuses on the convergence of the financial services
industry and (re)insurance sector, which is driven by the increase in frequency and severity
of CAT risk. These developments have led to the development of hybrid insurance/financial
instruments. For example, Klein and Wang (2009) illustrate the regulation of CAT risk and
financing in the United States and the EU. Cummins and Weiss (2009) and Barrieu and
Loubergé (2009) provide an overview of hybrid and pure financial markets instruments.
Finken and Laux (2009) show that CAT bonds can play an important role in the pricing
of reinsurance contracts when there is asymmetric information between inside and outside
reinsurers about an insurer’s risk.
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FIGURE 1
Frequency of Hurricanes in the United States from 1960 to 2007 Relative to the AMO
Index

Figure 1 shows the annual frequency of U.S. hurricanes between 1960 and 2007 relative
to the AMO index.3 If the intensity process of hurricane events stands for a PP, then the
frequency of hurricane events should stay at the same level over the years. However,
the top of Figure 1 apparently exhibits different frequencies for hurricane events
through time. Specifically, it indicates that there are larger hurricane activities since
1995. Meteorologists (e.g., Landsea and Gray, 1992; Kevin, 2005) have recognized
for some time that SSTs and water vapor play a critical role in energy of tropical
cyclones (typhoons and hurricanes), with hurricane formation generally limited to
regions where SSTs exceed 26◦C. Specifically, higher SSTs are positively correlated
with hurricane activities, but there is still an argument of whether the increased trend
in SSTs since 1995 reflects a continuous increase brought on by global warming or the
result of cyclical trends in AMO.

The recent report of the Intergovernmental Panel on Climate Change (IPCC, 2007)
indicates that climate change in the future could be more serious, owing to global
warming, with more unanticipated tropical cyclone events. Hence, global climate

3The AMO index value represents a temporal reconstruction of SST anomalies averaged over
the region of the North Atlantic bounded by 45◦–65◦ North and 60◦–20◦ West.
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change is likely to exert a gradual shift in hurricane intensity from one state to
another. Since 1995, the Atlantic basin has been in an active, or warm, phase with
characteristics leading to higher SSTs and cyclical increases in tropical cyclone activity
in the Atlantic. Some scientists indicate that increases in tropical cyclone activity are
associated with a warm phase of the AMO. In 2006, leading CAT risk modeling firms,
such as the Swiss Re Company, argued that the increasing hurricane activities in the
early 1990s are most closely correlated with the AMO signal, and thus they updated
their projections of hurricane activities in the Atlantic for the next 10 years based on
the expectation of increased hurricane frequency due to a positive AMO index.

According to the change of AMO signal in Figure 1, the periods of 1960–1970 and
1995–2007 are defined as the warm phase (or positive index) of the AMO and can be
regarded as state one. The period 1971–1994 is defined as the cool phase (or negative
index) of the AMO and can be viewed as another state. This figure shows that the
mean frequency of the entire period (1960–2007) is 3.85, where the mean frequencies
of the warm phase and cool phase are 5.58 and 2.13, respectively. Warm phases in
the AMO therefore are theorized as leading to higher SSTs and being above the long-
term average hurricane activity in the Atlantic. Cool phases in the AMO are theorized
to lead to lower SSTs and being below the long-term average hurricane activity. As
shown in Figure 1, the period 1960–1970 is in state 1, but transits to state 2 in the
period 1971–1994, and then in 1995–2007 the state transits back to state 1. Therefore,
the intensity process of hurricane events is different at different phases (states) of
the AMO signal, and the transition of the two states seems to follow a homogenous
Markov process.

This study intends to contribute to the literature in three threads. First, we propose a
more general Markov jump diffusion model, which advances the PP used in the jump
diffusion model, to a Markov modulated PP (MMPP). The MMPP stands for a doubly
stochastic PP where the underlying state is governed by a homogenous Markov chain
(see Last and Brandt, 1995).4 More precisely, instead of a constant (average) intensity
rate under the PP and compound PP, the intensity rates of hurricane events are differ-
ent at different states of the AMO signal under the MMPP with two states: MMPP(2).
Second, we derive the closed-form solutions for CatEPuts under the Markov jump
diffusion model and show that the derived formula can be reduced to the pricing
formulas of Cox, Fairchild, and Pedersen (2004) and Jaimungal and Wang (2006).
Third, we use the data of U.S. hurricane events from 1960 to 2007 to investigate
the pricing performance of the valuation of the CatEPuts. The results show that the
pricing errors under the MMPP(2) are smaller than the PP in pricing the CatEPut
and the pricing errors can be reduced by 30 percent to 66 percent depending on the
measurement methods.

We further discuss the measurement errors that would result from a misdiagnosis
of the true driver of different climatic patterns. The result indicates that the MMPP
outperforms the EG if the intensity of hurricane events is driven by the AMO signal,
whereas the EG may be superior to the MMPP if the future climate is in the process of

4The MMPPs have been applied in many fields, such as hydrology (e.g., Stern and Coe, 1984;
Ramesh, 1998; Davison and Ramesh, 1996), queuing theory (e.g., Olivier and Walrand, 1994;
Du, 1995), etc.
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rapid warming. Sensitivity analysis also indicates that hurricane intensity dominates
the mean and variance of hurricane losses when determining the CatEPut prices.

The remainder of the article is organized as follows. The “CatEPut Contract and the
Model” section illustrates the CatEPut contract and the model. The “Valuation of
CatEPuts” section derives the change measure and the pricing formulas of CatEPut.
Results and discussions are present in the next section. The “Conclusions” section
summarizes the study and provides the conclusions. For ease of exposition, most
proofs are in the appendices.

CATEPUT CONTRACT AND THE MODEL

CatEPut Contract
The CatEPut option in general allows the owner to issue shares at a predetermined
price, much like a regular put option. However, that right is only exercisable in the
event that the accumulated losses of the purchaser of the CatEPut exceed a critical
coverage limit during the option’s lifetime. Hence, such a contract can be viewed as
a special form of a double trigger put option, where the option’s payoff is a function
of share price and level of insured losses.

Cox, Fairchild, and Pedersen (2004) introduce a model that jointly describes the dy-
namics of the share value and losses process for a CatEPut. They model the CAT
arrival process in terms of a PP and assume that only a CAT event decreases the share
value whereas the CAT size is irrelevant. Jaimungal and Wang (2006) generalize the
results of Cox, Fairchild, and Pedersen (2004) to consider the stochastic interest rate
and propose that the loss sizes should affect share value. They assume that the losses
follow a compound PP. Thus, the payoffs of CatEPuts, V(T), at maturity T can be
described as follows:

V(T) = 1{L(T)−L(t0) >L}(K − S(T))1{S(T)<K }, (1)

where S(T) is the share value and K represents the strike price at which the issuer
is obligated to purchase unit shares in the event that the total loss level exceeds the
specified losses, L . Furthermore, L(T) − L(t0) denotes the total losses of the insured
over the time-period [t0, T].

Model Setup
Let uncertainty in the economy be described by the filtered probability space
(�, F , P , (Ft)T∗

t=0). We assume the existence and uniqueness of P , such that markets
are complete. Let {S(t) : t > 0} denote the share value process, {L(t) : t > 0} denotes
the total loss process of the insured, and {r (t) : t > 0} denotes the risk-free short rate
process. Hence, the natural filtration F = {Ft : t > 0} is generated by these three pro-
cesses. We follow Jaimungal and Wang (2006) and assume that the interest rate is
independent of the loss, and the dynamics of the share price and the interest rate can
be written as

S(t) = S(0) exp
{∫ t

0

(
μ (s) − 1

2
σ 2

S

)
ds + σS WS (t) − αL(t)

}
, (2)
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L(t) =
�(t)∑
n=1

Yn, (3)

d r (t) = k̃ [ θ̃ − r (t)] dt + σr dWr (t),

where S(0) is the initial share price and drift μ is the instantaneous return of S(t) at
time t.

Terms k̃ and θ̃ are, respectively, the constant reversion rate and long-term mean in the
drift coefficient of the Vasicek dynamics of r (t). Terms σS and σr are the volatilities
of returns on share price and spot rate, respectively, whereas {WS(t) : t > 0} and
{Wr (t) : t > 0} are correlated Brownian motions of the returns of share price and the
interest rate with respect to Ft , and they satisfy E(WS(t) Wr (t)) = ρ dt, where ρ is the
correlation coefficient of these two terms. Term α denotes the downward percentage
in the share price per specific CAT loss. Here, let {Yn : n = 1, 2, . . .} be the sequence of
independent and identically distributed nonnegative random variables representing
the size of the nth loss with the density function fY(y).

Markov Modulated Poisson Process
The empirical data of Figure 1 display that the frequency of hurricane events can be
significantly different under different phases of the AMO signal. In view of such an
observation, this study proposes a model whereby the intensity process of hurricane
events follows the MMPP and where the climate state is governed by a homogeneous
Markov chain. We consider that the sample path for the share price is continuous
except on finite points in time, and the intensity of hurricane events depends on the
state of the climate environment.

An MMPP, �(t), is a Poisson process whose intensity, λX(t) , varies according to a
homogenous Markov process, X(t), with transition function, Pi j (t), for the finite state
space X ={1, 2, . . . , I }. In other words, a Poisson process �(t) is called MMPP if the
conditional distribution P(� | X) is equal to the distribution of a PP with the intensity
function λX(t) . Particularly, the distribution of the MMPP can be denoted by

P(�(t) = m | X(t),t > 0) =

(∫ t

0
λX(s) ds

)m

m!
exp

[
−
∫ t

0
λX(s) ds

]
P − a.s.

Let transition rate 	(i , j) be denoted as

	(i , j) =

⎧⎪⎨
⎪⎩

ν(i , j), i �= j ,

−
∑
j �=i

ν(i , j), otherwise,

where i , j ∈ X. Since the Markov chain has a finite number of states, the Poisson
intensity rate takes discrete values corresponding to each state. Last and Brandt (1995)
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give the moment generating function for the joint distribution function as follows:

P∗(z, t) =
∞∑

m=0

P(m, t) zm, 0 < z < 1, (4)

where P(m, t) :≡ (Pi j (m, t)) represents the I × I transition probability matrix and
Pi j (m, t) = Pi (X(t) = j , �(t) = m) = Pi (X(0) = j , �(t) = m) denotes the transition
probability with m jump times from state X(0) = i to state X(t) = j . Notation
	 :≡ (	(i , j)) represents the I × I matrix of the transition rate, and � denotes the
I × I diagonal matrix with diagonal elements λi . Here, P(m, 0) :≡ (1{m=0}Di j ), where
Di j = 1, if i = j ; 0, otherwise.

The intensity of the MMPP has the property:

−α

�(t)∑
n=1

Yn + �κ1 t,

which is a martingale in t. The last term �κ1 t denotes the compensation for the
occurrence of the downward jumps in stock price due to the total CAT losses until
time t, and κ1 = E[(1 − exp (−αY))]. Appendix A presents the proof.

The MMPP reduces to the PP under certain assumptions. In a general setting with I
states, if νk → 0, νi → ∞, k ∈ X, i ∈ X, k �= i , for every i → ∞, then it implies that
the Markov chain will not leave state k and thus the MMPP reduces to the PP with
intensity λk . However, , if λ1 = λ2 = · · · = λI = λ, then the MMPP reduces to the PP
with intensity λ.

VALUATION OF CATEPUTS

Note as the underlying stochastic process for the claim arrival process is the MMPP,
that there is no unique equivalent martingale probability measure. In other words, we
have several choices of equivalent martingale probability measures to price a CatEPut
when the market is incomplete. First, this section illustrates the selected process of
an equivalent martingale probability measure. Next, when the martingale probability
measure is chosen, the valuation of a CatEPut can be achieved by using an equivalent
martingale probability measure.

Equivalent Martingale Probability Measure
We follow Cox, Fairchild, and Pedersen (2004) and Jaimungal and Wang (2006) and
make use of Merton’s (1976) assumption that the jumps are diversifiable, and therefore
the jump intensity rate and distribution are not altered from the original physical
probability measure P to the risk-neutral probability measure Q. The risk-neutral
process for the joint share price, interest rate, and loss dynamics under probability
measure Q can be written as:5

5See Jaimungal and Wang (2006) for a similar derivation.
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S(t) = S(0) exp
{∫ t

0

(
r (s) − 1

2
σ 2

S

)
ds + σS WQ

S (t) − αL(t) + �Qκ1 t
}

, (5)

L(t) =
�(t)∑
n=1

Yn, (6)

d r (t) = k [θ − r (t)] dt + σr dWQ
r (t),

where

WQ
S (t) = WS(t) +

∫ t

0

μ − r (u)
σS

du,

WQ
r (t) = Wr (t) −

∫ t

0

1
σr

[kθ − k̃θ̃ + (k̃ − k) r (u)] du.

Hence, we obtain

P Q(�t = m) = E[β1(t) 1{�t=m}] = P P (�t = m),

which means that the investors receive a zero premium for the jump risk, and thus
the jump intensity and transition probability are unaffected by the measure change,
that is, �Q = �, Q(m, t) =P(m, t).

In the presence of a stochastic interest rate, a similar factorization can be obtained
by performing a measure change to the forward-neutral measure QT . This study
assumes that the stochastic interest rates follow the Vasicek model, and thus the price
of a zero-coupon bond with maturity T , B(t, T), is given by

B(t, T) = exp(A(t, T) − U(t, T) r (t)),

where

A(t, T) =
(

θ − σ 2
r

2k2

)
(B(t, T) − (T − t)) − σ 2

r
4k

B2(t, T), U(t, T)

= 1
k

[1 − exp(−k(T − t))].
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The forward price of the share price, under QT , is thus calculated as

S(T)
B(T , T)

= S(t)
B(t, T)

exp

[
−1

2

∫ T

t
σ̃ 2(u, T)du +

∫ T

t
σSdW̃S(u) +

∫ T

t
σr B(u, T) dW̃r (u)

− (α(L( T) − L(t)) − �κ1(T − t))

]
, (7)

where

W̃S(t) = WQ
S (t) +

∫ t

0
ρ σr U(u, T) du, W̃r (t) = WQ

r (t) +
∫ t

0
σr U(u, T) du,

d(W̃S(t) W̃r (t)) = ρ dt,

and

σ̃ 2(u, T) = σ 2
r B2(u, t) + 2ρσSσr B(u, t) + σ 2

S .

Proposition 1: Let β1(t) denote the Radon–Nikodym processof transition probability

β1(t) ≡ d Q′(m, t)
d Q(m, t)

= (1 − κ1)m exp( �κ1t).

For any B ∈ FT , there then exists a new risk-neutral probability measure Q′ with
Q′ (B) = E Q(1{B}β1(T)) on Ft . Under the original risk-neutral measure Q, the tran-
sition probability matrix is Q(m, t), with transition rate matrix 	 and jump intensity
matrix �. Through the change of measure, the new risk-neutral transition probability
becomes Q′(m, t) with transition rate matrix 	 and jump intensity matrix �(1 − κ1).

Proposition 2: Let β2(t) denote the Radon–Nikodym process of the hurricane loss size

f Q′
Y (y1), f Q′

Y (y2), . . . , f Q′
Y (ym) =

[
e−αy1 fY(y1)

(1 − κ1)
e−αy2 fY(y2)

(1 − κ1)
. . .

e−αym fY(ym)
(1 − κ1)

]
.

For any B ∈ FT , there then exists a new risk-neutral probability measure Q′ with
Q′(B) = E Q(1{B}β2(T)). Hence, under the original risk-neutral probability measure
Q, the density function of each specific hurricane loss is fY(y). Through the change of
measure, under the new risk-neutral probability measure Q′, the new density function
of each specific CAT loss is
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f Q′
Y (y) = e−αy fY(y)

(1 − κ1)
.

Appendix B sketches a detailed proof of Propositions 1 and 2.

The Pricing Formula
Under the assumption that there are no arbitrage opportunities in the market, we
price the CatEPuts by using an equivalent martingale probability measure, QT . Let
V(t; t0) represent the value of the option at time t, which was signed at time t0 < t and
matures at time T . Therefore, we have

V(t; t0) = B(t, T)E QT
[1{L(T)>L+L(t0)}(K − S(T)) 1{S(T)<K }].

As the joint share price and loss dynamics stand for the Markov jump diffusion
model, by using Equation (7) and an equivalent martingale probability measure, QT ,
the formula of a CatEPut can be obtained as Theorem 1.

Theorem 1: The value of CatEPut contracts is given as

V(t; t0) =
∞∑

m=1

Q(m, T − t)
∫ ∞

L̃
f m
Y (ym)

[
K φ

(− d MM
2m (ym)

)

−S(t) exp[−αym + �κ1(T − t)]φ
(− d MM

1m (ym)
)]

dym, (8)

where ym = ∑m
n=1 Yn represents the total losses of m insured CAT claims under the original

risk-neutral probability measure Q with density function f m
Y (ym), and φ(·) denotes the

cumulative distribution function for a standard normal random variable:

d MM
1m,2m=

ln(S(t)/K B(t, T)) ± 1
2
σ̃ 2(t, T) − αym + �κ1(T − t)

σ̃ (t, T)
,

σ̃ 2(t, T) = σ 2
S(T − t) + 2kρσrσS + σ 2

r
k2 [(T − t) − U(t, T)] − σ 2

r
2k

U2(t, T),

L̃ = L + L(t0) − L(t).

Equation (8) can be viewed as the transition probability sum of the expectation of
a put option with a limitation on the total losses of the insured exceeding specified
losses L̃ . Appendix C sketches a detailed proof.

To further illustrate the property of the CatEPut solution, we consider several special
cases and show their specific formulas in the following remarks and corollary.
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Remark 1: If L(t) = ∑I
i=1

∑Ni (t)
n=1 Yn, where Ni (t) are independent PPs with jump

intensity λi , and there are I independent PPs, then Equation (7) reduces to the mixed
PP (MPP) and becomes the following equation:

S(T)
B(T , T)

= S(t)
B(t, T)

exp

⎡
⎣−1

2

∫ T

t
σ̃ 2(u, T) du +

∫ T

t
σS dW̃S(u) +

∫ T

t
σr B(u, T) dW̃r (u)

−
⎛
⎝α

Ni (T−t)∑
n=1

Yn − λiκ1 t

⎞
⎠
⎤
⎦ , with probability pi , i = 1, 2, . . . , I. (9)

The pricing formula of a CatEPut is then given by

V(t; t0) =
∞∑

m=1

I∑
i=1

pi
e−λi (T−t)[λi (T − t)]m

m!

∫ ∞

L̃
f m
Y (ym)

[
K φ

(− d MP
2m (ym)

)

−S(t) exp(−αym + λiκ1(T − t))φ
(− d MP

1m (ym)
)]

dym, (10)

where pi is the probability occurring at state i , and
∑I

i=1 pi = 1.

d MP
1m,2m=

ln(S(t)/K B(t, T)) ± 1
2
σ̃ 2(t, T) − αym + λi κ1 (T − t)

σ̃ (t, T)
, i = 1, 2, . . . , I.

Remark 2: If λ1 = λ2 = . . . λI = λ, then the MMPP, �(t), simplifies to a single PP,
N(t), with an intensity rate of CAT events, λ, and Equation (7) reduces to

S(T)
B(T , T)

= S(t)
B(t, T)

exp

⎡
⎣−1

2

∫ T

t
σ̃ 2(u, T) du +

∫ T

t
σSdW̃S(u) +

∫ T

t
σr B(u, T) dW̃r (u)

−
⎛
⎝α

N(T−t)∑
n=1

Yn − λκ1 t

⎞
⎠
⎤
⎦ , (11)

which implies a single jump component with magnitude Y and intensity λ. This
equation is also the dynamic process setting for the model of Jaimungal and Wang
(2006), and the pricing formula of CatEPut can be derived as the following.
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V(t; t0) =
∞∑

m=1

e−λ(T−t)[λ(T − t)]m

m!

∫ ∞

L̃
f m
Y (ym)

[
K φ

(− d P P
2m (ym)

)

−S(t) exp(−αym + λ κ1(T − t)))φ
(− d P P

1m (ym)
)]

dy, (12)

where

d P P
1m,2m=

ln(S(t)/K B(t, T)) ± 1
2
σ̃ 2(t, T) − αym + λ κ1 (T − t)

σ̃ (t, T)
.

Note that when Y = 1 and under the assumption of a constant interest rate, the closed-
form formula of a CatEPut reduces to that of Cox, Fairchild, and Pedersen (2004) as
follows:

V(t; t0) =
∞∑

m=n

e−λ(T−t)[λ(T − t)]m

m!

× [
K e−r (T−t)φ

(− d P P
2

)− S(t) exp
[−αm + λ (1 − e−α)(T − t)]φ

(− d P P
1

)]
,

where

d P P
1,2 =

ln(S(t)/K ) +
(

r ± 1
2
σ 2

S

)
(T − t) − αm + λ (1 − e−α)(T − t)

σS
√

(T − t)
.

Corollary 1: If L(t) = ∑�(t)
n=1 Yn and Yn is a sequence of nonnegative independent identical

distributed random variables with exponential density fY(y) = ηe−ηy, y > 0, η > 0, then
based on Propositions 1 and 2, the pricing formula of the CatEPut is given by

V(t; t0) =
∞∑

m=1

Q′(m, T − t)
[

K B(t, T)
exp(−�κ1 (T − t))

(1 − κ1)m g1(L̃ , a1) − S(t)g2(L̃ , a2)
]

,

(13)

where

g1(L̃ , a1) =
∫ a1

−∞

∫ ∞

L̃

exp
[−(μy

/
σ 2

y
)
v
]
v

(μ2
y/σ

2
y )−1

�
(
μ2

y
/
σ 2

y
)(

μy
/
σ 2

y
)(σ 2

y /μ2
y)

1√
2πσ̃ 2(t, T)

exp

[
− (u + αv)2

2σ̃ 2(t, T)

]
dv du,
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g2(L̃ , a2) =
∫ a2

−∞

∫ ∞

L̃

exp
[−(μy

/
σ 2

y + α
)
v
]
v

(μ2
y/σ

2
y )−1

�
(
μ2

y
/
σ 2

y
)(

μy
/
σ 2

y + α
)(σ 2

y /μ2
y)

1√
2πσ̃ 2(t, T)

× exp

[
− (u + αv)2

2σ̃ 2(t, T)

]
dv du,

a1,2 = ±1
2
σ̃ 2(t, T) − �κ1,2(T − t) + ln(K B(t, T)/S(t)), κ1 = α

η + α
, κ2 = α

η + 2α
,

and μy = m
η and σ 2

y = m
η2 are the mean and variance of the gamma distribution for the total

losses, respectively. Appendix D sketches a detailed proof.

Note that if the increase in unanticipated hurricane events with time is caused by
global warming (e.g., see Emanuel, 2005; Mann and Emanuel, 2006; IPCC, 2007; Lin,
Chang, and Powers, 2009), then the intensity of hurricane events appear to display
a directional long-term upward drift, which is assumed to follow the exponential
growth pattern (EG):λ (t) = λ (0) exp[μλt], where μλ represents the growth rate of the
hurricane events. The pricing formula of the CatEPut is then given by

V(t; t0) =
∞∑

m=1

e−λ̃(T)(1−κ1)(λ̃(T)(1 − κ1))m

m!

×
[

K B(t, T)
exp(−λ̃(T)κ1 (T − t))

(1 − κ1)m g1(L̃ , a3) − S(t)g2(L̃ , a4)
]

,
(14)

where

a3,4 = ±1
2
σ̃ 2(t, T) − λ̃(T)κ1,2(T − t) + ln(K B(t, T)/S(t)),

λ̃(T) =
∫ T

t
λ(t)eμλ(u−t)du = λ(t)

μλ
[eμλ(T−t) − 1].

RESULTS AND DISCUSSION

Data Description
This section evaluates CatEPuts whose total losses are linked to hurricane losses avail-
able from the U.S. database on spatial hazard events and losses. Prior to estimating
the parameters of the intensity and severity distributions of hurricane activities, two
adjustments affecting the intensity and severity of CATs are made to the data on hur-
ricane losses. We follow Cummins, Lewis, and Phillips (1999) and adjust hurricane
losses by changes in Houses under Construction Fixed-Weighted Index and Population
Index from the U.S. Census Bureau. Figures 1 and 2, respectively, display the adjusted
number of hurricane events and the adjusted hurricane losses during 1960 to 2007.
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FIGURE 2
Hurricane Losses in the United States During 1960–2007
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The mean μy and the standard deviation σy of the adjusted hurricane losses are esti-
mated to be 1.98 and 7.56, respectively. The average intensity over all sample years is
3.85 and we take it as the intensity of a single PP to reflect the frequencies of hurricane
events per year. Figure 1 seems to reveal that a smaller intensity of hurricane events
is found in the cool phase of the AMO signal (1971–1994) and a larger hurricane
intensity in the warm phase of the AMO signal (1960–1970 and 1995–2007). Hence,
during the sample period we divide the AMO signal into two states: the warm phase
is regarded as state 1 and the cool phase is reviewed as state 2. The intensities of
MMPP(2) are calculated as 5.58 and 2.13, respectively. On the other hand, since 1995
the hurricane frequencies also have an increasing pattern possibly owing to global
warming. Thus, we assume that the intensities of hurricane events stand for the ex-
ponential growth pattern (EG): λ(t) = λ(0) exp [μλt], t = 0, 1, . . . 47. The initial values
of the intensity of hurricane events λ(0) and the parameter μλ are estimated to be 5
and 0.048, respectively.

Pricing Errors
This section evaluates the pricing performance of CatEPuts under the alternative
intensity processes: MMPP(2), mixed PP, EG, and PP. In order to compute the values of
CatEPuts, we follow Jaimungal and Wang (2006) and assume the following parameter
values: equity price of insurance company, S = 25; exercise price, K = 80; trigger level
of losses ratio, L̃ = 5; parameters of the interest rate model are: r (0) = 2 percent, k =
0.3, θ = 5 percent, ρ = −0.1, σr = 15 percent; equity volatility, σS = 0.2; option term,
T = 4; the percentage drop per loss, α = 0.01. The infinite summation of hurricane
events, m, is truncated at level m = 200 such that the respective cumulative Poisson
probabilities are very close to 1.

From the data of hurricane events shown in Figure 1 and for the case of two in-
dependent PP (mixed PP), we obtain that the probability occurring at state 1 is
p1 = 24/.48 and then p2 = 24/.48. On the other hand, for the Markov modulated
PP with two states, MMPP(2), the transition probability at hurricane frequencies m
from state X(t) = 1 to state X(T) = 2 is P12(m, T − t) = 1/.11 and then P11(m, T − t) =
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TABLE 1
Pricing Errors

MMPP(2) Mixed PP EG PP

APE 8.465 13.440 14.455 16.635
AAE 31.572 54.413 50.942 55.715
ARPE 0.662 1.360 1.400 1.977
RMSE 33.753 47.299 55.731 58.423

Note: The parameter values for base valuation are S = 25, K = 80, L̃ = 5, r (0) = 2%, k = 0.3,
θ = 5%, ρ = −0.1, σS = 0.2, α = 0.01, T = 4, m = 200, N = 48, μy = 1.98, and σy = 7.56.

The intensity of single PP is 3.85. The parameters of the mixed PP are: p1 = 24/.48 and
p2 = 24/.48. The parameters of the MMPP(2) are: P12(m, T − t) = 1/.11, P21(m, T − t) = 1/.24,
ν1 = 0.098, ν2 = 0.045, λ 1 = 5.58, and λ2 = 2.13.

10/.11. Furthermore, the probability from state X(t) = 2 to state X(T) = 1 is set as
P21(m, T − t) = 1/.24, and P22(m, T − t) = 23/.24. Through the transition probability,
the transition rate of two states can be obtained: ν1 = 0.098, ν2 = 0.045, in order to
capture the leaving length for intensity at a different state.

We obtain the real value (PR) of CatEPuts using the frequency and loss data of hur-
ricane events and the theoretical value (PT ) of CatEPuts under the MMPP(2), mixed
PP, EG, and PP using parameter values generated from the hurricane data and other
values provided above. For comparison purposes, we compute four measurements of
pricing errors: average percentage error (APE), average absolute error (AAE), average
relative percentage error (ARPE), and relative measure square error (RMSE):

APE = 1
E(PR)

N∑
n=1

| PR − PT|
N

, AAE =
N∑

n=1

|PR − PT|
N

,

ARPE = 1
N

N∑
n=1

|PR − PT|
PR

, RMSE =
√√√√ N∑

n=1

(PR − PT)2

N
.

where E(PR) is mean of the real CatEPut value and N is the total number of observa-
tions.

Table 1 gives an overview of these four measurements of pricing errors. It indi-
cates that the pricing errors under the MMPP(2) are all smaller than those under
the mixed PP, EG, and PP in all four measurements. Taking APE as an example, the
improvement rate of pricing errors using the EG over the PP is only 13.10 percent
[(16.635 − 14.455)/16.635]. The improvement rate rises to 19.20 percent [(16.635 −
13.440)/16.635] if we use the mixed PP. Furthermore, if the frequency of hurricane
activity is assumed to follow the MMPP(2) according to the change in the AMO sig-
nal, the improvement rate increases further to 49.11 percent [(16.635 − 8.465)/16.635].
Therefore, when hurricane activities are the underlying CAT events, our results show
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TABLE 2
Scenario Analysis of Measurement Errors

Scenario Analysis I Scenario Analysis II
True Hurricane Frequency MMPP-AMO Signal EG-Global Warming
Predicting Model EG-Global Warming MMPP–AMO Signal

APE 6.458 2.721
AAE 19.271 6.031
ARPE 0.728 0.091
RMSE 21.982 7.832

Note: This table describes the four measurement errors resulting from the misdiagnosis of the
true driver of climatic pattern. Based on scenario analysis I, we use the EG model, assuming
the global climate change, to predict the pattern for the frequency of hurricanes, whereas the
true frequency of hurricanes follows the MMPP driven by the AMO signal. On the other hand,
scenario analysis II investigates the opposite case of scenario analysis I, that is, we use the MMPP
to predict the pattern for the frequency of hurricanes, assuming the driver of climatic pattern
is the AMO signal, whereas the true frequency of hurricanes follows the EG pattern driven by
the global climate change. The parameter values for base valuation are S = 25, K = 80, L̃ = 5,
r (0) = 2%, k = 0.3, θ = 5%, ρ = −0.1, σS = 0.2, α = 0.01, T = 4, m = 200, N = 48, μy = 1.98,
and σy = 7.56.

that the MMPP(2) can reduce the pricing errors by 30–66 percent depending on the
measurement methods, and the MMPP dominates the PP in pricing the CatEPuts.

Scenario Analysis
We next conduct a scenario analysis to examine the measurement errors of CatEPuts
from a misdiagnosis of the true driver of climatic patterns, and Table 2 presents the
results. First, as shown in Figure 1, compared to EG, the MMPP(2) seems to capture
more precisely the dynamic process of U.S. annual hurricane frequency between 1960
and 2007. Thus, based on the sample data of 1960–2007, scenario analysis I presents
the measurement errors of CatEPuts from adopting a long-term upward pattern of
the EG model in hurricane intensity due to the global climate change, whereas the
true frequency of hurricane events follows the MMPP(2) driven by the AMO signal
of multidecadal fluctuations. The measurement errors of CatEPuts between the real
value (PR) (using Equation (13)) and theoretical value (PT ) (using Equation (14)) can
hence be obtained. The result of scenario analysis I indicates that using the EG model
to describe hurricane intensity could produce a range of 0.728-21.982 in measurement
errors according to the four measurement methods when the true driver of a hurricane
event is the AMO signal.

Figure 3 shows, on the other hand, the annual frequency of U.S. hurricane events
between 1991 and 2005, and the hurricanes’ intensity seems to show an upward
pattern, especially since 2001. Hence, scenario analysis II investigates the opposite
case of scenario analysis I to show the measurement errors of CatEPuts using the
MMPP(2) to predict the frequency of hurricane events, whereas the true frequency
of hurricane events follows the EG pattern. Under the EG model, corresponding to
global climate change, the initial values of the intensity of hurricane events λ(0) and
the parameter μλ are estimated to be 1 and 0.185, respectively. Under the MMPP(2),
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FIGURE 3
Frequency of Hurricanes in the United States from 1991 to 2005

0
2
4
6
8

10
12
14
16
18

1991 1993 1995 1997 1999 2001 2003 2005

Years

Fr
eq

ue
nc

y 
of

 H
ur

ri
ca

ne
s

corresponding to the AMO signal, the average hurricane event intensity of state 1
(cool phase; 1991–1994) is 1.75, and the average hurricane intensity of the other state
(warm phase; 1995–2005) is 8.18. Similarly, we can obtain the measurement errors of
CatEPuts between the real value (PR) (using Equation (14)) and theoretical value (PT )
(using Equation (13)). The result shows that the MMPP(2) model produces smaller
measurement errors of 0.091–7.832 depending on the four measurement methods.

Based on the trend of hurricane frequency in a long-term period (1960–2007),
the MMPP(2) outperforms the EG model. Furthermore, in a short-term period
(1991–2005), the MMPP(2) also seems to outperform the EG model, owing to the
smaller measurement errors of CatEPuts. Hence, we conclude that it is more appro-
priate to use the MMPP(2) than the EG model if the intensity of hurricane events
is truly forced by the AMO signal. However, if the future climate is in the process
of more rapid warming, caused in part by human activities, including emissions of
greenhouse gases and aerosols, and changes in land use, then the hurricane frequency
could be in a directional long-term upward trend and instead of the MMPP(2), the
EG model may be appropriate to describe the process of hurricane activities.

Sensitivity Analysis
This section presents a sensitivity analysis for CatEPut prices under alternative pa-
rameter values using the MMPP(2) and the PP. Table 3 reports the CatEPut prices
under the PP with alternative values of hurricane event parameters. We note that
CatEPut prices increase with hurricane intensity as well as the mean and variance
of hurricane losses. It also shows that hurricane intensity dominates the mean and
variance of the hurricane losses in determining the CatEPut prices under the PP. This
implies that it is more critical to model hurricane intensity than identify the loss
distribution of hurricane events when pricing the CatEPuts.

Table 4 presents how transition probability affects CatEPut prices. When ν1 increases,
then the transition probability of leaving state 1 to state 2 is higher, hence decreasing
the CatEPut prices due to the lower intensity at state 2. Similarly, if ν2 increases,
then the transition probability of leaving state 2 to state 1 is higher, and hence the
higher intensity at state 1 increases the CatEPut prices.
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TABLE 3
CatEPut Prices Under the PP

λ

σy μy 2 4 6 8

6 1 5.082 9.289 13.914 19.640
3 7.053 12.820 17.472 24.428

8 1 5.502 10.494 14.414 22.243
3 7.923 13.987 20.688 27.932

Note: Other parameter values are: S = 25, K = 80, L̃ = 5, r (0) = 2%, k = 0.3, θ = 5%, ρ = −0.1,
σS = 0.2, α = 0.01, T = 4, and m = 200.

TABLE 4
CatEPut Prices Under the MMPP(2)

(λ1, λ2)

Model (4,1) (6,1) (4,3) (6,3)

(ν1, ν2) = (0.09,0.04) 11.720 18.052 13.530 19.212
(ν1, ν2) = (0.1,0.04) 7.189 10.494 8.999 11.654
(ν1, ν2) = (0.095,0.035) 8.394 11.994 10.204 13.154
(ν1, ν2) = (0.095,0.045) 12.887 18.668 14.697 19.828

Note: Other parameter values are: S = 25, K = 80, L̃ = 5, r (0) = 2%, k = 0.3, θ = 5%, ρ = −0.1,
σS = 0.2, α = 0.01, T = 4, m = 200, μy = 1.98, and σy = 7.56.

TABLE 5
CatEPut Prices and Transition Rates

(ν1 → 0, ν2 → ∞)
(ν1, ν2) (0.1,1) (0.01,10) (0.001,100)
MMPP(2) 14.5635 14.5639 14.5642
PP (λ1 = 6) 14.5642 14.5642 14.5642

(ν1 → ∞, ν2 → 0)
(ν1, ν2) (1,0.1) (10,0.01) (100,0.001)

MMPP(2) 9.5960 9.5951 9.5943
PP (λ2 = 3) 9.5943 9.5943 9.5943

Note: Other parameter values are: S = 25, K = 80, L̃ = 5, r (0) = 2%, k = 0.3, θ = 5%, ρ = −0.1,
σS = 0.2, α = 0.01, T = 4, m = 200, μy = 1.98, σy = 7.56, λ 1 = 5.58, and λ2 = 2.13.

Table 5 shows that, when the transition rate of state 1 converges to zero and the
transition rate of state 2 converges to infinity, CatEPut prices are the same under
the MMPP(2) and the PP with λ 1 = 6. Similarly, when the transition rate of state 1
converges to infinity and the transition rate of state 2 converges to zero, prices under
the MMPP(2) are the same as the PP with λ2 = 3.
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CONCLUSIONS

The data of U.S. hurricanes events from 1960 to 2007 show that warm phases in
the AMO signal are above the long-term average hurricane activity in the Atlantic,
whereas cool phases in the AMO are below the long-term average hurricane activity.
Therefore, this study applies the MMPP to model the intensity process of hurricane
events corresponding to the change of the AMO signal. This study derives the gen-
eralized pricing formula for CatEPuts and demonstrates that the pricing formulas of
Cox, Fairchild, and Pedersen (2004) and Jaimungal and Wang (2006) are special cases
of the generalized pricing formula.

This study goes further to investigate the pricing performance of CatEPuts under
the MMPP(2), mixed PP, EG, and PP in our sample data. The results show that the
MMPP(2) generates lower pricing errors than the PP and pricing errors can be reduced
by 30–66 percent depending on the measurement methods. This indicates that when
the change in the AMO signal has significant different hurricane intensity rates, such
as in our U.S. hurricane events sample, the MMPP(2) dominates the PP in pricing
CatEPuts. Furthermore, the measurement errors that result from a misdiagnosis of
the true driver of different climatic patterns indicate that the MMPP (2) is superior to
the EG when the intensity of hurricane events is driven by the AMO signal. However,
if the climate in the future is warming rapidly, caused in part by human activities
(e.g., emission of greenhouse gases), then the EG may be appropriate to describe the
process of hurricane activities. Sensitivity analysis also demonstrates that intensity
plays a more important role than the mean and variance of the hurricane losses in
determining the CatEPut prices. This provides additional evidence that it is more
critical to model intensity than to identify the loss distribution of hurricane events
when pricing CatEPuts. Finally, this study presents how transition rates affect the
transition probabilities and CatEPut prices.

This study has several possible extensions and potential improvements. First, due to
the discrete nature of jump risk, the market is incomplete and conventional riskless
hedging is difficult to obtain. Thus, the issue of riskless hedging with jump risk re-
mains an important challenge. Second, the model developed herein can be applied to
other structured risk management products or alternative CAT risk transfer mecha-
nisms, such as CAT bonds, contingent surplus notes, and hybrid insurance/financial
products. Third, it is interesting to examine how CatEPuts can affect the default risk
of reinsurance contracts and reinsures.

APPENDIX A
This appendix shows that −α

∑�(t)
n=1 Yn + �κ1 t is a martingale in t. First, we know

that

E

⎧⎨
⎩exp

⎛
⎝−α

�(t)∑
n=1

Yn

⎞
⎠
⎫⎬
⎭= P P (�t = 0) +

∞∑
m=1

E

(
exp

(
−α

m∑
n=1

Yn

)∣∣∣∣∣�(t) = m

)
P P (�t = m).

Because (Y1, Y2, . . . , Ym) are independent identically distribution random variables,
we have:
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E

⎧⎨
⎩exp

⎛
⎝−α

�(t)∑
n=1

Yn

⎞
⎠
⎫⎬
⎭ =

∞∑
m=0

(E(exp(−αYn)))m P(m, t).

Furthermore, we use the equation P∗(z, t) = ∑∞
m=0 P(m, t) zm and its unique solution

P∗(z, t) = exp[ 	 − (1 − z) �] t. Letting Q(m, t) =(E(exp(−αYn)))m P(m, t) exp(�κ1t),
we have

Q∗(z, t) =
∞∑

m=0

zm(E(exp(−αYn)))m P(m, t) exp(�κ1t)

=
∞∑

n=0

(z(1 − κ1))m P(m, t) exp(�κ1t) = exp[ 	 − (1 − z)(1 − κ1) �] t.

Therefore, −α
∑�(t)

n=1 Yn + �κ1 t is a martingale in t.

APPENDIX B
This appendix illustrates the proof for Propositions 1 and 2, which describe the
Radon–Nikodym processof transition probability and Radon–Nikodym processof a
CAT loss, respectively.

First, we investigate the transition probability, Q(m, t), for 0 ≤ z ≤ 1, and define

Q∗(z, t) =
∞∑

m=0

Q(m, t) zm, (B1)

where Q(m, 0) : = (1{m=0}Di j ) and Di j = 1, if i = j ; and = 0, otherwise.

By using Kolmogorov’s forward equation, the derivative of Q(m, t) becomes

d
dt

Q(m, t) = (	 − �)Q(m, t) + 1{m≥1}� Q(m − 1, t),

where � denotes an I × I diagonal matrix with diagonal elements λi . Thus, its unique
solution is

Q∗(z, t) = exp[ 	 − (1 − z) �] t, (B2)

where 	 := (	(i , j)) and e A := ∑∞
n=0

An

n! , for any (I × I ) matrix A.

By using Laplace inverse transform (B1) and the unique solution (B2), we obtain the
joint distribution of X and �(t) at time t when

Q(m, t) = ∂m

∂ zmm!
Q∗(z, t) | z=0.
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Let Q′(m, t) = (1 − κ1)m exp(�κ1 t)Q(m, t), and thus

Q′∗(z, t) =
∞∑

m=0

Q′(m, t) zm

=
∞∑

m=0

(1 − κ1)m exp(�κ1 t)Q(m, t) zm

=
∞∑

m=0

(z(1 − κ1))m exp(�κ1 t)Q(m, t).

The unique solution of Q′∗(z, t) is

Q′∗(z, t) = exp[	 − (1 − (z (1 − κ1))�] t × exp[ �κ1 t]

= exp[	 − ((1 − z) (1 − κ1)�)]t.

Therefore, the Radon–Nikodym derivative of the transition probability can be con-
sidered as

d Q′(m, t)
d Q(m, t)

= (1 − κ1)m exp( �κ1t). (B3)

Finally, we look into the size of the CAT loss, where (Y1, Y2, . . . , Ym) are independent
identically distribution random variables. Hence, the Radon–Nikodym derivative of
the CAT loss can be

f Q′
Y (y1), f Q′

Y (y2), . . . , f Q′
Y (ym) =

[
e−αy1 fY(y1)

(1 − κ1)
e−αy2 fY(y2)

(1 − κ1)
. . .

e−αym fY(ym)
(1 − κ1)

]
.

Thus, under new risk-neutral measure Q′, the new density function of each specific
CAT loss is

f Q′
Y (y) = e−αy fY(y)

(1 − κ1)
.

APPENDIX C
This appendix provides the proof for the derivation of the formula of CatEPut in
Theorem 1. Let V(t; t0) represent the value of the option at time t, which was signed
at time t0 < t and matures at time T . We have the following equation:

V(t; t0) = E QT
[1{L(T)>L+L(t0)}B(t, T)(K −S(T))+ | Ft]. (C1)
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Using the law of expected iteration, Equation (C1) can be rewritten as

E QT
[1{L(T)>L+L(t0)} E QT

(B(t, T)(K −S(T))+ | L( T)) | Ft] = A− B,

where

A = E QT
[1{L(T)>L+L(t0)}E QT

(K B(t, T) 1{S(T)<K } | L(T)) | Ft]

= E QT

{
1

{L(T)>L+L(t0)}
K B(t, T)P QT

(
S(t)

B(t, T)
exp

[
−1

2
σ̃ 2(t, T) + σ̃ (t, T)W̃

−α(L(T) − L(t)) + �κ1(T − t)
1
2

]
< K

) ∣∣∣∣ Ft

}

=
∞∑

m=1

Q(m, T − t) E QT {[
1

{L(T)>L+L(t0)}
K B(t, T)

×φ
(− d MM

2m (L(T) − L(t))
)∣∣�( T − t) = m

]∣∣ Ft
}

=
∞∑

m=1

Q(m, T − t) E QT

{[
1

{ym>L̃}
K B(t, T) φ

(− d MM
2m (ym)

)∣∣�(T − t) = m

] ∣∣∣∣ Ft

}
,

(C2)

where

d MM
2m =

ln
(

S(t)
K B(t, T)

)
− 1

2 σ̃ 2(t, T) − αym + �κ1(T − t)

σ̃ (t, T)
, κ1 = E[1 − exp (−αY)].

B = E QT [
1{L(T)>L+L(t0)}E QT (

S(T) B(t, T) 1{S(T)<K } | L(T)
)∣∣ Ft

]

= E QT
[

1{L(T)>L+L(t0)}S(t) exp
{

− 1
2
σ̃ 2 (t, T) + σ̃ (t, T)W̃

−α(L(T) − L(t)) + �κ1(T − t)
}

1{S(T)<K }
∣∣∣∣ Ft

]
. (C3)

Denote the Radon–Nikodym process for Brownian motion by the following formula

(
d R

d QT

)
t
= exp

{∫ t

0
σ̃ (t, T) dW̃(u) − 1

2

∫ t

0
σ̃ 2(t, T) du

}
. (C4)
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Hence, Equation (C3) can be rewritten as

∞∑
m=1

Q(m, T − t) E QT {
1{ym>L̃}S(t) exp[−αym +�κ1(T − t)]

×φ
(− d MM

1m (ym)
) | �(T − t) = m | Ft

}

d MM
1m =

ln
(

S(t)
K B(t, T)

)
+ 1

2
σ̃ 2(t, T) − αym + �κ1(T − t)

σ̃ (t, T)
, i = 1, 2, . . . , I ,

L(T) − L(t) = ym, L̃ = L + L(t0) − L(t).

APPENDIX D
This appendix provides a detailed proof of Corollary 1.

E QT [
1{L(T)>L+L(t0)}K B(t, T)1{S(T)<K } | Ft

]
=

∞∑
m=1

Q(m, T − t)K B(t, T)P QT
{ m∑

n=1

Yn > L̃ , σ̃ (t, T)W̃ − α

m∑
n=1

Yn <
1
2
σ̃ 2(t, T)

−�κ1(T − t) + ln
(

K B(t)
S(t)

)
| �(T − t) = m | Ft

}
.

(D1)

Because Yn ∼ exp(η), then
∑m

n=1 Yn ∼ �(m, 1
η ) with mean μy = m

η , and variance σ 2
y =

m
η2 . In addition, W̃

d∼ N(0, 1). Let JW = σ̃ (t, T)W̃ − α
∑m

n=1 Yn, JY = ∑m
n=1 Yn, and

Equation (D1) can be rewritten as

∞∑
m=1

Q(m, T − t) K B(t, T)
∫ a1

−∞

∫ ∞

L̃

(η)m exp[−ηv](v)m−1

�(m)
1√

2πσ̃ 2(t, T)

× exp

[
− (u + αv)2

2σ̃ 2(t, T)

]
dv du

=
∞∑

m=1

Q(m, T − t) K B(t, T)
∫ a1

−∞

∫ ∞

L̃

exp
[−(μy

/
σ 2

y
)
v
]
v

(μ2
y/σ

2
y )−1

�
(
μ2

y
/
σ 2

y
)(

μy/σ 2
y
)(σ 2

y /μ2
y)

× 1√
2πσ̃ 2(t, T)

exp

[
− (u + αv)2

2σ̃ 2(t, T)

]
dv du,
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where

a1 = 1
2
σ̃ 2(t, T) − �κ1(T − t) + ln(K B(t, T)/S(t)), i = 1, 2, . . . , I ,

κ1 =
∫ ∞

0
(1 − exp (−αy))η exp(−η)y dy = α

η + α
.

According to the change measure of transition probability matrix, d Q′(m,t)
d Q(m,t) = (1 −

κ1)m exp( �κ1t), we obtain Q(m, t) = Q′(m, T − t) exp[�κ1(T−t)]
(1−κ1)m and hence

E QT
[1{L(T)>L+L(t0)} K B(t, T) 1{S(T)<K } | Ft]

=
∞∑

m=1

Q′(m, T − t) K B(t, T)
exp[�κ1(T − t)]

(1 − κ1)m

∫ a1

−∞

∫ ∞

L̃

exp
[−(μy

/
σ 2

y
)
v
]
v

(μ2
y/σ

2
y )−1

�
(
μ2

y
/
σ 2

y
)(

μy
/
σ 2

y
)(σ 2

y /μ2
y)

× 1√
2πσ̃ 2(t, T)

exp

[
− (u + αv)2

2σ̃ 2(t, T)

]
dv du.

Furthermore,

E QT
[1{L(T)>L+L(t0)}S(T) 1{S(T)<K } | Ft]

=
∞∑

m=1

Q(m, T − t) E QT

[
1{L(T)>L+L(t0)}S(t) exp

{
−1

2
σ̃ 2 (t, T) + σ̃ (t, T) W̃

−α

m∑
n=1

Yn + �κ1(T − t)

}
1{S(T)<K } | �(T − t) = m | Ft

]
.

(D2)

In addition, due to f Q′
Y (y) = e−αy fY(y)

(1−κ1) , the new exponential density under Q′ becomes

f
′
Y(y) = (η + α) exp[−(η + α)y].

Hence, we have

S(t)
∞∑

m=1

Q′(m, T − t) P Q

{ m∑
n=1

YQ′
n > L̃ , σ̃ (t, T)W̃ − α

m∑
n=1

YQ′
n < −1

2
σ̃ 2(t, T)

−�κ2(T − t) + ln
(

K B(t)
S(t)

)
| �(T − t) = m | Ft

}
.

(D3)
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Since YQ′ ∼ exp(η + α), then
∑m

n=1 YQ′
n ∼ �(m, 1

η+α ), and Equation (D3) becomes

S(t)
∞∑

m=1

Q′(m, T − t)
∫ a2

−∞

∫ ∞

L̃

(η + α)m exp[−(η + α)v](v)m−1

�(m)

× 1√
2πσ̃ 2(t, T)

exp

[
− (u + αv)2

2σ̃ 2(t, T)

]
dv du

= S(t)
∞∑

m=1

Q′(m, T − t)
∫ a2

−∞

∫ ∞

L̃

exp
[−(μy

/
σ 2

y + α
)
v
]
v

(μ2
y/σ

2
y )−1

�
(
μ2

y
/
σ 2

y
)(

μy
/
σ 2

y + α
)(σ 2

y /μ2
y)

× 1√
2πσ̃ 2(t, T)

exp

[
− (u + αv)2

2σ̃ 2(t, T)

]
dv du,

where

a2 = −1
2
σ̃ 2(t, T) − �κ2(T − t) + ln(K B(t, T)/S(t)), i = 1, 2, . . . , I ,

κ2 =
∫ ∞

0
(1 − exp (−αy))(η + α) exp(−(η + α))y dy = α

η + 2α
.

APPENDIX E: ALGORITHM FOR THE SEQUENCE OF TRANSITION PROBABILITY

When calculating the CatEPut valuation under the MMPP, we need to evaluate the
transition probability (Equation (8)). Abate and Whitt (1992) present a simple al-
gorithm for numerically inverting probability generating functions based on the
Fourier series method and obtain a simple computation with a convenient error
bound from the discrete Poisson summation formula. A sequence of real num-
bers {P(m, T − t), m ≥ 0} with P(m, T − t) ≤ 1 for all m uses the generating function,
P∗(z, t) = ∑∞

m=0 P(m, t) zm, where z is a complex number. We assume that P∗(z, T − t)
can be evaluated for any given z, and our object is to obtain an approximation
(with predetermined error bound) for P(m, T − t) as a function of P∗(z1, T − t),. . .,
P∗(zm, T − t) for many finite complex numbers z1,. . .,zm. Abate and Whitt provide a
simple algorithm with an error bound. Let i = √−1 and let Re (z) be the real part of
z. For 0 < ε < 1 and m ≥ 1:

| P(m, T − t) − P̃(m, T − t) | ≤ ε2m

1 − ε2m ,

where

P̃(m, T − t) = 1
2mεm

[
P∗(ε, T − t) + (−1)m P∗(−ε, T − t)

+ 2
m−1∑
k=1

(−1)kRe
(

P∗
(

ε exp
(

πki
m

)
, T − t

))]
.
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