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Abstract Many empirical studies suggest that the distribution of risk factors has
heavy tails. One always assumes that the underlying risk factors follow a multivariate
normal distribution that is a assumption in conflict with empirical evidence. We con-
sider a multivariate t distribution for capturing the heavy tails and a quadratic function
of the changes is generally used in the risk factor for a non-linear asset. Although Monte
Carlo analysis is by far the most powerful method to evaluate a portfolio Value-at-Risk
(VaR), a major drawback of this method is that it is computationally demanding. In
this paper, we first transform the assets into the risk on the returns by using a qua-
dratic approximation for the portfolio. Second, we model the return’s risk factors by
using a multivariate normal as well as a multivariate t distribution. Then we provide
a bootstrap algorithm with importance resampling and develop the Laplace method
to improve the efficiency of simulation, to estimate the portfolio loss probability and
evaluate the portfolio VaR. It is a very powerful tool that propose importance sam-
pling to reduce the number of random number generators in the bootstrap setting. In
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the simulation study and sensitivity analysis of the bootstrap method, we observe that
the estimate for the quantile and tail probability with importance resampling is more
efficient than the naive Monte Carlo method. We also note that the estimates of the
quantile and the tail probability are not sensitive to the estimated parameters for the
multivariate normal and the multivariate t distribution.

Keywords Bootstrap · Heavy-tailed · Importance resampling · Monte Carlo
simulation · Multivariate normal distribution · Multivariate t distribution ·
Quadratic approximation · Value-at-Risk · Variance reduction

1 Introduction

Along with the financial commodity unceasing innovation, as well as economic
environment unceasingly globalization at the same time, the investors and the financial
organs faced comparatively formerly a bigger risk to its asset allocation or the invest-
ment strategy formulation. Accordingly, risk-management has practical
experienced a revolution since 1990, when several prosperous institutions failed, as a
result of improperly manipulating derivatives (cf. Duffie and Pan 1997; Jorion 2000).
Value-at-Risk (VaR) has become the most broadly employed risk measurement instru-
ment and application of VaR have also been widely developed to measure and control
risk, to manage risk, and investment management. Many major organizations agree
on public-policy issues and become scrutiny of regulators. For instance, the Group
of Thirty issued G-30 report that is a landmark on derivatives in 1993. JP Morgan
launched its free RiskMetrics service in October 1994 (cf. Morgan 1995), and the
Basle Committee amended the Basel Capital Accord to incorporate market risk capital
requirements for banks in 1996.

Before 2000, the most common VaR implementations rely exclusively on normal
assumptions, in other words, the risk factors are computed from a univariate normal dis-
tribution or a multivariate normal distribution (cf. Morgan 1995; Duffie and Pan 1997;
Jorion 2000). However, there is much empirical evidence suggesting that risk factors,
such as log-returns of US stocks, do not follow a normal distribution (cf. Mandelbrot
1963; Fama 1965; Blattberg and Gonedes 1974; Rachev and Mittnik 2000; Cont 2001).
These heavy tails are particularly troublesome because VaR attempts to capture the
behavior of the portfolio return in the tail. Since the VaR estimation for high-quantiles
is sensitive to the assumed distribution, the hypothesis of normal should be revisited
and heavy-tailed distributions that assign higher probabilities to large moves must be
considered. In this paper, for practical purposes, we extend the assumption of com-
monly used multivariate normal distribution to the multivariate t distribution for the
portfolio log-returns.

In order to evaluate a portfolio VaR, Monte Carlo analysis is by far the most pow-
erful method, as it can be used to calculate the distribution of the portfolio returns.
However, the biggest drawback of this method is that it is computationally demand-
ing when there are hundreds of securities (cf. Jorion 2000; and Hull 2000). Many
investigations have proposed using importance sampling to improve the efficiency of
evaluating the portfolio VaR or quantile. (cf. Johns 1988; Goffinet and Wallach 1996;
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Glasserman et al. 2000, 2002; Glasserman 2003). Importance sampling can reduce the
sample size to save computational time with a certain accuracy. The main idea behind
importance sampling is the change of measure. That is, we carry out a simulation with
an importance tilting measure instead of the original probability measure, to obtain
the accurate estimator for the portfolio VaR. (Glasserman et al. 2002, 2003) consid-
ered the idea of combining importance testing with stratified sampling for further
reduction in variance. The idea of importance sampling can also be used to price the
path-dependent and early exercise option (cf. Glasserman et al. 1999a,b; Glasserman
2003).

The bootstrap algorithm has been applied to finance and risk management (cf. Efron
1979; Efron and Tibshirani 1993; Horowitz 2001; Jorion 2000). The main idea of the
bootstrap algorithm is to approximate the distribution of the portfolio VaR by using its
bootstrap analogue, and then use the analogue to approximate the portfolio VaR. Boot-
strap is a statistical resampling method and there are two approaches for the bootstrap
algorithm: parametric bootstrap and nonparametric bootstrap (cf. Efron and Tibshirani
1993). The parametric bootstrap are two steps to process. First, it uses the observed
data to estimate the unknown parameters of the given distribution. Second, from the
estimated distribution constructs the sampling distribution of the VaR by using the
bootstrap algorithm. Without any assumption of the underlying distribution, the non-
parametric bootstrap uses the observed data to construct the sampling distribution of
VaR.

There are two aspects of this paper. First, we provide the parametric bootstrap
method to evaluate VaR in financial assets. Next, we introduce an importance resam-
pling technique for more efficient simulation in bootstrap replications, and for greater
accuracy in the portfolio VaR estimation. Further extension from the parametric boot-
strap to the nonparametric bootstrap with importance resampling can be seen in Fuh
and Hu (2004), in the setting of i.i.d. random variables.

The rest of this paper is organized as follows. In Sect. 2, both linear and non-linear
portfolio VaR, and the bootstrap method are discussed. Importance resampling within
the bootstrap procedure is also proposed in Sect. 2. In Sect. 3, we evaluate the VaR
when assuming a normal distribution or t distribution of the linear asset return. Both
of them have closed form tilting point. In Sect. 4, we compute the VaR only assuming
a t distribution of the non-linear asset return. In Sect. 5, we first report the simulation
results, which demonstrate the relative efficiency of naive Monte Carlo and impor-
tance sampling. Then, we provide the comparison of the default bootstrap algorithm
and the bootstrap algorithm with importance resampling. The sensitivity analysis of
the tail probability and the quantile are also given. As an illustration of our proposed
methods, in Sect. 6, we present an empirical study based on three stock index returns
and three option returns. Concluding remarks and further research are presented in
Sect. 7.

2 Value-at-Risk

In the following we use a notation similar to that one commonly used in VaR litera-
ture. VaR is defined as the quantile l p of the loss in portfolio value L during a holding
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period of a given time horizon t (cf. Glasserman et al. 2002). The VaR is a standard
benchmark of the disclosure of financial risk (cf. Duffie and Pan 1997; Jorion 2000).
Thus the VaR is the loss in market value over the time horizon t that is exceeded
with probability 1 − p. Our task is to estimate the tail probability p for a given rp,
and the quantile rp for a given p. Let the portfolio V (t,˜S(t)) denote the function
of risk factor S(t) and time t , where ˜S(t) = (S1(t), . . . , Sn(t))′ is the n underly-
ing assets of the portfolio at time t , and the value of the portfolio at time t + 1 is
V (t +1,˜S(t +1)). The loss in portfolio value during the holding period is L = −�V
where�V = V (t +1,˜S(t +1))−V (t,˜S(t)), and the VaR, l p, associated with a given
probability p is defined by

P(L > l p) = p. (2.1)

Assume the density of the portfolio return is symmetric and the loss distribution is
absolutely continuous. Here, we can change the density of the portfolio loss into the
density of the portfolio return,

P(R(t) > rp) = p, (2.2)

where rp = 2µ− l p/V , and µ denotes the mean of the portfolio. Because we model
the distribution of the asset return, the aim of the following subsection is to transform
the portfolio from the assets into the return in linear and non-linear portfolios.

2.1 Linear Portfolio

The analysis of the linear portfolio, which is the linear combination of investment
assets. Let a portfolio weight vector w̃(t) = (w1(t), . . . , wn(t))′ denote the investment
assets for the portfolio value, where wi (t) is an adapted process, i.e., Ft -measurable,
and r̃(t) = (r1(t), . . . , rn(t))′ is a vector of the discrete return of the assets, where
ri (t) = (Si (t +1)− Si (t))/Si (t). Then the return of the portfolio at time t is the linear
combination of the asset returns multiplied by the portfolio weight vector, denoted as

R(t) = w̃′(t)r̃(t). (2.3)

For Eq. 2.3, we are interested in the event A = {r̃(t) : f (R(t)) = R(t) − rp =
w̃(t)′r̃(t) − rp > 0}. Hence, what we are interested in is the return R(t) of the port-
folio by modeling the asset return r̃(t), and investigating p and rp by the parameter
bootstrap algorithm. The linear portfolio is satisfactory for small movements in the
underlying asset. A better approximation may be achieved by going to higher order
and incorporating the gamma or convexity effect.

2.2 Quadratic Approximation

Glasserman (2003) develops a method for calculating the distribution
of the change in portfolio value over a fixed horizon assuming that the changes in
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underlying risk factors over the horizon are described by a multivariate t distribution.
Also, we assume that the change in portfolio value is a quadratic function of the change
in the risk factors. By the delta-gamma approximation (quadratic approximation), the
change in portfolio value for the non-linear portfolio can be written as

V (t + 1, S̃(t + 1))− V (t, S̃(t)) ≈ ∂V

∂t
�t + δ′�S̃(t)+ 1

2
�S̃(t)′��S̃(t),

where ∂V
∂t is the change of the portfolio from t to t + 1, δi = ∂V

∂Si
denotes the delta

approximation of the portfolio for the change of the asset i , δ′ = [δ1, . . . , δn] is the
vector of the delta approximation, �i j = ∂2/∂Si∂S j is the gamma approximation of
the portfolio for the change of the asset i and asset j , � is the matrix of the gamma
approximation, and�S̃(t)′ = [�S1(t), . . . ,�Sn(t)] denotes the change of the assets.
More importantly, the effect of the gamma is to introduce a term that is non-linear in
the random component of �S̃(t). Hence, the loss in portfolio, L , can be rewritten as

L ≈ a0 + a′�S̃(t)+ (�S̃(t))′ A�S̃(t)

= a0 + a′
1r̃ + r̃ ′ A1r̃ ,

where a0 = ∂V
∂t �t is a scalar, a = −δ, A = − 1

2� is a m × m matrix, a′
1 =

[−S1δ1, . . . ,−Snδn], (A1)i j = − 1
2�i j Si S j , and r̃ ′ = [�S1(t)

S1(t)
, . . . ,

�Sn(t)
Sn(t)

] denotes
the vector of the discrete returns in the assets. One obvious conclusion is that positive
gamma is good for a portfolio and negative gamma is bad. With a positive gamma the
downside is limited, but with a negative gamma the upside is limited.

2.3 Bootstrap Method

The bootstrap method is able to estimate measures of variability and bias. It can be
employed in nonparametric or in parametric model. In this research, we consider a para-
metric bootstrap method. Suppose an empirical data set, r̃ F = (r̃ F (1), . . . , r̃ F (T ))
of size T from a distribution F . For instance, a multivariate normal or a multivari-
ate t distribution are considered in this article. The parameters of the distribution are
estimated by the method of maximum likelihood estimate or the moment estimate.
To obtain the empirical distribution F̂ , according to the estimators of the parameters
of the distribution. For example, in the case of a normal distribution N (µ, σ ) with
unknown parameters µ and σ , we can use the estimators of the sample mean µ̂ and
standard deviation σ̂ , to obtain the empirical distribution N (µ̂, σ̂ ).

Define a bootstrap sample r̃ F,∗ = (r̃ F (∗, 1), . . . , r̃ F (∗, T )) as a random sample of
size T drawn from ̂F . That is,

̂F −→ r̃ F,∗ = (r̃ F (∗, 1), . . . , r̃ F (∗, T )), (2.4)

where r̃ F (∗, t), t = 1, 2, . . . , T , are i.i.d. random variables from a multivariate ̂F
distribution. In general, we can employ the Monte Carlo simulation to approximate it
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since the bootstrap distribution is difficult to obtain. We can generate many possible
realizations by repeating this simulation to obtain an accurate distribution of all future
returns. To be precise, corresponding to a bootstrap dataset r̃ F,∗, we have a bootstrap
replication of ̂F . Then the bootstrap estimate of the probability of interest is

p̂F∗ = 1

T

T
∑

t=1

1AF (∗,t), (2.5)

where AF (∗, t) = {r̃ F (∗, t) : f (RF (∗, t)) = RF (∗, t) − r F
p = w̃′(t)r̃ F (∗, t) −

r F
p >0}, where r̃ F (∗, t) is the t th return vector sample of a bootstrap drawn from the

multivariate ̂F distribution, RF (∗, t) is a bootstrap dataset of the portfolio return from
a vector of the returns r̃ F (∗, t), and r F

p denotes the quantile or VaR of RF (t). For
bootstrap resampling with B replications, we can estimate the tail probability and the
standard error seF

p of the tail probability estimate by

p̄F =
∑B

b=1 p̂F
b

B
, (2.6)

ŝeF
p =

(

∑B
b=1( p̂

F
b − p̄F )2

B − 1

)1/2

. (2.7)

By using this method we generate a distribution of possible future scenarios based on
historical data. This method ensures that we capture any correlation that may exist
between assets. The advantage of this method is that it incorporates any correlation
between assets and non-Normality in asset price changes. The parametric bootstrap
procedure for estimating the probability and the standard error of p̂ from the observed
data r̃(t) can be described as follows.

(1) Obtain the empirical distribution ̂F . Here, the observed data r̃ F is assumed to
come from distribution F , the unknown parameters of the distribution are esti-
mated by the maximum likelihood estimate or the method of moment.

(2) Select B independent bootstrap samples r̃ F,1, r̃ F,2, . . . , r̃ F,B, each consisting of
T data values drawn with replacement from ̂F .

(3) Evaluate the bootstrap replication corresponding to each bootstrap sample,

p̂F
b = 1

T

T
∑

t=1

1AF (b,t) b = 1, 2, . . . , B, (2.8)

where AF (b, t) = {r̃ F (b, t) : f (RF (b, t)) = RF (b, t)− r F
p = w̃′(t)r̃ F (b, t)−

r F
p > 0}.

(4) Estimate the probability p and standard error sep( p̂) by using Eqs. 2.6 and 2.7.
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Define r F
p as the solution of the Eq. 2.2,

P(RF (t) ≤ r F
p ) = 1 − p, (2.9)

where r F
p is the quantile of the return of the portfolio RF (t) at time t for the distribu-

tion F of the return r̃ F (t). We consider the problem of estimating the (1− p) quantile
of the portfolio return RF (t), where a vector of the asset returns r̃ F (t) is assumed
come from the multivariate distribution F . In this paper, the vector of the returns of
the assets is assumed to be a multivariate normal or a multivariate t distribution. The
bootstrap estimate of the quantile r F

p is the solution r̂ F
p of

P(RF (t) ≤ r̂ F
p ) = 1 − p. (2.10)

For the sake of notations (cf. Hall 1990a,b, 1992), we shall define

r̂ F
p = ̂H−1

F (p) = inf{x : ̂HF (x) ≥ (1 − p)}, (2.11)

where ̂HF (x) = P(R(t) ≤ x). The estimating process of bootstrap algorithm for the
quantile r̂ F

p , and the standard error of ŝeF
p can be described as follows (cf. Efron and

Tibshirani 1993):

(1) Obtain the empirical distribution ̂F .
(2) Select B independent bootstrap samples r̃ F,1, r̃ F,2, . . . , r̃ F,B, each consisting of

T data values drawn with replacement from ̂F .
(3) Evaluate the quantile of the bootstrap sample from Eq. 2.12,

r̂ F
p (b) = ̂H−1

F,b(p) = inf{x : ̂HF,b(x) ≥ (1 − p)}, b = 1, 2, . . . , B, (2.12)

where r̂ F
p (b) is the (1 − p)T th largest value of the bth bootstrap sample.

(4) Estimate the quantile r F
p and standard error seF

p as

r̄ F
p =

∑B
b=1 r̂ F

p (b)

B
, (2.13)

ŝeF
p =

(
∑B

b=1(r̂
F
p (b)− r̄ F

p )

B − 1

)1/2

. (2.14)

2.4 Parametric Bootstrap with Importance Resampling

In this subsection, we discuss the method of parametric bootstrap with importance
resampling to evaluate VaR in financial markets. To be precise, the problem is how
to simulate a rare event in order to find its probability? This is a difficult problem for
simulating large random number generators. As an illustration for this type of prob-
lem, the reader can be referred to Bucklew (1990) who consider a sequence xi of i.i.d.
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Bernoulli random variables with probability density

P{xi = 1} = p = 1 − P{xi = 0}.

Suppose that we wish to estimate from the observed sequence the parameter p, and
have at most a β error on p with α confidence. In other words, we must have

P{|p − p̂| ≤ βp} = α,

where p̂ is the estimate of p. Since p̂ ≡∑T
i=1 xi/T is the maximum likelihood esti-

mate of p, and the variance of a Bernoulli(p) random variable is p(1 − p). For a rare
event as p is very small, the variance of xi is approximately p. Hence the variance of
p̂ is

p(1 − p)

T
≈ p

T
.

By the standard Central Limit Theorem approximation, we have

P{|p − p̂| ≤ βp} = P

{∣

∣

∣

∣

∣

1

T

T
∑

i=1

xi − p√
p

∣

∣

∣

∣

∣

≤ β
√

p

}

≈ P{|Z | ≤ β
√

pT }, (2.15)

where Z is the standard normal distribution. For a given standard normal distribution,
we have P{|Z | ≤ z} = 0.95, which implies that z ≈ 2, i.e., two standard deviations
about the mean capture 95% of the probability of the standard normal distribution.
Hence, if β = 0.2, then 0.2

√
pT = 2 implies that T = 100/p. Therefore, if p is

somewhere around the order 10−6, we would need 108 ≈ 227 number of samples to
estimate it to the desired level of precision. If β = 0.1 and p = 10−2, we require
T = 40, 000 ≈ 216. Typical random number generators have a period of anywhere
from 215 to 232, with the latter number considered a long period. The number of
“good” random numbers that one generates is typically much less than the period of
the generator. That is the motivation for us to propose importance sampling to reduce
the number of random number generators in the bootstrap setting.

3 Portfolios of Linear Assets

We first introduce importance sampling for a multivariate normal and a multivariate t
distribution. That is, we need to choose an importance sampling distribution to make
the rare event a central event. For general accounts of importance sampling, the reader
is referred to Bucklew (1990) and Glasserman (2003) for details.

3.1 Risk Factors with a Multivariate Normal Distribution

In this subsection, we propose a parametric bootstrap process with importance
resampling. To estimate p in an n-dimensional Ito process in the continuous financial
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models. Assume that the vector of the asset price follows an n-dimensional Ito
process, then it is also denoted that the vector of the asset returns follows the mul-
tivariate normal distribution in discrete time data. Set r N

i (t) = �Si (t)/Si (t), i =
1, 2, . . . , n, then the vector of the asset returns follows

r̃ N (t) =
⎡

⎢

⎣

r N
1 (t)
...

r N
n (t)

⎤

⎥

⎦
=
⎡

⎢

⎣

µ1 + σ1ε1
...

µn + σnεn

⎤

⎥

⎦
= µ̃+ σ ε̃. (3.1)

Our basic approach is to use model (3.1) to approximate the portfolio return loss prob-
ability, and then apply it to obtain importance resampling distribution for variance
reduction.

The event AN (t) = {r̃ N (t) : f (RN (t)) = w̃′(t)r̃ N (t) − r N
p > 0} is interested by

risk management. We can rewrite

f (RN (t)) = w̃′(t)r̃ N (t)− r N
p = σ̃

′
wε̃ + w̃′(t)µ̃− r N

p (3.2)

d= K Z + w̃′(t)µ̃− r N
p , (3.3)

where σ̃w = w̃′(t)σ = (w1(t)σ1, w2(t)σ2, . . . , wn(t)σn)
′, K =

√

σ̃
′
w	σ̃w, Z is a

standard normal distribution, r N
p (r N

p = K z p + w̃′(t)µ̃) is the quantile of the portfolio

return with a multivariate normal assumption,
d= means equal in distribution, and z p

is the quantile of the standard normal density. By using the Cholesky decomposition
for 	, we have

f (RN (t)) = w̃′(t)r̃ N (t)− r N
p

d= σ̃ ′
wC˜Z + w̃′(t)µ̃− r N

p (3.4)

d= DZ + w̃′(t)µ̃− r N
p , (3.5)

where C = [ci j ] is used by Cholesky decomposition for 	, and

D =
√

∑n
j=1(

∑n
i=1wi (t)σi ci j )2 = K .

Following the same idea as that in Glasserman et al. (1999a), we next describe how
to select the tilting measure in risk factors. Standard exponential embedding leads to

dP
θ
ãN

dP
= exp{θ f (RN (t))− ψN (θ)}, (3.6)

where dP is the original probability measure, and dP
θ
ãN (θ)

is the tilting measure from

the multivariate normal distribution M N (0̃, I ) to the multivariate normal distribution
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M N (ãN (θ), I ). Here

ψN (θ) = log E(exp{θ f (RN (t))}) = θ(w̃′(t)µ̃− r N
p )+ 1

2
θ2 K 2. (3.7)

Let AN
θ (t) = {r̃ N

θ (t) : f (RN
θ (t)) = w̃′(t)r̃ N

θ (t)−r N
p > 0} be the event to be simulated.

Denote

p̂N (θ) = 1AN
θ (t)

exp{−θ f (RN
θ (t))+ ψN (θ)}, (3.8)

and let r̃ N
θ (t) be drawn from the tilting measure P

θ
ãN (θ)

, then the estimator 1AN (t) is
unbiased. That is,

E(1AN (t)) = Eθ (1AN
θ (t)

exp{−θ f (RN
θ (t))+ ψN (θ)}) = Eθ ( p̂N (θ)) = p.

Therefore, we only compute the second moment of the estimator for the tail probability

M N
2 (θ) = Eθ (1AN

θ (t)
exp{2ψN (θ)− 2θ f (RN

θ (t))})

= exp{ψN (θ)− θw̃′(t)µ̃+ θr N
p + 1

2
θ2 K 2}

∫ ∞

λ1

φ(z)dz, (3.9)

where λ1 = θK + (r N
p − w̃′(t)µ̃)/K , and φ(z) is the standard normal density. Take

log and differentiate θ to obtain

2θK − φ(λ1)

1 −�(λ1)
= 0, (3.10)

where � is the standard normal cumulative density function. Since it is difficult to
find the value of θ by minimizing M N

2 (θ), we will minimize its upper bound (cf.
Glasserman et al. 1999a) as follows,

M N
2 (θ) = Eθ (1AN

θ (t)
exp{2ψN (θ)− 2θ f (RN

θ (t))})

≤ exp{ψN (θ)}, (3.11)

because exp{−θ f (RN
θ (t))} ≤ 1 (∵ f (r̃ N

θ (t)) > 0 and θ > 0), and 1AN
θ (t)

≤ 1. Taking
log of the bound equation (3.11) and differentiating θ we have

θN
g = r N

p − w̃′(t)µ̃
K 2 . (3.12)
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We can also find the new upper bound of the second moment for the estimate of
the tail probability by using the inequality (Durrett 1996), the Laplace method,

∫ ∞

λ

exp{−z2}dz ≤ λ−1 exp{−λ2/2}. (3.13)

Compute the new second moment upper bound,

M N
2 (θ) = Eθ (1AN

θ (t)
exp{2ψN (θ)− 2θ f (R(t))})

≤ exp

⎧

⎨

⎩

ψN (θ)− 1

2

(

r N
p − w̃′(t)µ̃

K

)2
⎫

⎬

⎭

1√
2π

K

r N
p − w̃′(t)µ̃+ θK 2 .

(3.14)

Then, taking the new bound equation (3.14) into log and differentiating θ , we obtain
the solution of θN

l for the second moment of tail probability by the inequality (Durrett
1996) in the multivariate normal distribution,

θN
l =

√

K 2 + (r N
p − w̃′(t)µ̃)2

K 4 . (3.15)

Hence, we obtain the nearly optimal tilting probability measure for the multivariate
normal distribution θN

g (cf. Glasserman et al. 1999a)

dP
θ
ãN = exp{θ f (RN (t))− ψN (θ)}dP

=
(

1√
2π

)n

exp

⎧

⎨

⎩

−
˜Z

′
ãN (θ)

I˜ZãN (θ)

2

⎫

⎬

⎭

, (3.16)

where I is the identity matrix, ˜ZãN (θ) = (Z1 − θ∑n
i=1 σiwi (t)ci1, . . . , Zn − θ∑n

i=1

σiwi (t)cin)
′. That is, ˜ZãN (θ) ∼ M N (ãN (θ), I ), where ãN (θ) = (θ

∑n
i=1 σiwi (t)

ci1, . . . , θ
∑n

i=1 σiwi (t)cin)
′. For simplicity, we use dP = φ(Z) in Eq. 3.6 as the

original measure, then the tilting measure is

dP
θ
aN (θ)

= exp{θ f (RN (t))− ψN (θ)}dP

= 1√
2π

exp

{

− (Z − θK )2

2

}

, (3.17)

where aN (θ) = θK . Therefore, we may generate portfolio samples under dP
θ
ãN (θ)

and estimate P( f (RN
θ (t)) >0) using the expression (3.8) by substituting θN

g for θ in
Eq. 3.12.

Now, we present the parametric bootstrap algorithm with importance resampling
for a multivariate normal distribution as follows:
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(1) Obtain the empirical distribution M N ( ˆ̃µ, 	̂), where ˆ̃µ = (µ̂1, . . . , µ̂n)
′. The

observed data r̃ N is assumed to come from the multivariate normal distribution
M N (µ̃,	). Unknown parameters µ̂i , σ̂i , and ρ̂i j are estimated by using the
method of moment estimates

µ̂i = 1

T

T
∑

t=1

ri (t), (3.18)

σ̂i =
(

1

T − 1

T
∑

t=1

(ri (t)− µ̂i )
2

)1/2

, (3.19)

ρ̂i j =
∑T

t=1(ri (t)− µ̂i )(r j (t)− µ̂ j )

(
∑T

t=1(ri (t)− µ̂i )2
∑T

t=1(r j (t)− µ̂ j )2)1/2
, (3.20)

and

	̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 ρ̂12 ρ̂13 . . . ρ̂1d

ρ̂21 1 ρ̂23 . . . ρ̂2d

ρ̂31 ρ̂32 1 . . . ρ̂3d
...

...
...
. . .

...

ρ̂n1 ρ̂n2 ρ̂n3 . . . 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(2) Generate ˜ZãN (θ) from the multivariate normal distribution M N (ãN (θ), I ), use
the tilting measure to obtain B independent bootstrap samples r̃ N ,1, r̃ N ,2, . . . ,

r̃ N ,B, each consisting of T data values drawn by the tilting probability measure.
(3) Evaluate the bootstrap replication corresponding to each bootstrap sample,

p̂N
b (θ) = 1

T

T
∑

t=1

1AN
θ (b,t)

exp{−θ f (RN
θ (b, t))+ ψN (θ)} b = 1, 2, · · · , B,

(3.21)

where AN
θ (b, t) = {r̃ N

θ (b, t) : f (RN
θ (b, t)) = RN

θ (t) − r N
p = w̃′(t)r̃ N

θ (b, t) −
r N

p > 0}, and substitute θN
g into θ , or θN

l into θ .
(4) Estimate the probability p and standard error seN

p by using B replications as

p̄N (θ) =
∑B

b=1 p̂N
b

B
, (3.22)

ŝeN
p (θ) =

(

∑B
b=1( p̂

N
b (θ)− p̄N (θ))2

B − 1

)1/2

. (3.23)
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3.2 Risk Factors with a Multivariate t Distribution

Although the multivariate normal distribution assumption is commonly used in the
literature, many empirical studies suggest that the distribution has heavy tails. One of
the most pervasive features observed across equity, foreign exchange, and interest rate
markets is that they have kurtosis excess, so the distribution of the asset has leptokur-
tic features. That means, compared to a normal distribution with the same mean and
standard deviation, the true distribution assigns greater probability to extreme market
moves. Clearly, extreme moves are of paramount importance in risk management and
should be modeled accurately to calculate VaR.

Now, we model the changes in risk factors by using a multivariate t distribution.
We are mainly interested in values of ν roughly in the range of 3–7, since this seems
to be the level of heaviness typical of market data per Glasserman et al. (2002). As ν
tends to infinity, the t distribution converges to the normal distribution, so the normal
may be viewed as a special or benchmark, limiting case of the t distribution. Because
it is characterized by the matrix	, the multivariate t shares some attractive properties
with the multivariate normal while possessing heavy tails. The linear portfolio case
with multivariate t distribution can be solved by similar method, obtaining

θT
g = r T

p − w̃
′
(t)µ̃

K 2 , (3.24)

and

θT
l =

(r T
p − w̃′(t)µ̃)+

√

(r T
p − w̃′(t)µ̃)2(ν2 + ν + 1)+ K 2ν2

(ν + 1)K 2 . (3.25)

Compared with (3.12), (3.24) is the tilting formula for the multivariate t distribution.
The formulations of (3.12) and (3.24) are quite similar, but with different r i

p, i = N , T .
Note that as ν tends to infinity, r T

p converges to r N
p and the tilting points are the same.

By using the same argument, it is easy to see that (3.25) will converge to (3.15), as ν
tends to infinity.

4 Portfolios of Non-Linear Assets

We use the structure of the multivariate t distribution to develop efficient methods
for calculating portfolio loss probability, capturing heavy tails. At the end of Sect.
3, we compare the limit result for the t distribution that it will converge to the nor-
mal distribution. Here, we consider only the more complicated event with quadratic
approximation and multivariate t distribution.
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4.1 Risk Factors with a Multivariate t Distribution

Assume the return of the assets is equal to the mean ũ, and a multivariate t distribution
with the degree of freedom ν as follows:

r̃ = ũ + tν,

where tν = (ε1,ε2,...,εn)√
Y/ν

= ε̃√
Y/ν

has a multivariate t distribution with the degree of

freedom ν, ε̃ = (ε1, ε2, . . . , εn) denotes a multivariate normal distribution with zero
mean vector and covariance matrix 	. Let CC ′ = 	, and C ′ A1C = �. Then

L = a0 + a′
1r̃ + r̃ ′ A1r̃

= b0 + a′
1tν + (tν)′ A1(tν)

where b0 = a0 + a′
1ũ + ũ′ A1ũ. Thus, let Q ≡ L − b0, then

Q = a′
1tν + (tν)

′ A1(tν)
d= a′

1C X + X ′C ′ A1C X

= b′ X + X ′�X =
n
∑

j=1

b j X j + λ j X2
j (4.1)

where b′ = a′
1C . Let tν

d= C X = C Z̃√
Y/ν

, where Z̃ has a multivariate normal distri-
bution with zero mean vector and identity covariance matrix I , and

X = (X1, . . . , Xn) = Z̃√
Y/ν

,

where X j = Z̃ j√
Y/ν

are independent.
An attempt to apply similar ideas to a multivariate t distribution seems doomed by

the failure of (4.1) to generalize to the heavy-tailed setting. In any model in which
the risk factors are heavy tailed, one cannot define an exponential change of measure
based on Q because E[exp(θQ)] is infinite for any θ > 0; while most successful
applications of importance sampling are based on an exponential change of measure.
Instead, we use an indirect transform analysis through which we are able to compute
the distribution of interest. Similarly, we are interested in event A, and through the
indirect approach, we have

P(Q > 0) = P

(

Y

ν
Q > 0

)

. (4.2)

It is interesting for us to calculate loss probabilities P(L > x) assuming equality in
(4.1). Therefore, the problem becomes calculating VaR, that is, to find a quantile l1−p
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for which P(L > l1−p) = p. The probability of the loss can be rewritten

P(L > l1−p) = p = P(b0 + Q > l1−p)

= P(Y
ν
(Q − x) > 0)

= P(Qx > 0),

where x = l1−p − b0 and Qx = Y
ν
(Q − x).

Then, use the exponential change of measure (Glasserman et al. 2000, 2002)

dQ

dP
= exp{θQx − ψ(θ)}, (4.3)

whereψ(θ) = log E(exp(θQx )). In Glasserman et al. (2002), they obtain the moment
generating function of Qx as follows:

φ(θ) =
⎛

⎝1 + 2θx

ν
−

n
∑

j=1

θ2b2
j

(1 − 2θλ j )ν

⎞

⎠

− ν
2 n
∏

j=1

1
√

1 − 2θλ j
, (4.4)

and

ψ(θ) = logφ(θ) = −ν
2

log

⎛

⎝1 + 2θx

ν
−

n
∑

j=1

θ2b2
j

(1 − 2θλ j )ν

⎞

⎠

+
n
∑

j=1

log
1

√

1 − 2θλ j
. (4.5)

Let Aθ (t) = {r̃θ (t) : Qx > 0} be the event of interest to be simulated for the tail
probability, and let the estimator of the tail probability be

p̂ = e−θQx +ψ(θ)1{Qx>0}.

The estimator p̂ is unbiased in the sense that

Eθ ( p̂) = E(1{Qx>0})

= P(Qx > 0) = p.

123



276 S.-K. Lin et al.

Therefore, we compute the second moment of estimator for the tail probability

Eθ ( p̂
2) =

∫ ∞

−∞
exp

⎧

⎨

⎩

yxθ

ν
+ ψ(θ)+

n
∑

j=1

b2
jθ

2 y

2(1 + 2λ jθ)ν

⎫

⎬

⎭

×
n
∏

j=1

1
√

1 + 2λ jθ

∫ ∞

−∞
· · ·
∫ ∞

−∞

(

1√
2π

)n

× exp

{

−
∑n

j=1(z
∗
j )

2

2

}

1{∑n
j=1 c j (z∗

j −d j )
2>g}dz∗

1, . . . , dz∗
n fy(y)dy,

(4.6)

where

z∗
j =

z j + b j θ

1+2λ j θ

√

y
ν

1√
1+2λ j θ

, c j = λ j

1 + 2λ jθ
, d j =

[

b jθ
√

1 + 2λ jθ
−
√

1 + 2λ jθb j

2λ j

]

×
√

y

ν
, and g = y

ν
x +

n
∑

j=1

b2
j y

4λ jν
.

Then, by the exponential change of measure, we have

dP
θ
ãT (θ),h(θ)

dP0̃,2
= exp{θQ(RT (t))− ψT (θ)}, (4.7)

where dP0̃,2 is the original multivariate t distribution with two independent com-

ponents ˜Z ∼ M N (0̃, I ), and Y ∼ G(ν/2, 2), dPãT (θ),h(θ) is the new multivari-
ate t distribution with two independent components ˜Z ∼ M N (ãT (θ), I ), and Y ∼
G(ν/2, h(θ)). We use the estimator

p̂T (θ) = 1AT
θ (t)

exp{−θQ(RT
θ (t))+ ψT (θ)}, (4.8)

where AT
θ (t) = {r̃ T

θ (t) : f (RT
θ (t)) = w̃′(t)r̃ T

θ (t)− r T
p > 0} and

ψT (θ) = log E(exp{θQ(RT (t))})

= log

(

1 − 2θ(w̃
′
(t)µ̃− r T

p )+ θ2 K 2

ν

)−ν/2
. (4.9)

Note that the estimator 1A is unbiased in the sense that

E(1A) = Eθ (1AT
θ (t)

exp{−θQ(RT
θ (t))+ ψT (θ)}) = Eθ ( p̃T (θ)) = p.
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Note that Q(RT (t)) is not heavy-tailed and so, unlike f (RT (t)), its moment gen-
erating function exists. Therefore, we can compute the second moment as follows,

MT
2 (θ) = Eθ (1AT

θ (t)
exp{2ψT (θ)− 2θQ(RT

θ (t))})

= E(1AT
θ (t)

exp{ψT (θ)− θQ(RT
θ (t))})

≤ exp{ψT (θ)}, (4.10)

because exp{−θQ(RT
θ (t))} ≤ 1 (∵ Q(r̃ T

θ (t)) > 0 and θ > 0), and 1AT
θ (t)

≤ 1. While

finding the value of θ to minimize MT
2 (θ) is difficult, it is a simple matter to minimize

the upper bound in equation 4.8(cf. Glasserman et al. 2002). Hence we can obtain θT
g ,

∂ψT (θ)

∂θ
|θ=θT

g
= 0, (4.11)

by differentiating θ with the bound equation (4.10). Or we suggest to use Laplace
method to get new θ in Appendix 1. Although the solution of θ for the multivar-
iate normal and t distribution are the same, the new tilting measures are different.
Therefore, to obtain the tilting measure, we first twist the original gamma distri-
bution Y ∼ G(ν/2, 2) to the new gamma density Yh(θ) ∼ G(ν/2, h(θ)), where
h(θ) = 2ν/(ν − 2w̃′(t)µ̃θ + 2r T

p θ − θ2 K 2). Under the given Yh(θ), we twist the

original multivariate normal density ˜Z that follows M N (0̃, I ) to the new multivariate
normal density ˜ZãT (θ) to follow M N (ãT (θ), I ). Appendix 2 provides the details.

When ν tends to infinity, we have

h(θ) → 2, (4.12)

and

Yh(θ)

ν
→ 1 in probability. (4.13)

Therefore, as ν → ∞,

˜XãT (θ),h(θ) =
˜ZãT (θ)
√

Yh(θ)
ν

→ ˜ZãN (θ). (4.14)

That is, the new tilting measure for the multivariate t distribution converges to the new
multivariate normal distribution as ν tends to infinity.

To estimate the tail probability, the parametric bootstrap algorithm with importance
resampling for the multivariate t distribution can be described as follows:

(1) Obtain the empirical distribution ˆ̃µ + σ̂˜X with the degree of freedom ν. The
observed data r̃ T are taken from a multivariate t distribution µ̃ + σ˜X with the
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degree of freedom ν. Unknown parameters µ̂i , σ̂i , and ρ̂i j are estimated by
the method of moment estimates as follows,

µ̂i = 1

T

T
∑

t=1

r T
i (t), (4.15)

σ̂i =
(

(ν − 2)
∑T

t=1(r
T
i (t)− µ̂i )

2

νT

)1/2

, (4.16)

ρ̂i j =
∑T

t=1(r
T
i (t)− µ̂i )(r T

j (t)− µ̂ j )

(
∑T

t=1(r
T
i (t)− µ̂i )2

∑T
t=1(r

T
j (t)− µ̂ j )2)1/2

. (4.17)

(2) Generate B independent bootstrap samples Y 1
h(θ),Y 2

h(θ), . . . , Y B
h(θ) from the

gamma distribution �(
ν

2
, h(θ)), and given Y 1

h(θ),Y 2
h(θ), . . . ,Y B

h(θ), generate B

independent bootstrap samples ˜Z1
ãT (θ)

,˜Z2
ãT (θ)

, . . . ,˜Z B
ãT (θ)

from the multivariate

normal distribution M N (ãT (θ), I ), then we obtain B independent bootstrap sam-

ples r̃ T,1
θ , r̃ T,2

θ , . . . , r̃ T,B
θ , by ˜Xb

ãT (θ),h(θ)
=

˜Zb
ãT (θ)

√

Y b
h(θ)
ν

and r̃ T,b
θ = ˆ̃µ+ σ̂˜Xb

ãT (θ),h(θ)
,

each consisting of T data values drawn from the tilting measure.
(3) Evaluate the bootstrap replication according to each bootstrap sample,

p̂T
b (θ) = 1

T

T
∑

t=1

1AT
θ (b,t)

exp{−θQ(RT
θ (b, t))+ ψT (θ)},

b = 1, 2, . . . , B, (4.18)

where Q(RT
θ (b, t))=Y b

h(θ)

ν
f (RT

θ (b, t)), and AT
θ (b, t) = {r̃ T

θ (b, t) : Q(RT
θ (b, t)) =

Y b
h(θ)
ν
(RT

θ (b, t) − r T
p ) = Y b

h
ν
(w̃′(t)r̃ T

θ (b, t) − r T
p ) > 0} for b = 1, 2, . . . , B, by

substituting θT
g into θ .

(4) Estimate the probability pT (θ) and standard error seT
p (θ) by using B replications

as

p̄T (θ) =
∑B

b=1 p̂T
b (θ)

B
, (4.19)

ŝeT
p (θ) =

(

∑B
b=1( p̂

T
b (θ)− p̄T (θ))2

B − 1

)1/2

. (4.20)
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4.2 Quantile Estimation for the Portfolio Return

According to the titling measure of the estimating probability, the quantile estimation
would be obtained by the order statistics (Johns 1988). For all values of θ , the impor-
tance sampling of probability estimators p̂N

θ and p̂T
θ are unbiased in a multivariate

normal distribution and a multivariate t distribution. Under the titling measure P
θ , the

order of the portfolio return is

(R∗
(1), . . . , R∗

(T )), (4.21)

where R∗
(1), . . . , R∗

(T ) are the order statistics of the sample {R∗
1 , . . . , R∗

T }. Therefore,
an estimate of the quantile R∗

1−p for the portfolio return is

R∗
(1−p) := (1 − s)R∗

( j) + s R∗
( j+1). (4.22)

where j is defined by

1

T

j
∑

k=1

1{R(k)<rp}
dP(R∗

(k))

dPθ (R∗
(k))

< 1 − p, (4.23)

1

T

j+1
∑

k=1

1{R(k)<rp}
dP(R∗

(k))

dPθ (R∗
(k))

> 1 − p, (4.24)

and s is defined by

s =
⎛

⎝1 − p − 1

T

j
∑

k=1

1{R(k)<rp}
dP(R∗

(k))

dPθ (R∗
(k))

⎞

⎠

dP
θ (R∗

( j+1))

dP(R∗
( j+1))

.

The asymptotic properties of the unbiased estimator for order statistics guarantee that
as T → ∞

√
T (r̂ p − rp) → N

(

0,
p(1 − p)

f 2(rp)

)

,

where f = F ′ exists and is continuous at rp. (cf. Hall 1990a, b; Johns 1988; Goffinet
and Wallach 1996). The variance reduction of the classical estimator in place of the
importance sampling estimator of the quantile will be the same as for p. Therefore,
we analysis analyze the estimation of the tail probability by the numerical analysis
for the linear assets. There are same results in the estimation of the quantile for the
non-linear assets.
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5 Monte Carlo, Numerical and Sensitivity Analysis

Based on the estimate of the tail probability, there are four aims in this section. First,
the relative efficiency is computed by the naive Monte Carlo simulation with respect
to importance sampling with Glasserman and Laplace method, for a multivariate nor-
mal and a multivariate t distribution. Second, we also compute the efficiency of using
importance resampling in the bootstrap algorithm. The efficiency is defined as the
bootstrap replication for computing the standard error of the tail probability. The com-
parison is based on B = 200 for bootstrap algorithm with importance resampling and
B = 1,000 for bootstrap algorithm with naive resampling. Third, the sensitivity anal-
ysis is used to compare the estimation of tail probability effected by the true parameter,
where they are estimated in different periods from T = 250 to T = 500. Finally, we
compare the new titling point method with that in Glasserman et al. (2002) in the cases
of one and two assets.

5.1 Monte Carlo Simulation

Consider a linear portfolio with two assets for the parameters µ1 = 0.01, µ2 = 0.05,
σ1 = 0.2, σ2 = 0.8, ρ12 = 0.3, ν = 5, the sample size T = 500 and the Monte Carlo
size M = 10,000. For simplicity set wi (t) = 1 for all i and t . Table 1 lists the relative
efficiency of p using Monte Carlo simulations, importance sampling, and importance
sampling for new bound in multivariate normal distribution. The relative efficiency of
p̂(θ1) relative to p̂(θ2) is defined (cf. Hall 1991) as

eff( p̂(θ1), p̂(θ2)) = V ar( p̂(θ2))

V ar( p̂(θ1))
(5.1)

where V ar( p̂(θi )) is the variance of the tail probability estimator p(θi )with the param-
eter θi . In Table 1, the estimate of the tail probability with importance sampling of
Glasserman method is more efficiency than the Monte Carlo in 10,000 simulations
when p is smaller. Although the of the tail probability with importance sampling of
Laplace method is more efficiency than Glasserman method, the value of the effi-
ciency decay in the decreasing of p. Therefore, when p is very small, we can use
importance sampling with Glasserman method to improve the efficiency, otherwise,
we use importance sampling with Laplace method to improve efficiency.

In Table 2, similar results are obtained in the multivariate t distribution. In addition
to similar results, if the distribution of the portfolio has heavy, the relative efficiency of
the estimating the tail probability with importance sampling relative to Monte Carlo
in the multivariate normal distribution is higher than the multivariate t distribution in
when p is smaller. That is to say, the estimate of the tail probability with importance
sampling in a heavy distribution is more efficiency than a thin distribution.
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Table 1 The relative efficiency of the tail probability estimation with a multivariate normal distribution in
Monte Carlo simulation

r N
p 0.5219 0.8013 1.1889 1.5091 2.1093 2.7822

p 0.3000 0.2000 0.1000 0.0500 0.0100 0.0010

p̂N 0.3003 0.1998 0.1000 0.0499 0.0100 0.0010

ŝeN 2.04E−02 1.79E−02 1.33E−02 9.64E−03 4.42E−03 1.41E−03

p̂N (θN
g ) 0.3000 0.2001 0.1000 0.0500 0.0100 0.0010

ŝeN
p (θ

N
g ) 1.43E−02 1.02E−02 5.77E−03 3.15E−03 7.31E−04 8.41E−05

p̂N (θN
l ) 0.2998 0.2001 0.1000 0.0500 0.0100 0.0010

ŝeN
p (θ

N
l ) 1.32E−02 9.74E−03 5.60E−03 3.15E−03 7.27E−04 8.28E−05

eff( p̂N (θN
g ), p̂N ) 2.0175 3.0510 5.3574 9.3511 36.6857 280.4859

eff( p̂N (θN
l ), p̂N ) 2.3655 3.3970 5.7040 9.9458 37.0562 289.1810

eff( p̂N (θN
l ), p̂N (θN

g )) 1.1725 1.1134 1.0647 1.0636 1.0101 1.0310

p presents the true tail probability, r N
p denotes the quantile of p, p̂N , and ŝeN

p are the mean and standard

error of the tail probability estimator by Monte Carlo, p̂N (θN
g ) is the mean of the tail probability estimator

by importance sampling with Glasserman method, p̂N (θl ) is the mean of the tail probability estimator by
importance sampling with Laplace method, eff( p̂N (θN

g ), p̂N ) is the relative efficiency of p̂(θN
g ) relative

to p̂, eff( p̂N (θN
l ), p̂N ) is the relative efficiency of p̂N (θN

l ) relative to p̂ and eff( p̂N (θN
l ), p̂N (θN

g )) is the

relative efficiency of p̂N (θN
l ) relative to p̂(θN

g ) in a multivariate normal distribution

Table 2 The relative efficiency of the tail probability estimation with a multivariate t distribution in Monte
Carlo simulation

r T
p 0.5527 0.8698 1.3590 1.8350 3.0235 5.2450

p 0.3000 0.2000 0.1000 0.0500 0.0100 0.0010

p̂T 0.3001 0.1997 0.0999 0.0500 0.0100 0.0010

ŝeT 2.08E−02 1.79E−02 1.35E−02 9.89E−03 4.39E−03 1.41E−03

p̂T (θT
g ) 0.3001 0.2001 0.1001 0.0501 0.0100 0.0010

ŝeT
p (θ

T
g ) 1.46E−02 1.04E−02 5.69E−03 3.01E−03 6.45E−04 6.83E−05

p̂T (θT
l ) 0.2999 0.2002 0.1000 0.0500 0.0100 0.0010

ŝeT
p (θ

T
l ) 1.36E−02 9.87E−03 5.47E−03 2.91E−03 6.24E−04 6.77E−05

eff( p̂T (θT
g ), p̂T ) 2.0104 2.9592 5.6207 10.7837 46.3205 428.4190

eff( p̂T
g , p̂T (θT

l )) 2.3388 3.2924 6.0711 11.5365 49.4667 435.9926

eff( p̂T (θT
l ), p̂T (θT

g )) 1.1633 1.1126 1.0801 1.0698 1.0679 1.0177

p presents the true tail probability, r T
p denotes the quantile of p, p̂T , and ŝeN

p are the mean and standard

error of the tail probability estimator by Monte Carlo, p̂T (θg) is the mean of the tail probability estimator p̂

by importance sampling, p̂T (θT
l ) is the mean of the tail probability estimator by p̂T (θT

g ) importance sam-

pling with new bound of the second moment, eff( p̂T (θT
g ), p̂T ) is the relative efficiency of p̂T (θg) relative

to p̂T , eff( p̂T (θT
l ), p̂T ) is the relative efficiency of p̂T (θT

l ) relative to p̂T , and eff( p̂T (θT
g ), p̂T (θT

l )) is

the relative efficiency of p̂T (θT
l ) relative to p̂T (θT

g ) in a multivariate t distribution
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5.2 Numerical Analysis

By the algorithm developed in Sect. 3, we study the parametric bootstrap method
with importance resampling. The same parameters is assumed as in Sect. 5.1, with the
bootstrap replications B = 1,000 for the parametric bootstrap with naive Monte Carlo
simulation, and the bootstrap replications B = 200 for the parametric bootstrap with
importance resampling in Table 3. When the estimation of the tail probability under
the three methods are almost the same, the standard error under the bootstrap method is
larger than those from the multivariate normal and t distribution. That is, the bootstrap
with importance resampling with bootstrap replications B = 200 is more efficient than
the bootstrap method with naive Monte Carlo simulation with replications B = 1,000
(Table 3).

5.3 Sensitivity Analysis

In the parametric bootstrap algorithm, the procedure has estimation errors due to sam-
pling, based on the parameters estimation of the return model (cf. Lin et al. 2004).
Therefore, to calculate sensitivity analysis, we obtain the estimate of the tail proba-
bility with the dataset, and compare it to the estimate effected by the true parameter.
The same parameters are used as in Sect. 5.1, the bootstrap replications B = 200
and Monte Carlo simulation size is 10,000. Table 4 shows the results of sensitivity
analysis for the multivariate normal and the multivariate t distribution. Sensitivity is
defined as

p − p̂

p
(5.2)

for tail probability estimation.
From Table 4, the sensitivities are quite small for tail probability. This implies that

the estimate of the parameters do not affect tail probability estimation in an obvious
way when compared with true values for the multivariate normal and the multivariate
t distribution.

5.4 New Tilting Point versus GHS Method

In Sect. 4.1, we propose a method to approximate the tilting point. In Tables 5 and
6, we set the specific parameters to compute the titling points for the single asset and
two assets case. We report the estimator and variance by using naive simulation, the
new titling point importance sampling, and the Glasserman, Heidelberger and Shaha-
buddin (GHS) method. At the end, we show the variance ratios of relative efficiency
using the GHS method divided by the new method. Obviously, the two importance
sampling methods are more efficient than naive simulation. Besides, when it comes
to the optimal titling point, the new titling point is much closer to it than the GHS
method in moderate deviation.
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Table 4 The sensitivity of tail probability with multivariate normal and t distribution

Multivariate normal distribution

p = 5%

T = 250, B = 200 T = 500, B = 200

p̂N p̂N (θN
g ) p̂N p̂N (θN

g )

pN 0.0500 0.0500 0.0500 0.0500

seN
p 9.7E−03 3.2E−03 1.4E−02 4.5E−03

Sensitivity 3.0E−04 −2.0E−05 4.4E−05 −7.0E−06

Multivariate t distribution

p = 5%

T = 250, B = 200 T = 500, B = 200

p̂T p̂T (θT
g ) p̂T p̂T (θT

g )

pT 0.0500 0.0500 0.0500 0.0500

seT
p 1.4E−02 4.2E−03 9.7E−03 3.0E−03

Sensitivity −5.2E−06 6.7E−05 −1.6E−04 4.4E−05

Table 5 Quadratic approximation function compared with the GHS method. The parameters are ν =
5, k = 0, b = −1, λ = 0.5, T = 500, and M = 10,000

x = 1 x = 2 x = 3 x = 5

true P(A) 2.69E−01 1.47E−01 8.78E−02 3.80E−02

naive 2.69E−01 1.47E−01 8.77E−02 3.80E−02

variance 3.94E−04 2.52E−04 1.62E−04 7.30E−05

new I.S. p̂ 2.69E−01 1.47E−01 8.78E−02 3.80E−02

variance 2.24E−04 9.70E−05 4.26E−05 9.85E−06

θ 4.56E−01 5.30E−01 5.83E−01 6.48E−01

GHS p̂ 2.69E−01 1.47E−01 8.78E−02 3.80E−02

variance 2.56E−04 1.04E−04 4.33E−05 9.92E−06

θ 2.16E−01 4.08E−01 5.00E−01 5.93E−01

relative efficiency 1.14 1.07 1.02 1.01

In theory, we provide this new tilting point that it is more closer the original second
moment than the GHS method. Because the inequality of the GHS method is chosen
more wider than our method. We can see the relation of upper bounded of second
moment in Fig. 1. The solid line is true upper bounded of second moment for impor-
tance sampling. The others dash lines are upper bounded of second moment for the
GHS method and new tilting point. It can observe that the line of the GHS method is
away from true second moment and the shape is also seemingly different. The line of
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Table 6 Quadratic approximation function compared with the GHS method. The parameters are ν =
5, k = 0, b1 = 0, b2 = −1.183, λ1 = 0.247, λ2 = 0.147, T = 500, and M = 10,000

x = 1 x = 2 x = 3 x = 5

true P(A) 3.16E−01 1.56E−01 8.06E−02 2.71E−02

naive p̂ 3.16E−01 1.56E−01 8.05E−02 2.70E−02

variance 4.22E−04 2.69E−04 1.48E−04 5.26E−05

new I.S. p̂ 3.16E−01 1.56E−01 8.06E−02 2.70E−02

variance 2.06E−04 7.38E−05 2.48E−05 3.49E−06

θ 5.47E−01 8.94E−01 1.14E+00 1.37E+00

GHS p̂ 3.16E−01 1.56E−01 8.07E−02 2.70E−02

variance 2.49E−04 7.91E−05 2.53E−05 3.51E−06

θ 3.11E−01 6.48E−01 8.64E−01 1.12E+00

relative efficiency 1.21 1.07 1.02 1.00

Table 7 The statistics of “IBM,” “DELL,” and “SUN MICROSYSTEMS INC”

Company Mean Standard Deviation Skewness Kurtosis

IBM −0.0151% 1.0294% −0.8506 9.1515

DELL −0.0160% 1.3413% 0.0378 9.0213

SUN MICROSYSTEMS INC 0.0195% 2.5622% 0.9769 9.2649

Table 8 The statistics of “MSFT(call),” “T(put),” and “LU(call)”

Company Mean Standard Deviation Skewness Kurtosis

MSFT(call) −0.0264% 2.7943% −1.3797 5.9770

T(put) −0.0980% 2.9305% 1.8324 6.1437

LU(call) 0.1333% 7.0605% 0.7929 6.0522

new tilting point is between the others. However, there is no difference in the case of
large deviation. The new method will be complicated in the case of more assets and its
efficiency improves less in large deviation. Consequently, we suggest computing the
titling point by using the GHS method in the case of multi-assets and large deviation,
although it will be a little less efficient.

6 Empirical Study

To illustrate our proposed bootstrap algorithm with importance resampling, in this
section we analyze stock index returns on the NYSE from the Center for Research in
Security Prices (CRSP), including the “IBM” index return, “DELL” index return and
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Table 9 The summary of comparison of VaR with naive bootstrap, the GHS method, new method

Panel A: Portfolio of stocks

estimate VaR Standard Deviation

True VaR of portfolio 0.0770

Naive bootstrap (B = 1,000) 0.0774 2.17E−03

GHS method 0.0765 4.66E−03

New method (B = 200) 0.0769 1.92E−03

Panel B: Portfolio of derivatives

Naive bootstrap (B = 1,000) 0.1537 4.25E−03

GHS method 0.1558 8.12E−03

New method (B = 200) 0.1528 3.87E−03

Fig. 1 The relation of upper bounded of second moment by all method

“SUN MICROSYSTEMS INC” index return. The sample period is drawn from Janu-
ary 2, 2004, to December 30, 2005, and includes 504 observations. There is a summary
of return means and standard deviations in Table 7. The skewness is −0.8506, 0.0378
and 0.9769, and the kurtosis is 9.1515, 9.0213 and 9.2649, respectively. Note that all
of the kurtosis exceed 3, and hence each of the stock index returns have leptokurtic
features. We assume that the vector of the returns is a multivariate t distribution, and
the correlation coefficient is ρ12 = 0.084, ρ13 = 0.786, and ρ23 = 0.125.

The kurtosis of the three asset returns are close to 9, so the returns are not normally
distributed. We suppose the returns follow a multivariate t distribution. The kurtosis
excess of each return is 6

ν−4 , and we let the degree of freedom ν = 5. In addition, we
assumewi (t) = 1, for all i and t , and obtain r T

p = ̂K t0.05(ν)+µ̂1 +µ̂2 +µ̂3 = 0.077,
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where ̂K = 0.0383. The parameter θT
g of the change of measure is 52.6043 in Eq.

4.11, so h(θT
g ) = 1.1046. We change the measure from the original gamma mea-

sure Y ∼ G(2.5, 2) to the new measure Yh(θ) ∼ G(2.5, 1.1046), then given Yh(θ),
twist the original normal density Z ∼ N (0, 1) to the new normal density ZaT (θ)

∼ N (aT (θ), 1), where aT (θ) = 2.015
√

Yh(θ)
5 . Hence the event Q(RT (t)) > 0 can be

computed in Eq. 4.2, so the estimate and standard error of the tail probability p = 0.05
using the bootstrap algorithm with naive resampling for replications B = 1,000 are
0.0774 and 2.17E−03. Finally, the estimate and standard error of the VaR are 0.0769
and 1.92E−03 using the bootstrap algorithm with importance resampling for replica-
tions B = 200. There are two advantages in this work; one is the decrease in com-
putational time from bootstrap replications B = 1,000 to 200, the other is the gain
in accuracy by using importance resampling. We summarize and compare the VaR of
portfolio of stocks with naive bootstrap, the GHS method, new method at the Panel
A in Table 9. The accuracy and efficiency are approached the simulation results in
Sect. 5.

We also analyze option returns from Ivy DB OptionMetrics, including the call
option returns of “MICROSOFT CORP(MSFT),” put option returns of “AT& T(T),”
and call option returns of “LUCENT TECHNOLOGIES INC(LU).” The sample period
is drawn from January 2, 2004, to January 21, 2005, and includes 266 observations. All
excise dates are the same on January 22, 2005. We summarize return means and stan-
dard deviations in Table 8. We assume the returns follow a multivariate t distribution
with the degree of freedom ν = 6 and use the quadratic approximation method with
standard sensitivities (delta, gamma). All three assets have positive gamma, which is
good for the portfolio. Hence the event Q(RT (t)) > 0 can be computed in Eq. 4.2,
given the estimate and standard error of the tail probability p = 0.05, and the bootstrap
algorithm with importance resampling for replications B = 200, the VaR are 0.1528
and 3.87E−03. We also summarize and compare the VaR of portfolio of derivatives
with naive bootstrap, the GHS method, new method at the Panel B in Table 9. The true
VaR is not sure in quadratic approximation method. But, efficiency is also approached
the simulation results in Sect. 5.

7 Conclusion

We combine a bootstrap algorithm with importance resampling to improve the effi-
cient of the bootstrap method, and propose a parametric bootstrap algorithm with
importance resampling to compute the VaR of a portfolio. Based on linear assets and
nonlinear assets, some results are contributed in this paper. First, we develop a new
efficient computational procedure for estimating the portfolio loss probability, called
importance sampling with Laplace method. According the structure of the multivariate
t distribution to develop efficient methods for calculating portfolio loss probability,
capturing heavy tails in the joint distribution of market risk factors. For comparison
with the classical setting of geometric Brownian motion, we establish the common
setting of the risk factors having a multivariate normal distribution, and then consider
the risk factors to have a multivariate t distribution. Second, we propose and compare
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importance sampling titling measures for a multivariate normal distribution and a mul-
tivariate t distribution. For a wide range of portfolios, importance sampling is more
efficient than other variance reduction tools (cf. Glasserman 2003). Third, we also pro-
pose a accurate method to approximate the titling point by using the Laplace method.
The variance ratios of moderate events are relatively more effective than those obtained
using the GHS method. It is because that the GHS method of upper bounded of second
moment is away from true boundary. We also found that the variance decreases and
the bootstrap algorithm with importance resampling is more efficient than the naive
bootstrap method by using computer simulations as well as analytic studies. Accord-
ing sensitivity analysis, the estimate of parameters does not significantly affect the
loss probability when compared with the true parameters.

Based on the bootstrap algorithm with importance sampling, there are some open
problems on this topic. This paper considered the situation in which the change in
risk factors has a multivariate t distribution and a multivariate normal distribution.
A possible shortcoming is that the risk factors are not the distribution of the multivari-
ate t distribution and the multivariate normal distribution. The concept of importance
resampling can extend to all parametric bootstrap when we capture the distribution of
the heavy tails. For the aspect of the degree freedom with a multivariate t distribution,
it also is natural to extend the model with multiple degrees of freedom and use a copula
to do it (cf. Nelsen 1999; Embrechts et al. 2002), but leave this for further studies.

Acknowledgements We thank anonymous referees for providing many useful comments on an earlier
draft.

Appendix 1: Compute the Second Moment Upper Bound of the Tail Probability
for the Multivariate t Distribution

Compute the second moment of the estimator for the tail probability with the multi-
variate t distribution

Eθ ( p̂
2)

= Eθ (e
−2θQx +2ψ(θ)1{Qx>0})

= E(e−θQx +ψ(θ)1{Qx>0})

= E

⎛

⎝exp

⎧

⎨

⎩
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⎛
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⎠
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The third to last equality holds by using the law of iterated expectations. Let z∗
j =
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1+2λ j θ
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, then dz∗
j = √1 + 2λ jθdz j , and we can compute the last equation to be

=
∫ ∞

−∞
exp

⎧

⎨

⎩

yxθ

ν
+ ψ(θ)+

n
∑

j=1

b2
jθ

2 y

2(1 + 2λ jθ)ν

⎫

⎬

⎭

n
∏

j=1

1
√

1 + 2λ jθ

∫ ∞

−∞
· · ·
∫ ∞

−∞

123



290 S.-K. Lin et al.

×
(

1√
2π

)n

exp

{

−
∑n

j=1(z
∗
j )

2

2

}

1⎧
⎨

⎩

∑n
j=1

λ j
1+2λ j θ

(

z∗
j −[ b j θ√

1+2λ j θ
−

√
1+2λ j θb j

2λ j
]√ y

ν

)2

>
y
ν

x+∑n
j=1

b2
j y

4λ j ν

⎫

⎬

⎭

dz∗
1 . . . dz∗

n fy(y)dy.

Let c j = λ j
1+2λ j θ

, d j =
[

b j θ√
1+2λ j θ

−
√

1+2λ j θb j

2λ j

]

√

y
ν

, and g = y
ν

x +∑n
j=1

b2
j y

4λ j ν
,

then, we can obtain

=
∫ ∞

−∞
exp

⎧

⎨

⎩

yxθ

ν
+ ψ(θ)+

n
∑

j=1

b2
jθ

2 y

2(1 + 2λ jθ)ν

⎫

⎬

⎭

n
∏

j=1

1
√

1 + 2λ jθ

∫ ∞

−∞
· · ·
∫ ∞

−∞

×
(

1√
2π

)n
exp

{

−
∑n

j=1(z
∗
j )

2

2

}

1{∑n
j=1 c j (z∗

j −d j )
2>g}dz∗

1, . . . , dz∗
n fy(y)dy.

Appendix 2: Tilting Measure for the Multivariate t Distribution

To obtain the tilting measure, we first fix the random variable Y ,

dP
θ
ã(θ),h(θ)(

˜Z ,Y ) = dP0̃,2(
˜Z ,Y ) exp{θQ(RT

θ (t))− ψT (θ)}

= dPã(˜Z |Y ) exp{θQ(RT
θ (t))− ψT (θ)}dP2(Y )

= 1

(
√

2π)n
exp
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˜Z
′
ãT (θ)

I˜ZãT (θ)

}

× exp
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Y

2ν
θ2 K 2 + Y

ν
(w̃′(t)µ̃θ − r T

p θ)− ψT (θ)
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dP2(Y )
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ã(θ)(

˜ZãT (θ)|Y ) exp

{

Y

2ν
θ2 K 2+ Y

ν
(w̃′(t)µ̃θ − r T

p θ)−ψT (θ)

}

×dP2(Y ), (A.1)

where dP
θ
ãT (θ),h(θ)

(˜ZãT (θ),Y ) denotes the tilting measure with the mean vector ãT (θ)

of the multivariate normal distribution and the scale parameter h(θ) for the gamma dis-
tribution G(ν/2, h(θ)), dP

θ
ãT (θ)

(˜ZãT (θ)|Y ) is the measure given the random variable Y

with ãT (θ) for the mean vector of the multivariate normal distribution M N (ãT (θ), I ),
where ãT (θ) = √

Y/νθ (
∑n

i=1 σiwi (t)ci1, . . . ,
∑n

i=1 σiwi (t)cin)
′, and dP2(Y ) is the

measure of the gamma distribution G(ν/2, 2)with the scale parameter 2. For simplic-
ity, we can use dP0(Z |Y ) as the origin measure for Eq. A.1. Then the tilting measure
is
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where aT (θ) =
√
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K θ . Then, we see the new gamma density for the tilting measure,
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ãT (θ)
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ν−2w̃′(t)µ̃θ+2r T
p θ−θ2 K 2

⎫

⎬

⎭

ν − 2w̃′(t)µ̃θ + 2r T
p θ − θ2 K 2

ν

= dP
θ
ãT (θ)

(˜ZãT (θ)|Y )
y(ν−2)/2

�(ν/2)

(

2ν
ν−2w̃′(t)µ̃θ+2r T

p θ−θ2 K 2

)ν/2 exp

⎧

⎨

⎩

−y
2ν

ν−2w̃′(t)µ̃θ+2r T
p θ−θ2 K 2

⎫

⎬

⎭

= dP
θ
ãT (θ)

(˜ZãT (θ)|Yh(θ))dP
θ
h(θ)(Yh(θ)). (A.3)

To find the tilting measure dP
θ
ãT (θ),h(θ)

(˜ZãT (θ),Yh(θ)), under the independent assump-

tion with ˜XãT (θ),h(θ) = ˜ZãT (θ)/
√

Yh(θ)/ν, we first twist the original gamma distribu-
tion Y ∼ G(ν/2, 2) to the new gamma density Yh ∼ G(ν/2, h(θ)), where h(θ) =
2ν/(ν − 2w̃′(t)µ̃θ + 2r T

p θ − θ2 K 2), then, given Yh(θ), twist the original multivar-

iate normal density ˜Z ∼ M N (0̃, I ) to the new multivariate normal density ˜ZãT (θ)

∼ M N (ãT (θ), I ).

E

⎛

⎝E

⎛

⎝exp

⎧

⎨

⎩

−θ
⎛

⎝

n
∑

j=1

(

b j

√

Y

ν
Z j + λ j Z2

j

)

− Y

ν
x

⎞

⎠+ ψ(θ)

⎫

⎬

⎭

× 1{∑n
j=1 λ j (

b j
λ j

√

Y
ν

Z j +Z2
j )>

Y
ν

x} |Y

⎞

⎠

⎞

⎠

=
∫ ∞

−∞

∫ ∞

−∞
exp

⎧

⎨

⎩

−θ
⎛

⎝

n
∑

j=1

(

b j

√

y

ν
z j + λ j z

2
j

)

− y

ν
x

⎞

⎠+ ψ(θ)

⎫

⎬

⎭

(

1√
2π

)n
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× exp

{

−
∑n

j=1 z2
j

2

}

1
{∑n

j=1 λ j (z j + b j
2λ j

√ y
ν
)2>

y
ν

x+∑n
j=1

b2
j y

4λ j ν
}
dz1, . . . , dzn fy(y)dy

=
∫ ∞

−∞
exp

⎧

⎨

⎩

yxθ

ν
+ ψ(θ)+

n
∑

j=1

b2
jθ

2 y

2(1 + 2λ jθ)ν

⎫

⎬

⎭

×
n
∏

j=1

1
√

1 + 2λ jθ

∫ ∞

−∞

(

1√
2π

)n n
∏

j=1

√

1 + 2λ jθ

× exp

⎧

⎨

⎩

−
n
∑

j=1

(z j + b j θ

1+2λ j θ

√

y
ν
)2

2 1
1+2λ j θ

⎫

⎬

⎭

×1
{∑n

j=1 λ j (z j + b j
2λ j

√ y
ν
)2>

y
ν

x+∑n
j=1

b2
j y

4λ j ν
}
dz1, . . . , dzn fy(y)dy

Let z∗
j = z j + b j θ

1+2λ j θ

√ y
ν

1√
1+2λ j θ

, then dz∗
j = √

1 + 2λ jθdz j , and we can compute the last

equation to be

=
∫ ∞

−∞
exp

⎧

⎨

⎩

yxθ

ν
+ ψ(θ)+

n
∑

j=1

b2
jθ

2 y

2(1 + 2λ jθ)ν

⎫

⎬

⎭

n
∏

j=1

1
√

1 + 2λ jθ

∫ ∞

−∞

(

1√
2π

)n

× exp

{

−
∑n

j=1(z
∗
j )

2

2

}

×1
{∑n

j=1
λ j

1+2λ j θ
(z∗

j −[ b j θ√
1+2λ j θ

−
√

1+2λ j θb j
2λ j

]√ y
ν
)2>

y
ν

x+∑n
j=1

b2
j Y

4λ j ν
}
dz∗

1, . . . , dz∗
n fy(y)dy

Let c j = λ j
1+2λ j θ

, d j =
[

b j θ√
1+2λ j θ

−
√

1+2λ j θb j

2λ j

]

√

y
ν

, and g = y
ν

x +∑n
j=1

b2
j y

4λ j ν
,

then, we can obtain

=
∫ ∞

−∞
exp

⎧

⎨

⎩

yxθ

ν
+ ψ(θ)+

n
∑

j=1

b2
jθ

2 y

2(1 + 2λ jθ)ν

⎫

⎬

⎭

n
∏

j=1

1
√

1 + 2λ jθ

∫ ∞

−∞

(

1√
2π

)n

× exp

{

−
∑n

j=1(z
∗
j )

2

2

}

1{∑n
j=1 c j (z∗

j −d j )
2>g}dz∗

1, . . . , dz∗
n fy(y)dy

Now, if we let n = 1, then the second moment of the estimator is equal to

Eθ ( p̂
2) =

∫ ∞

−∞
exp

{

yxθ

ν
+ ψ(θ)+ b2

1θ
2 y

2(1 + 2λ1θ)ν

}

1√
1 + 2λ1θ
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×
[

∫ ∞

−∞
1√
2π

exp

{

− z∗2
1

2

}

1{c1(z∗
1−d1)2>g}dz∗

1

]

fy(y)dy

=
∫ ∞

−∞
exp

{

yxθ

ν
+ ψ(θ)+ b2

1θ
2 y

2(1 + 2λ1θ)ν

}

1√
1 + 2λ1θ

×
[

∫ ∞

−∞
1√
2π

exp

{

− z∗2
1

2

}

1{(z∗
1−d1)2>

g
c1

}dz∗
1

]

fy(y)dy

=
∫ ∞

−∞
exp

{

yxθ

ν
+ ψ(θ)+ b2

1θ
2 y

2(1 + 2λ1θ)ν

}

1√
1 + 2λ1θ

×
⎡

⎣

∫ ∞

d1+
√

g
c1

1√
2π

exp

{

− z∗2
1

2

}

dz∗
1 +

∫ d1−
√

g
c1

−∞
1√
2π

exp

{

− z∗2
1

2

}

× dz∗
1

⎤

⎦ fy(y)dy,

where

d1 +
√

g
c1

=

⎛

⎜

⎜

⎝

b1θ√
1 + 2λ1θ

−
√

1 + 2λ1θb1

2λ1
+

√

x + b2
1

4λ1
√

λ1
1+2λ1θ

⎞

⎟

⎟

⎠

√

y
ν

= h1(θ)

√

y
ν

and

d1 −
√

g
c1

=

⎛

⎜

⎜

⎝

− b1θ√
1 + 2λ1θ

+
√

1 + 2λ1θb1

2λ1
+

√

x + b2
1

4λ1
√

λ1
1+2λ1θ

⎞

⎟

⎟

⎠

√

y
ν

= h2(θ)

√

y
ν
.

If d1 −
√

g
c1

� 0, then the second moment has a bound as follows

Eθ ( p̂2) ≤
∫ ∞

−∞
exp

{

yxθ

ν
+ ψ(θ)+ b2

1θ
2 y

2(1 + 2λ1θ)ν

}

1√
1 + 2λ1θ

⎡

⎣

1
√

2π(d1 +
√

g
c1
)

× exp

⎧

⎨

⎩

−
(d1+

√

g
c1
)2

2

⎫

⎬

⎭

+ 1
√

2π(−d1 +
√

g
c1
)

exp

⎧

⎨

⎩

−
(−d1+

√

g
c1
)2

2

⎫

⎬

⎭

⎤

⎦

× fy(y)dy
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Eθ ( p̂2) ≤
∫ ∞

−∞
exp

{

yxθ

ν
+ ψ(θ)+ b2

1θ
2 y

2(1 + 2λ1θ)ν

}

1√
1 + 2λ1θ

⎡

⎣

1
√

2π(h1(θ)

√

y
ν
)

× exp

{

− (h1(θ))
2 y
ν

2

}

+ 1
√

2π(h2(θ)

√

y
ν
)

exp

{

− (h1(θ))
2 y
ν

2

}

⎤

⎦

× 1
�( ν2 )β

ν/2 y
ν
2 −1 exp

{− y
2

}

dy

=
√
ν exp{ψ(θ)}√

1+2λ1θ
√

2πh1(θ)

∫ ∞

−∞
1

�(ν2 )β
ν/2 y(

ν−1
2 −1)

× exp

{

−( 1
2 + h1(θ)

2

2ν − θx
ν

− b2
1θ

2

2(1+2λ1θ)ν
)y

}
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+
√
ν exp{ψ(θ)}√
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√

2πh2(θ)

∫ ∞

−∞
1

�(ν2 )β
ν/2 y(

ν−1
2 −1)

× exp

{

−( 1
2 + h2(θ)

2

2ν − θx
ν

− b2
1θ

2

2(1+2λ1θ)ν
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}
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= I1(θ)+ I2(θ),

where

I1(θ) =
√
ν exp{ψ(θ)}√

1+2λ1θ
√

2πh1(θ)

∫ ∞

−∞
1

�(ν2 )β
ν/2 y(

ν−1
2 −1)

× exp

{

−( 1
2 + h1(θ)

2

2ν − θx
ν

− b2
1θ

2

2(1+2λ1θ)ν
)y

}

dy,

I2(θ) =
√
ν exp{ψ(θ)}√

1+2λ1θ
√

2πh2(θ)

∫ ∞

−∞
1

�(ν2 )β
ν/2 y(
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{

−( 1
2 + h2(θ)

2

2ν − θx
ν
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1θ

2
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}
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β1(θ) = 1

1
2 + h1(θ)

2

2ν − θx
ν

− b2
1θ

2

2(1+2λ1θ)ν

,

β2(θ) = 1

1
2 + h2(θ)

2

2ν − θx
ν

− b2
1θ

2

2(1+2λ1θ)ν

.

Rewrite I1(θ) and I2(θ)

I1(θ) =
√
ν exp{ψ(θ)}�( ν−1

2 )β1(θ)
ν−1

2√
1+2λ1θ

√
2πh1(θ)�(

ν
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√
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1+2λ1θ

√
2πh1(θ)�(

ν
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I2(θ) =
√
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2√
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√
2πh2(θ)�(
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√
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