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Abstract 

Risk management is an important issue when there is a catastrophic event that affects 
asset price in the market such as a sub-prime financial crisis or other financial crisis. By 
adding a jump term in the geometric Brownian motion, the jump diffusion model can be 
used to describe abnormal changes in asset prices when there is a serious event in the 
market. In this paper, we propose an importance sampling algorithm to compute the 
Value-at-Risk for linear and nonlinear assets under a multi-variate jump diffusion model. 
To be more precise, an efficient computational procedure is developed for estimating the 
portfolio loss probability for linear and nonlinear assets with jump risks. And the titling 
measure can be separated for the diffusion and the jump part under the assumption of 
independence. The simulation results show that the efficiency of importance sampling 
improves over the naive Monte Carlo simulation from 7 times to 285 times under various 
situations. We also show the robustness of the importance sampling algorithm by compar-
ing it with the EVT-Copula method proposed by Oh and Moon (2006). 
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1. Introduction 

The essence a financial institution lies in managing risks. The trader manages a 
normal event risk where the world operates in a fashion similar to the Black-Scholes 
model of random walks and dynamic hedging. Intuitively, we are interested in tail 
events in which large jumps are important. Value-at-Risk (VaR) is a measure of the 
potential losses due to movement in the underlying market. VaR usually is associated 
with a time frame and an estimate of the maximum sudden change in thought likely in 
the markets (unclear). In this paper, we propose a new method to compute a portfo-
lio’s VaR under a multi-variate jump-diffusion model.  

Although Black and Scholes (1973) and Merton (1973) gave a closed formula for 
pricing options, and the formula has been used to approximate the price of financial 
products in practice, the assumptions of the model in the Black-Scholes-Merton world 
are not applicable to the real market situation. To capture the empirical phenome-
non, Merton (1976) proposed a jump-diffusion model to describe discontinuous change 
of the asset price when abnormal information arrives in the market. At important 
events or announcements, there can be large changes in the value of financial portfo-
lios. Events and their corresponding jumps can occur at random or scheduled times. 
Therefore, the amplitude of the response in either case can be unpredictable or ran-
dom. While the volatility of portfolios is often modeled by continuous Brownian mo-
tion processes, discontinuous jump processes are more appropriate for modeling the 
response to important external events that significantly affect the prices of financial 
assets. Discrete jump processes are modeled by compound Poisson processes for ran-
dom events or scheduled events.  

 The jump diffusion model for the price of an underlying asset (for example a stock 
or a stock index) is assumed to include two parts, a continuous part described by a 
geometric Brownian motion, and a discontinuous jump part described by a compound 
Poisson process. In the compound Poisson process, there are two components: one is 
jump sizes specified by the ratios of the sudden change of the underlying asset price 
in abnormal events, the other is jump frequencies specified by the arrival rate of ab-
normal events. The logarithms of the jump sizes have a special distribution such as a 
normal distribution (cf. Merton, 1976) or a double exponential distribution (cf. Kou, 
2002), and the jump times correspond to a Poisson process. More precisely, the follow-
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ing stochastic differential equation is used to model the asset price, ( )S t :  

 
( )

1

( ) ( ) ( ( ) 1)
( )

N t

j

dS t dt dW t d Y j
S t

μ σ
=

= + + − ,∑     (1) 

where the parameters of the drift and the volatility are denoted as μ  and , ( )W tσ   is a 

standard Wiener process, ( )N t  is a Poisson process with the arrival rate ,λ  and ( ){Y j }  

is a sequence of independent identically distributed nonnegative random variables 
such that log( ( ))Y j  follows a normal distribution.  

Monte Carlo analysis is a powerful method to evaluate a portfolio’s VaR, as it can 
be used to calculate the distribution of the portfolio returns. However, the biggest 
drawback of this method is that it is computationally demanding when there are 
hundreds of securities (cf. Jorion, 2000; Hull, 2000). There are variate techniques to 
reduce the variance of Monte Carlo simulation. The importance sampling can reduce 
the sample size to save computational time with some accuracy. The main idea be-
hind the importance sampling is the change of measure. That is, we carry out a simu-
lation with an importance tilting measure instead of the original probability meas-
ure, to obtain the accurate estimator for the portfolio VaR. Many investigations have 
proposed using importance sampling to improve the efficiency of evaluating the port-
folio VaR or quantile. (cf. Johns, 1988; Goffinet and Wallach, 1996; Glasserman, Hei-
delberger and Shahabuddin, 2000, 2002; Glasserman, 2003; Fuh and Hu, 2004; Lin, 
Wang and Fuh, 2006). Glasserman, Heidelberger and Shahabuddin (2000, 2002) con-
sider the idea of combining importance testing with stratified sampling for further 
reduction in variance. Lin, Wang and Fuh (2006) propose the bootstrap method and 
Laplace method to improve the tilting distribution of Glasserman, Heidelberger and 
Shahabuddin (2000, 2002).  

The jump diffusion model can be used to describe huge changes of the asset prices 
in the markets due to unexpected events such as a sub-prime financial crisis or the 
slashing of interest rates by three-quarters of a point. Recently, Oh and Moon (2006) 
apply Extreme Value Theory (EVT) to fit fat-tailed marginal distributions, to which it 
is called the EVT-Copula method. They show that the EVT-Copula method outper-
forms the traditional portfolio VaR method during the period of Financial Crises. In 
this paper, we develop importance sampling for a multi-variate jump diffusion model 
for a linear asset and nonlinear asset to evaluate VaR. Efficient algorithms are pro-
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posed for estimating the portfolio loss probability for the linear asset and the nonlin-
ear asset with jump risks. By assuming independence, we can separate the tilting 
measure from the diffusion and jump part. The simulation results show that the effi-
ciency of importance sampling is improved over the naive Monte Carlo simulation 
from 7 times to 285 times under various situations.  

The rest of this paper is organized as follows. Section 2 introduces the general case 
for multi-variate jump diffusion models for a linear asset and a non-linear asset. Sec-
tion 3 interprets the change of measure used for importance sampling for multi-
variate jump diffusion models. Numerical results are reported in Section 4. Section 5 
concludes. The technical details are deferred to the appendix.  

2. Multi-variate Jump Diffusion Models 

Consider the process of the i th asset to be described by the following stochastic dif-
ferential equation:  

 
( )

1

( ) ( ) ( ( ) 1)
( )

N t
i

i i i i
ji

dS t dt dW t d Y j
S t

μ σ
=

= + + − ,∑     (2) 

where the parameters of the drift and the volatility are denoted as iμ  and iσ , the 

jump event ( )N t  is assumed to follow a Poisson process with the parameter ,tλ  and 

the jump sizes ( )iY j  are assumed to follow a lognormal distribution with the parame-

ters of location iη  and scale 
2.iν  The discrete return of the jump diffusion model (cf. 

Merton, 1976; Kou, 2002) for the i th asset is  

 
( )

1

( ) ( ) 1 ( ) log( ( ))
( ) ( )

N t
i i

i i i i
ji i

S t S t t t W t Y j
S t S t

μ σ
Δ

=

Δ + Δ= − ≈ Δ + Δ + .∑    (3) 

By the normal distributions of Brownian motion and jump sizes, the return ( )ir t ≡  
( )

( )
i

i

S t
S t

Δ
 of the i th asset for a period [ ]t t t, + Δ  is denoted as  

 
( )

1
( ) ( )

N t

i i i i i
j

r t t tZ V jμ σ
Δ

=
= Δ + Δ + ,∑     (4) 

where iZ  is the standard normal distribution with mean 0, variance 1 for the i th as-

set, and correlation coefficient ikρ  for the i th asset and the k th asset. The j th jump 
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size of the i th asset ( ) log( ( ))i iV j Y j=  follows a normal distribution with the mean iη  

and the variance 
2.iν  The correlation coefficient of the jump sizes of the i th and j th 

asset are assumed as .Jijρ  For simplicity, the notations ,i tμ Δ  ,i tσ Δ  and ( )N tΔ  with 

the parameter tλΔ  are rewritten as , ,i iμ σ  and N  with the arrival rate .λ  The return can 

be presented as  

 
1

( ) ( )
N

i i i i i
j

r t Z V jμ σ
=

= + + .∑      (5) 

2.1 Return of a linear asset 

Assume we have a linear asset, which is the linear combination of d  investment 
assets. The vector of the returns can be denoted as  

 

1 1 1 1
11

1

( )
( )

( )
( )

( )

N

j

N
d

d d d d
j

Z V j
r t

Z J
r t

Z V j

r t σ

μ σ

μ

μ σ

=

=

⎡ ⎤+ +⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = + Σ + ,⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ + +⎢ ⎥⎣ ⎦

∑

∑

 

where 1( ) [ ( ) ( )]Tdr t r t r t= , ,  is a vector of the discrete return of the assets, 1[ ( )tμ μ= , ,  

( )]Td tμ  denotes a vector of the discrete drift, Z  presents the multi-variate normal dis-

tribution with zero mean and the correlation matrix:  

12 1

221

1

1
1

1

d

d
B

d

ρ ρ
ρ ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥Σ = ,
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

in which σΣ  is the diagonal matrix with the diagonal elements of standard deviations 

as follows  

1

2

0 0
0 0

,

0 d

σ

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Σ =  
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J  denotes a vector of the jump sizes 11 1 1
[ ( ), , ( )] ( )N N NT

dj j j
J V j V j V j

= = =
= =∑ ∑ ∑  where ( )V j  

denotes the jump size vector of the assets when the abnormal jump j th happens, and 

the arrival rate of the assets are the same with ,λ  that is to say that the abnormal 

event, such as the catastrophic fall of stock prices, makes all the assets have abnor-
mal jumps, and the jump sizes have a multi-normal distribution with the mean vec-
tor 1[ , , ]Tdη η η=  and the covariance matrix  

2
1 1 11 2 12

2
2 21 2 12 2

2
1 1

JJ
d d

JJ
d d

J

J
d d d

ν νν ρ ν ν ρ
νν ρ ν ν ν ρ

ν ν ρ ν

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Σ = .

 

Here, JΣ  is the matrix of the correlation coefficient for the jump sizes.  

Let 1( ) [ ( ), , ( )]Tdw t w t w t=  denote a portfolio weight vector of the investment assets for 

the portfolio value, in which ( )iw t  is an adapted process, i.e., tF -measurable. Then the 

return of the portfolio at time t  is the linear combination of the asset returns multi-
plied by the portfolio weight vector denoted as ( ) ( ),T t r tw  and we are interested in the 

event ( ) ( ( )) ( ) 0 ,T
pA {r t f r t r t r }w= : = − >  where pr  is the biggest risk with which we are 

concerned for the linear asset (also called the quantile). Hence, what we are inter-
ested in is the probability of the return of the linear assets ( )r t  being greater than 

the quantile of the return pr  when the return vector of the assets is assumed as a 

multi-variate jump diffusion model. The linear portfolio is satisfactory for small 
movements in the underlying asset. A better approximation may be achieved by us-
ing higher order terms and incorporating the gamma or convexity effect. The event, 
which we are interested in, can be rewritten as  

( ( )) ( ) .T T T T
p pf r t r t r Z J rw w w wσμ= − = + + −  

According to the Cholesky decomposition for ,BΣ  we can find the equal distribution as 

follows:  

( ( )) T T T
pf r t CU J rw w wσμ= + + − ,  
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where C  is used by the Cholesky decomposition for the covariance of the assets BΣ  

such that ,T
BCC = Σ  1 2[ , , , ]TdU U U U=  is a vector of d -variate independent standard 

normal distribution, and 1 1[ , , ] .Td dw wwσ σ σ=   

2.2 Return of a nonlinear asset 

Assume that there is a nonlinear asset ( , ( ))P t S t  such as derivatives. In a multi-

variate jump diffusion model, the quadratic approximation of the nonlinear asset in 
the risk factors (cf. Glasserman, Heidelberger, and Shahabuddin, 2000, 2002; Lin, 
Wang, and Fuh, 2006) can be changed into the function of the return of the stocks in 
the nonlinear asset, ( ) ( ) ( ) ( ),T T

NNa t r t t r trδ+ + Γ  (proved in Appendix A), and the interest-

ing event is ( ) ( ( )) ( ) ( ) ( ) ( ) 0 .TN NT
N N pNA {r t f r t a t r t t r t r }rδ= : = + + Γ − >  Hence, we consider the 

function of the non-linear asset return denoted as  

( ( )) ( ) ( ) ( ) ( ) ,T NT
N N pNf r t a t r t t r t rrδ= + + Γ −  

where 
( ( ))

( )
P
t t

P t S t
a t

∂
∂ Δ

,
=  is the change of the nonlinear value relative to the nonlinear asset 

by the time change, 1 1

( ( )) ( ( ))
[ , , ]n nSS T

N P t S t P t S t
δδ

δ , ,
=  denotes the delta approximation vector rela-

tive to the asset weight of the nonlinear value, and 1
2 ( ( ))

( ) ( ) i jS S
N ij ij P t S t,

Γ = Γ  presents the 

gamma approximation matrix of the weight of the product of the i th and j th assets 

relative to the value of the nonlinear asset at time .t   

By the Cholesky decomposition, ,
D

Z CU=  where 1[ , , ]TdU U U=  has an independent 

multi-variate normal distribution with zero mean vector and the identity covariance 
matrix ,I  and D  denotes “equal in distribution.” We can find C  such that T

NC CΓ = Λ  

and ,T
BCC = Σ  where Λ  is a diagonal matrix with ,iλ  where 1, , .i d=   

1

2

0 0
0 0

.

0 0 d

λ
λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ =  

Therefore, the return of the nonlinear asset by the quadratic approximation and the 
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Cholesky decomposition method is equal to the distribution (proven in Appendix B):  

 2 2

1
( ( )) ( ) ,

D d
T

N N i i i i i N
i

f r t a bU U Jλσ δ
=

+ + += ∑    (6) 

where 1 2[ , , , ] ,TT
d Nb b b b Cσδ= = Σ  and ( ) .T N

N pNa a t rμδ= + −  

3. Importance Sampling Algorithms 

We consider the problem of estimating small probabilities by Monte Carlo simula-
tions, where such problems appear in the construction of confidence regions for as-
ymptotically normal statistics concerning VaR for risk management (cf. Beran, 1987; 
Beran and Millar, 1986; Hall, 1987, 1992; Jorion, 2001; Fuh and Hu, 2004). It is well-
known that the importance sampling, in which one uses observations from an alter-
native distribution to estimate the target distribution, is a useful tool for efficient 
simulation of events with small probabilities. Efficient Monte Carlo simulation of 
such events has been obtained by Sadowsky and Bucklew (1990) based on the large 
deviations theory. For events of large deviations, previous authors have showed that 
the asymptotically optimal alternative distribution is obtained through exponential 
tilting to determine the parameter of tilting. The optimal parameter of tilting is such 
that the mean of estimation for tail events is unbiased and the second moment of the 
estimation is asymptotically efficient. The subsections below focus on the importance 
sampling algorithms for linear and nonlinear assets for Monte Carlo simulations.  

3.1 An algorithm for linear assets 

When searching for a convenient importance distribution, particularly if we wish to 
increase or decrease the frequency of observations in the tails, it is quite common to 
embed a given density in an exponential family. From this probability density func-
tion, we can now produce a whole (exponential) family of densities:  

 ( ( )) ( ) ,f r tdP e dPθ θ θ−Ψ=     (7) 

where dP  is the original probability measure for the linear asset, and dPθ
 is the tilt-

ing measure for the linear asset. Suppose ( )Ψ ⋅  denotes the cumulate generating func-
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tion (the logarithm of the moment generating function) of the function ( ( )).f r t  The cu-

mulate generating function is a useful summary of the moments of a distribution since 
the mean can be determined as (0)′Ψ  and the variance as (0).′′Ψ  Therefore, we com-

pute the moment generating function of the interesting event:  

(exp ( ( )) )
1 12 2 ,exp exp (exp 1)
2 2

( jump part)(diffusion part)

E { f r t }

T T T T{ r } { { w} }w w w w wB p J

θ

θ μ θ θ λ θ η θσ σ= + Σ − + Σ −  

which is separated into a diffusion part and a jump part, both coming from the event 
of interest. Then, we obtain ( )θΨ  as  

( ) log (exp ( ( )) )
1 12 2 .( ) ( (exp 1))
2 2

( jump part)(diffusion part)

E { f r t }

T T T Tr { w}w w w w wB p J

θ θ

θ μ θ θ λ θ η θσ σ

Ψ =

= ++ Σ − + Σ −  

By using the same idea as that in Glasserman, Heidelberger and Shahabuddin 
(1999), we also obtain the tilting parameter .pθ  Let ( )trθ  be drawn from the tilting 

measure ,dPθ
 and ( ) ( ( )) ( ) ( ) 0pA { t f t w t t r }r r rθ θ θθ ′= : = − >  be the event of interest. The es-

timation of the tail probability is denoted as  

 ˆ 1 exp ( ( )) ( ) ,A { f t }p rθ θθ θ θ= − + Ψ      (8) 

then the estimator  

ˆ(1 ) (1 exp ( ( )) ( ) ) ( )A AE E { f t } E pprθ

θ θ
θ θθ θ= − + Ψ = =  

is unbiased. Therefore, the second moment of the estimator for the tail probability of 
the interesting event is approximated as  

2 ( ) (1 exp 2 ( ) 2 ( ( )) )AM E { f t }rθ

θ
θθ θ θ= Ψ −  

(1 exp ( ) ( ( )) )AE { f t }rθ θθ θ= Ψ −  

exp ( ) ,{ }θ≤ Ψ                  (9) 

because exp ( ( )) 1{ f t }rθθ− ≤  ( ( ( )) 0f trθ >  and 0),θ >  and ( )1 1.A tθ
≤  Taking the log  of the bound 
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equation and differentiating ,θ  we can minimize the upper bound of the second mo-

ment of the estimator for the tail probability of the interesting event.  
Using a numerical method to find pθ  such that ( ) 0,pθ′Ψ =  we observe that ( )θΨ  can 

be divided into two parts. The first part is from the diffusion process, the other part is 
from the jump process. If we set 0,λ =  the reflection of the jump part will vanish. The 

case will degenerate to a portfolio of multi-variate normal distribution, which can be 
found in Lin, Wang and Fuh (2006).  

Let dP dPθ
α β γ, ,=  denote the new measure for the given n  jump time with a multi-

variate normal distribution in new parameter ,α  a jump size in new parameter ,β  

and a jump rate in new parameter ,γ  and the original measure with given jump 

time :n   

 0 0 0
1

( ; 0, ) ( ( ); , ) P( )
n

d d J
j

dP dP U I V jφ φ η λ, ,
=

= = × Σ ×∏     (10) 

in which ( 0 )d U Iφ ; ,  is a probability density function of the d -variate independent 

normal distribution with mean vector 0  and covariance matrix , ( ( ) )d JI V jφ η; , Σ  is a 

probability density function of the multi-variate independent normal distribution 
with mean vector 0  and covariance matrix JΣ  for the j th time. P( λ ) is the probabil-

ity density function of a Poisson distribution with arrival rate .λ   
First, based on equation (7), the new measure of the diffusion part with parameter 

α  is as follows (derived in Appendix C):  

,0,0
1

exp ( ( )) ( ) ( 0 ) ( ( ) ) P( )
n

d d J
j

dP { f r t } U I V jα θ θ φ φ η λ
=

= − Ψ × ; , × ; , Σ ×∏  

21exp ( )
2

T T T
p p B p p p p{ J r }w w w wσ σθ μ θ θ θ θ= + Σ + − − Ψ  

1

( ) ( ( ) ) P( )
n

d d J
j

u I V jUφ φ η λ∗

=

× ; , × ; , Σ × ,∏  

where 0 0dPα , ,  denotes the new measure of the multi-variate normal distribution with 

the diffusion part and the original measures of jump frequencies and jump sizes with 
the jump part. ( ; , )d u IUφ ∗

 is a multi-variate independent normal with mean vector 

1 1 1[ , , ]Tp i p d d dii i
u w c w cθ σ θ σ= ∑ ∑  and covariance .I  Second, the new measures of multi-
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variate normal distributions with the diffusion part and the jump sizes part are given 
by  

2
0

1

1exp ( ( ) ) ( )
2

n
T T T T

p p B p p p p p
j

dP { V j n r }w w w w wα β σ σθ μ θ θ η θ η θ θ, ,
=

= + Σ + − + − − Ψ∑  

1

( ; ) ( ( ); , ) P( )
n

d d J
j

u I V jUφ φ η λ∗

=

× , × Σ ×∏  

2 21 1exp ( )
2 2

T T T T
p p B p p J p p p{ n wn r }w w w w wσ σθ μ θ θ η θ θ θ= + Σ + + Σ − − Ψ  

1

( ; ) ( ( ) ) P( )
n

d d J
j

u I jU Vφ φ λη∗∗ ∗

=

× , × ; , Σ × ,∏  

where 0dPα β, ,  denotes the new measures of the d -variate normal distribution conditional with the 

diffusion part, the multi-variate normal distribution with the jump sizes and the origin measures 

with the jump rate. ( )d JVφ η∗∗; , Σ  is a d -variate independent normal with mean vector pη θη∗ = +  

T
Jw Σ  and covariance .JΣ  Finally, the new measures of the diffusion and jump parts are presented 

as follow:  

1

2 2

1

( ; , ) ( ( ); , )

1 1exp exp ( exp )
2 2 ,

( ; , ) ( ( ) ) P( )

n

d d J
j

nT T T T
p p J p p J

n

d d J
j

dP u I jU V

{ { w}} { w}w w w w

n

u I jU V

α β γ φ φ η

λ θ η θ λ θ η θ

φ φ λη

∗∗ ∗
, ,

=

∗∗ ∗ ∗

=

= × Σ

− + Σ + Σ
×

!

= × ; , Σ ×

∏

∏

 

where dPα β γ, ,  is the new measure with multivariate independent normal distribution 

of the random variable ,U
∗

 multivariate normal distribution of the random variable 

( )jV
∗

 for given j th jump size, and Poisson distribution of the random variable n  

with notation P( λ∗ ) for the parameter 
21exp

2
T T

p p J{ w}w wλ λ θ η θ∗ = + Σ  (derived in Appen-

dix C).  
If λ  decreases, the jump effect will decrease and θ  will increase. The density, 

equation (7), is often referred to as an exponential tilt of the original density function 
and increase the weight in the right tail for 0,θ >  and decreases it for 0.θ <  The events 

of interest is that the return of the portfolio is greater than the quantile. Therefore, 

when 
21 0,

2
T T

p p Bw w wσ σθ μ θ+ Σ >  jump frequency is also increased to improve the jump ef-
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fect in rare events. This is because 
21 0,

2
T T

p p Bw w wσ σθ μ θ+ Σ >  then  

21exp
2

T T
p p J{ w}w wλ θ η θ λ+ Σ > .  

Therefore, the simulation algorithm for estimating the tail probability ˆ ( ),pp θ  and 

the standard error of ( )pse θ  from the observed data with the return vector of the as-

sets rθ  can be described as follows:  

 
Algorithm 1  

(1) Compute the tilting point pθ  such that ( ) 0.pθ′Ψ =   

(2) Generate the return of all d  assets with jump risks from three new samples of 
the tilting distribution.  
1. Generate a sample for the d -variate independent normal distribution  

1 1 1([ , , ] , ),T
d p i p d d di

i i
N w c w c IU θ σ θ σ∗ ∑ ∑∼  

 where dN  is the d -dimension normal distribution.  

2. Generate P( ),N λ∗ ∗∼  where 
21exp .

2
T T

p p J{ w}w wλ λ θ η θ∗ = + Σ   

3. In the jump frequency N n=  of sample 2, simulate the jump sizes of 
the assets from  

1 2[ ( ), ( ), , ( )] ( , ), 1, , ,T T
d d p J JV j V j V j N j nwη θ∗ ∗ ∗ + Σ Σ =∼  

where dN  denotes the d  multi-variate normal distribution.  

(3) Repeat step (2) k  times to compute  

( )
( )

( ( )) 0
1

1ˆ ( ) 1 exp ( ( )) ( ) ,i p
p

k
i

p p pm {f t }r
i

{ f t }p r
k θ

θθ θ θ
>

=

= − + Ψ∑  

where 
( )( )
p

i trθ  is the return of the i th with jump risks in the importance 

sampling.  
(4) Repeat steps (2) and (3) with the sizes of the importance sampling ,M  and com-

pute ˆ ( )pp θ  and standard error ( )pse θ  as follows  

1

1ˆ ˆ( ) ( ),
M

p pm
m

p p
M

θ θ
=

= ∑  
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2
1

ˆˆ( ( ) ( ))
( )

1

M
p pmm

p

pp
se

M
θ θ

θ =
−

= .
−

∑  

3.2 An algorithm for nonlinear assets 

Similarly, we also obtain an algorithm of simulation for nonlinear assets based on 
an algorithm of simulation for linear assets. From the change measure of the expo-
nential family, the transformation from the original measure NdP  to the new measure 

NdP
θ

 can be written as  

 ( ( )) ( )N Nf r t
N NdP e dPθ θθ −Ψ= .      (11) 

The same process to compute the moment generating function of the density is  

(exp ( ( )) )N
N pE { f r t r }θ θ−  

2
2 2

2
1

1 ( ) 1exp ( log(1 2 )) (exp 1) .
2 1 2 2

d
T Ti

N i i JN N N
i i i

b{ a { } }θθ θλσ λ θ η θδ δ δθλσ=

= + − − + + Σ −
−∑  

Then, we obtain ( )N θΨ  as  

2
2 2

2
1

1 ( ) 1( ) ( log(1 2 )) (exp 1)
2 1 2 2

d
T Ti

N N i i JN N N
i i i

ba { }θθ θλσ λ θ η θδ δ δθλσ=

Ψ = + − − + + Σ − .
−∑  

Next, we use the numerical method to find 
N
pθ  such that  

2 2 2
2

2 2 2
1

(1 ) 1( ) ( ) exp ( )
(1 2 ) 1 2 2

0.

d
T T T Ti i i i i

N N J JN N N N N N
i i i i i

ba { }θ θλσ λσθ λ θ η θ η θδ δ δ δ δ δθλσ θλσ=

−Ψ = + + + + Σ + Σ
− −

=

∑  

Then, we can also find the tilting distribution as described in the subsection above. 
By assuming independence, we can divide the tilting measure into two parts, the dif-
fusion and jump parts. With the computed parameters, iU  becomes normal with mean 

and variance  

2
2 2

1( ) , ( ) ,
1 2 1 2

i
i i

i i i i

bθμ θ σ θ
θλσ θλσ

= =
− −

 

and the iU  remain independent of each other. The tilting distribution of the jump 
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part is the same as in Section 3.1 (derived in Appendix D). Therefore, we can present 
the algorithm with importance resampling for the multi-variate jump diffusion dis-
tribution as follows:  

 
Algorithm 2  

(1) Compute the tilting point 
N
pθ  such that ( ) 0.N

N pθ =′Ψ   

(2) Generate the returns of d  assets from three new samples of the tilting distribu-
tion.  
1. Generate d  samples for the independent identical distribution  

1 2 2

1( , ), 1, ,
1 2 1 2

N
p i

Ni N N
p i i p i i

b
U N i d

θ
θ λ σ θ λ σ

∗ = .
− −

∼  

2. Generate P( ),N NN λ∗ ∗∼  where 
21exp .

2
T TN N

N p p JN N N{ }λ λ θ η θδ δ δ∗ = + Σ   

3. Given the abnormal event ,N n=  generate the jump sizes of the assets  

1 2[ ( ), ( ), , ( )] ( , ), 1, ,TN N N T
d d p J JNV j V j V j N j nη θ δ∗ ∗ ∗ + Σ Σ = .∼  

(3) Repeat step (2) k  times to compute  

( )
( )

( ( )) 0
1

1ˆ ( ) 1 exp ( ( )) ( ) ,Ni
pN N

p

k
N N Ni
p p N pm {f t }r

i
{ f t }p r

k θ
θθ θ θ

>
=

= − + Ψ∑  

where 
( ) ( )N
p

i trθ  is the return of the i th simulation.  

(4) Repeat steps (2) and (3) with the sizes of the importance sampling ,M  and com-

pute ˆ ( )Npp θ  and standard error ( )Npse θ  as follows  

1

1ˆ ˆ( ) ( ),
M

N N
p pm

m
p p

M
θ θ

=

= ∑  

2
1

ˆˆ( ( ) ( ))
( )

1

M N N
p pmN m

p

pp
se

M
θ θ

θ =
−

= .
−

∑  

Using quadratic approximation only effects the diffusion part. By the independence 
assumption, we can see that the diffusion part is the same as the case of quadratic 
approximation for multi-variate normal distribution in Glasserman, Heidelberger 
and Shahabuddin (2000). The jump part with the nonlinear portfolio is the same as 
the jump part with the linear portfolio, because the quadratic term of the jump part 
is small enough to be negligible. 
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4. Numerical Results 

We consider events with 0 05, 0 01p = . .  and 0 001.  to compare the efficiency of impor-

tance sampling relative to the Monte Carlo naive simulation. We study the estimated 
probability under various circumstance such as a linear portfolio, a nonlinear portfo-
lio and pure jump portfolio. The comparison of efficiency is measured by the relative 
efficiency of the estimate ˆ ( )p θ  relative to the estimate ˆ ,p  in which it is defined (cf. 

Hall, 1991) as  

 ˆ( )ˆ ˆeff ( ( ), ) ,
ˆ( ( ))

Var pp p
Var p

θ
θ

=     (12) 

where ˆ( ( ))Var p θ  is the variance of the probability estimator ˆ ( )p θ  with parameter of 

importance sampling .θ   

4.1 A linear asset 

In this subsection, the relative efficiencies of simulating the tail probability with a 
naive Monte Carlo simulation and with the importance sampling simulation in a sin-
gle jump diffusion model and a multi-variate jump diffusion are compared. In a single 

 

Table 1. The relative efficiency of the probability estimation for a linear asset 

when “ d =1” vs. “ d =2” 
This table reports relative efficiency of the probability estimation for a linear asset under sin-
gle and multi-variate jump diffusion models. p  denotes the true tail probability, pr  denotes 
the quantile of ˆ,p p  and pse  are the mean and standard error of the probability estimator with 

10 000,  Monte Carlo simulations, ˆ ( )pp θ  and ( )ppse θ  are the mean and the standard error of the 
tail probability estimator with importance sampling, ˆ ˆeff ( ( ) )pp pθ ,  is the relative efficiency of 

ˆ ( )pp θ  relative to p̂  in single and multi-variate jump diffusion models.  

 1d =  2d =  
pr  0.0211 0.0298 0.0400 0.0429 0.0608 0.0816 
p  0.0500 0.0100 0.0010 0.0500 0.0100 0.0010 
p̂  0.0499 0.0100 0.0010 0.0501 0.0099 0.0010 
pse  6.9E-03 3.1E-03 9.9E-04 6.8E-03 3.1E-03 1.0E-03 

ˆ ( )pp θ  0.0501 0.0100 0.0010 0.0499 0.0100 0.0010 
( )ppse θ  2.4E-03 6.8E-04 1.0E-04 2.5E-03 7.0E-04 1.0E-04 

eff ( ( ) )pp pθ ,  8.25 21.2 82.1 7.01 20.5 85.9 
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jump diffusion model, we consider parameters 1 1 10 06, 0 2, 1, 0,μ σ λ η= . = . = =  and 1 0 02,ν = .  

sample size 1 000k = ,  and Monte Carlo replications 10 000.M = ,  In a multi-variate jump 

diffusion model, we consider the parameters of a single jump diffusion model and let 

2 2 12 2 2 121, 0 05, 0 3, 0 3, 0, 0 03, 0 5,Jd μ σ ρ η ν ρ= = . = . = . = = . = .  sample size 1 000k = ,  and Monte 

Carlo replications 10 000.M = ,  For simplicity, we set ( ) 1iw t =  for all i  and .t  Table 1 re-

ports that the estimate of the probability with importance sampling is more efficient 
than the naive Monte Carlo simulation for a large deviation. 

4.2 A nonlinear asset 

In Section 3.2, we propose a method to compute the tilting point for quadratic ap-
proximation for portfolios of nonlinear assets. In Table 2, we set the specific parame-
ters to compute the tilting points for the case of a single asset and two assets, respec-
tively. We report the estimator and standard deviation by using naive simulation and 
tilting point importance sampling. The parameters are 1 2 1 21, 0, 0 02,λ η η ν ν= = = = . =  

120 03, 0 5,Jρ. = .  sample size 1 000k = ,  and Monte Carlo replications 10 000.M = ,  In Table 2,  

 
Table 2. The relative efficiency of the probability estimation for a nonlinear asset 

when “ d =1”vs. “ d =2” 
This table reports relative efficiency of the probability estimation for a nonlinear asset under 
single and multi-variate jump diffusion models. p  denotes the true tail probability, 

N
pr  denotes 

the quantile of ˆ,p p  and pse  are the mean and standard error of the probability estimator with 

Monte Carlo, ˆ ( )Npp θ  and ( )Nppse θ  are the mean and the standard error of the tail probability es-

timator with importance sampling, ˆ ˆeff ( ( ) )N
pp pθ ,  is the relative efficiency of ˆ ( )Npp θ  relative to p̂  

in single and multi-variate jump diffusion models. 

 1d =  2d =  
N
pr  1.6451 2.3249 3.0901 1.9454 2.7501 3.6573 
p  0.0500 0.0100 0.0010 0.0500 0.0100 0.0010 
p̂  0.0500 0.0100 0.0010 0.0500 0.0099 0.0010 
pse  6.9E-03 3.1E-03 9.9E-04 6.8E-03 3.1E-03 9.8E-04 

ˆ ( )Npp θ  0.0500 0.0100 0.0010 0.0500 0.0100 0.0010 
( )Nppse θ  2.2E-03 5.2E-04 1.0E-04 2.2E-03 5.2E-04 5.8E-05 

eff ( ( ) )N
pp pθ ,  9.39 36.5 282.3 9.75 37.5 285.7 
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we set 1 1b = −  and 1 0 5λ = .  with the quadratic approximation function for a single jump 

diffusion model. In Table 2, we set 1 2 10, 1 183, 0 247,b b λ= = − . = .  and 2 0 147λ = .  with the 

quadratic approximation function for a two-variate jump diffusion model. The esti-
mate of the probability with importance sampling is more efficient than naive Monte 
Carlo simulation when p  is smaller. The efficiency of the importance sampling me-

thod is not influenced by increasing assets. The efficiency improvement in the quad-
ratic approximation function seems to be better than in linear approximation. 

4.3 An asset with pure jump risks 

 In this subsection, the relative efficiency of estimating the quantile with a naive 
Monte Carlo simulation and the importance sampling method of the pure jump diffu-
sion are computed. For the case without a jump process, multi-variate normal distri-
bution was proposed in Glasserman, Heidelberger and Shahabuddin (2000) and the 
Laplace method in Lin, Wang and Fuh (2006). Therefore, we focus on discussing the 
efficiency of importance sampling with a pure jump process.  

We remove the diffusion part of the jump diffusion model by setting all parameters 
of the diffusion part to zero, that is  

 
Table 3. The relative efficiency of the probability estimation for a linear asset with 

pure jump risks when “ d =1”vs. “ d =2” 
This table reports relative efficiency of the probability estimation for a linear asset with pure 
jump risks under single and multi-variate jump diffusion models. p  denotes the true tail prob-
ability, pr  denotes the quantile of ˆ,p p  and pse  are the mean and standard error of the prob-
ability estimator with Monte Carlo, ˆ ( )pp θ  and ( )ppse θ  are the mean and the standard error of 
the tail probability estimator with importance sampling, ˆ ˆeff ( ( ) )pp pθ ,  is the relative efficiency 
of ˆ ( )pp θ  relative to p̂  in single and multi-variate pure jump diffusion models.  

 1d =  2d =  
pr  0.0220 0.0413 0.0650 0.0481 0.0901 0.1415 
p  0.0500 0.0100 0.0010 0.0500 0.0100 0.0010 
p̂  0.0500 0.0100 0.0010 0.0498 0.0100 0.0010 
pse  6.8E-03 3.1E-03 1.0E-03 6.8E-03 3.1E-03 1.0E-03 

ˆ ( )pp θ  0.0499 0.0100 0.0010 0.0499 0.0100 0.00099 
( )ppse θ  2.9E-03 6.8E-04 8.1E-05 2.9E-03 6.8E-04 8.2E-05 

eff ( ( ) )pp pθ ,  5.21 21.1 150.1 5.42 21.3 148.6 
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( )

1
( ) , 1, ,

N
i

i j
j

r t V i d
=

= = .∑  

Consider parameters 1 2 1 2 12100, 0, 0 02, 0 03, 0 5,Jλ η η ν ν ρ= = = = . = . = .  sample size 1 000k = ,  

and Monte Carlo replications 10 000.M = ,  For simplicity, we set ( ) 1iw t =  for all i  and .t  

In Table 3, the estimate of the quantile with importance sampling is more efficient 
than naive Monte Carlo simulation when p  is smaller. Under the same ,p  the rela-

tive efficiency is similar for a single asset or two assets. 
To summarize Table 1-Table 3, we find the following outcomes. First, the standard 

deviations of naive simulations are almost equal under the same probability event. 
Therefore, the relative efficiency is dependent on improvements to the efficiency of 
the importance sampling method. Second, under the three portfolio cases, the effi-
ciency of importance sampling is different with the same :p  however, the efficiency 

increases for large deviations and is not effected by increasing assets. Third, the pure 
jump process can be improved to reduce the variance in Monte Carlo simulations. 
Finally, there are some tools to improve the measure of the tilting point. One is to use 
the Laplace method (cf. Lin, Wang, and Fuh, 2006) for large deviations, and the other 
is to use the method of Fuh and Hu (2004) for moderate deviations. 

4.4 Comparing with Extreme value theory 

 Oh and Moon (2006) apply the EVT-Copula method to fit fat-tailed marginal dis-
tributions, showing that the EVT-Copula method outperforms the traditional portfo-
lio VaR method during the period of financial crises. In this subsection, we will show 
the robustness of our algorithm by comparing it with the EVT-Copula method under 
95% VaR. Note that Oh and Moon (2006) use generalized Pareto distribution (GPD) 
and some copula methods to estimate portfolio VaRs, to which the model setting is 
different from our method. Therefore, we generate the data set from these two mod-
els, and compare the portfolio VaRs in two methods. In the EVT-Copula method, the 
copula functions are chosen from the GPD model with Normal and Gumbel copulas. 
The MLEs is computed by the pot package in R. The samples of returns 1 , , nr r  and 

( ) ,ir β α− /  with β  and α  are the location and scale parameters. The function cG φ,  is 

the distribution of the GPD with  
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11 (1 ) if 0
( )

1 exp( ) if 0

c

c
cx c

G x
x cφ
φ

φ

/

,

⎧ − − / ≠ ,⎪= ⎨
− − / = ,⎪⎩

 

where ( ) 0, 0c xφ α η β:= − − > >  when 0c ≤  and 0 x cφ< ≤ /  when 0.c >  The c  and φ  can 

be estimated from sample of returns ir  that exceed η  by the method of maximum 

likelihood. In the jump diffusion model, we can estimate the parameters by the 
method of moment given in Ball and Torous (1983). In Table 4, we set 2,d =  the es-

timated parameters are 1 1 2 20 281, 0 0056, 0 385, 0 0062c cφ φ= − . = . = − . = .  in the GPD model, 

and 1 1 1 1 2 2 120 000412, 0 007, 0 588, 0 001, 0 0141, 0 000767, 0 0145, 0 322,μ σ λ η ν μ σ ρ= . = . = . = . = . = . = . = .  

2 20 002, 0 0474,η ν= − . = .  and 12 0 261Jρ = .  in the jump diffusion model. We use sample size 

of 1 000,k = ,  and Monte Carlo replications 10 000.M = ,  Here, we approximate the true 

VaR by using large sample size 100 000k = ,  in two models. It is noted from Table 4 that 

when the data set is from the jump diffusion model, our method is unbiased and the 
EVT-Copula method covers the true VaR; while when data set is from the GPD 
model, the estimated portfolio VaR by our method is also in between of the two cho-
sen copula functions. Hence from this simulation study, we show that when the 
model is from the jump diffusion model or from the GPD model, our method is robust 
and efficient to estimate the portfolio VaR.  

 
Table 4. The comparison of the 95% VaR estimation for jump diffusion model 

and GPD model 

This table reports the 95% VaR estimation for jump diffusion model and GPD model. Under 
the jump diffusion model, our method is unbiased and the EVT-Copula method covers the true 
VaR. Under the GPD model, the estimated portfolio VaR by our method is between of the two 
chosen copula functions. It shows that when the model is from the jump diffusion model or 
from the GPD model, our method is robust and efficient to estimate the portfolio VaR. 

 Jump diffusion model GPD model 
True VaR -0.00188 -0.00194 

GPD+Normal copula -0.00205 -0.00198 
GPD+Gumbel copula -0.00185 -0.00193 
Importance sampling -0.00188 -0.00196 

5. Conclusion 

In this paper, algorithms for the multi-variate jump diffusion model with impor-
tance sampling are proposed to evaluate the VaR of portfolios with linear assets and 
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nonlinear assets. To this end, we first develop an efficient computational procedure 
for estimating the portfolio loss probability with the jump process. The jump diffusion 
model is assumed to have heavy tails in the joint distribution of market risk factors. 
By the assumption of independence, we can separate the tilting measure from the 
diffusion and jump part. Importance sampling tilting measures for linear and nonlin-
ear portfolios with a multi-variate jump diffusion model are proposed when there is a 
serious event in the market such as a sub-prime financial crisis or other financial cri-
sis. For a wide range of portfolios, this method is efficient in the sense of obtaining 
variance reductions. The variance ratios of rare events are relatively more effective 
than those obtained using the naive Monte Carlo method. This method is robust for 
comparison with the ETV-Copula method.  

There are some limitations that can be further delved into in the future studies. 
First, jump diffusion models can be extended to a Markov switching jump diffusion 
model, in which the arrival rates of jump events follow a Markov chain for multiple 
states in order to develop an importance sampling for evaluating VaR. Second, the 
Laplace method can be used to obtain more accurate tilting measures (cf. Lin, Wang, 
and Fuh, 2006) for large deviations or the method of Fuh and Hu (2004) for moderate 
deviations. Third, nonlinear financial derivatives can be used for the empirical stud-
ies. In other words, we can use a nonparametric bootstrap method with the impor-
tance resampling to evaluate VaR. 
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<Appendix A> The quadratic approximation of the return with a 
nonlinear asset  

 Assume the change in the nonlinear asset is a quadratic function of the change in 
the risk factors. By the delta-gamma approximation (quadratic approximation), the 
change in portfolio value for the nonlinear portfolio can be denoted as  

1( , ( )) ( , ( )) ( ) ( ) ( ),
2

T TPP t t S t t P t S t t S t S t S t
t δ

∂+ Δ + Δ − ≈ Δ + Δ + Δ ΓΔ
∂

 

where P
t

∂
∂  is the change of the portfolio from t  to ,

i

P
i St t δ ∂

∂+ Δ =  denotes the delta ap-

proximation of the portfolio for the change of asset i  and 1[ , , ]Tnδ δ δ=  is the vector 

of the delta approximation, 
2

i j

P
ij S S

∂
∂ ∂Γ =  is the gamma approximation of the portfolio for 

the change of asset i  and asset ,j Γ  is the matrix of the gamma approximation, and 

1( ) [ ( ), , ( )]TnS t S t S tΔ = Δ Δ  denotes the change of the assets. Hence, the return of the 

quadratic approximation in the nonlinear asset can be rewritten as  

 

1
2

( , ( )) ( , ( ))( ( ))
( , ( ))

1( ) ( ) ( )
2

( , ( ))

( ) ( ) ( )
( , ( )) ( , ( )) ( , ( ))
( ) ( ) ( ) ( )

N
N p

T T

N
p

T
T N

p

T NT
N pN

P t t S t t P t S tf r t r
P t S t

P t S t S t S t
t r

P t S t
P t
t S t S t S t r

P t S t P t S t P t S t
a t r t t r t rr

δ

δ

δ

+ Δ + Δ −= −

∂ Δ + Δ + Δ ΓΔ
∂≈ −

∂ Δ Γ∂= + Δ + Δ Δ −

= + + Γ −

 

where 
( ( ))

( )
P
t t

P t S t
a t

∂
∂ Δ

,
=  is the change of the nonlinear value relative to the nonlinear asset 

by the time change, 1 1 ( )( )
( ( )) ( ( ))

( ) [ , , ]n nS tS t T
N P t S t P t S t
t δδδ

, ,
=  denotes the delta approximation vector 

relative to the asset weight of the nonlinear value at time ,t  and 
( ) ( )1

2 ( ( ))
( ) ( ) i jS t S t

N ij ij P t S t,
Γ = Γ  

presents the gamma approximation matrix of the i th asset and j th asset relative to 

the value of the nonlinear asset at time .t  
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<Appendix B> The linear form by the Cholesky decomposition 

 The return of the nonlinear asset by the quadratic approximation and the Chole-
sky decomposition method is equal to  

( ( ))Nf r t ≈ ( ) TT T T N
N N N N pa t Z J Z rZσ σ σδ μ δ δ+ + Σ + + Σ Γ Σ −  

D

= T T T T
N N NNa CU C CU JUσ σ σ δδ+ Σ + Σ Γ Σ +  

TTT
N Na b U U JUσ σ δ= + + Σ Λ Σ +  

2 2

1
( )

d
T

N i i j i i N
i

a bU U Jλ σ δ
=

= + + +∑  

where 1 2[ , , , ]T T
d Nb b b Cb σδ= = Σ  and ( ) .T N

N pNa a t rμδ= + −  

<Appendix C> The tilting distribution of importance sampling 
in the linear asset  

 In this appendix, we find the tilting distribution as follows. By the assumption of 
independence, we divide the tilting measure into two parts, the diffusion and jump 
part. For simplicity, the measure of the diffusion part is changed into the new meas-
ure, but the measure of the jump part does not change.  
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U w c U w cU θ σ θ σ∗ = − − .∑ ∑  Let ,N n=  then find the tilting meas-

ure of the jump size as follows:  
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where ( ( ); , )d JV jφ η∗ Σ  is the d  dimensional multi-variate normal distribution with mean 

vector 
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<Appendix D> The tilting distribution of importance sampling 
for the nonlinear asset  

We can find the tilting distribution as follows. By the assumption of independence, 
we can divide the tilting measure into two parts, the diffusion and jump part. For 
simplicity, the measure of the diffusion part is changed into the new measure, but the 
measure of the jump part does not change.  
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where the new measure of the multi-variate independent normal distribution with  
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and P ( )λ  is the probability density function of a Poisson distribution with parameter 

.λ  Conditional on ,N n=  we first compute the tilting measure of the jump size,  
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Nd p J JNjVφ η θ δ∗ ; + Σ , Σ  is the d-dimensional normal density function of the j th 

jump size with mean vector 
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tribution of jump frequency is  
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where P( Nλ∗ ) is the probability density function of Poisson distribution with Nλ λ∗ =  
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