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Abstract Unmarked siphons in a Petri net modelling con-
current systems such as those in cloud computing induce
deadlocks. The number of siphons grows exponentially with
the size of a net. This problem can be relieved by computing
compound (or strongly dependent) siphons based on basic
siphons. A basic (resp. compound) siphon can be synthe-
sized from an elementary (resp. compound called alternat-
ing) resource circuit. It however cannot be extended to cases
where two elementary circuits intersect at a directed path
rather than a single place (i.e., corresponding to a weakly
dependent siphon). This paper develops a uniform formula
not only for both cases but also valid for the complementary
set of siphon and characteristic vectors. We further propose
to generalize it to a compound siphon consisting of n basic
siphons. This helps simplify the computation and the com-
puter implementation to shorten the program size. Also, the
formula is easier to be memorized without consulting the
references due to the same underlying physics.
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Introduction

A flexible manufacturing system (FMS) is a computer
controlled configuration where different operations can be
executed. Generally it consists of various kinds of general-
purpose workstations, a palletized and programmable mate-
rial handling system, and other types of resources such as
fixtures and buffers. To effectively operate an FMS and meet
its production objectives, the use of limited resources among
various competing jobs has to be carefully controlled or coor-
dinated. Since various jobs are concurrently processed and
these jobs have to share some common resources, deadlocks
may occur in an FMS during its operation, which are unde-
sirable phenomena in a highly automated FMS.

Petri nets have been a powerful tool to model and analyze
the deadlock problem of FMS (Ezpeleta et al. 1995; Ferrarini
et al. 1999; Jeng et al. 1999; Iordache et al. 2001; Zimmer-
mann et al. 2001; Basile et al. 2004; Uzam et al. 2007; Hu et
al. 2012a; Pla et al. 2012; Li et al. 2012).

First of all, Ezpeleta et al. pioneer a class of Petri nets (PN)
called systems of simple sequential processes with resources
(S3PR) (Ezpeleta et al. 1995). Deadlocks can be avoided by
adding a control place and associated arcs to each emptiable
siphon S to prevent it from being unmarked. However, gen-
erally too many control places and arcs are required.

On the other hand, the iterative control method in Ior-
dache et al. (2001) reduces the number of monitors by find-
ing all emptiable siphons in each iteration step. The method
becomes very difficult and remains complex even for a
moderate-size model.

Additionally, Uzam and Zhou (2006; Uzam et al. 2007)
classified a reachability graph into deadlock-zone (unsafe
states) including deadlocks and critical bad markings that
inevitably lead to deadlocks, and live-zone (safe states) rep-
resenting the live markings of the reachability graph. By
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singling out a first-met bad marking from the reachability
graph at each iteration, a control place is added via construct-
ing a place invariant (PI) [based on the method in Yamalidou
et al. (1996)] of a Petri net to prevent this bad marking from
being reached. The number of monitors required is greatly
reduced and the controlled model is much more (though not
maximally) permissive. But the construction of RG suffers
the state explosion problem and the method is not suitable for
large nets. It also needs to solve linear programming prob-
lems with exponential complexity. Furthermore, some mon-
itors are redundant.

For solving above linear programming problem, Huang
and Pan (2010, 2011; Hu et al. 2012a; Pan et al. 2013) pro-
posed the crucial marking transition separation instances to
enhance the computational efficiency based on the theory of
Regions.

Besides, Hu et al. (2011a, 2011b, 2012a; Hu and Li 2009,
2010), for the first time, investigates the deadlock resolution
in the paradigm of Petri nets allowing assembly operations,
multiple-type and multiple-quantity resource acquisition,
and production ratio among jobs. They elegantly prove the
separation of ratio and supervisory controls. A mathemati-
cal programming-based method is developed to synthesize
liveness-enforcing supervisors. Their approach outperforms
many traditional methods in both generality and efficiency.

Li and Zhou (2004) propose the concept of elementary
siphons (generally much smaller than the set of all emp-
tiable siphons in large Petri nets) to minimize the new addi-
tion of control places. They classify emptiable siphons into
two kinds: elementary and dependent. By adding a control
place for each elementary siphon Se, all dependent siphons
S are controlled too, thus reducing the number of monitors
required rendering the approach suitable for large Petri nets.
As a result, for complex systems, it is essential to apply the
concept of elementary siphons to add monitors; the number
of which is linear to the size of the nets modelling the systems.
However, the number of dependent siphons is exponential to
the size of the net, even though that of elementary siphons is
linear.

We find all elementary siphons without the knowledge
of all SMS. Furthermore, it is much more efficient to iden-
tify and compute the T-characteristic vectors from the struc-
ture. For instance, Chao (2010a,b) shows that in an S3PR, an
SMS can be synthesized from a strongly connected resource
subnet and any strongly dependent siphon corresponds to a
compound circuit where the intersection between any two
elementary circuits is at most a resource place. Also any ele-
mentary siphon is a basic one constructed from an elementary
circuit where all places are resources. Thus, the set of ele-
mentary siphons can be computed without the knowledge of
all SMS.

Controllability means how a dependent siphon depends
on its elementary siphons. The best controllability occurs

when each elementary siphon is least restrictively controlled
(when control depth variable ξ = 1), while not generating
new siphons, and the dependent siphon is already controlled
and needs no monitor (Liu et al. 2011b; Wang et al. 2012).
This can be checked by the MLI (called controllability). If
the MLI is not satisfied, then they perform a LIP test which
is an NP-hard problem. This implies that the MLI test is
only sufficient, but not necessary. Thus, the time to verify
against the MLI for all dependent siphons is exponential as
for previous approaches. It is essential to efficiently compute
the dependent siphons and related variables. We propose a
sufficient and necessary test in Chao (2010a) for adjusting
control depth variables in an S3PR to avoid the sufficient-only
time-consuming LIP test (NP-complete problem) required
previously for some cases.

If the above LIP test also fails, then some ξ must be greater
than 1 (bless permissive). After assigning ξ for each elemen-
tary siphon, one checks again the MLI. Continue such adjust-
ment until the MLI is satisfied. The larger the control depth
variable, the fewer states the system will reach. The control
policy for weakly dependent siphons (Liu et al. 2011a; Xiong
et al. 2010) is rather conservative (Li and Zhou 2004) (such
that fewer states are reached) due to some negative terms in
the controllability [a marking linear inequality (MLI)].

For strongly dependent siphons, the complementary set
[S] of dependent siphon S equals the union of those of its
component elementary siphons. The controllability or MLI
is derived accordingly. However, it is unknown in Li and
Zhou (2004) how [S] relates to those of its component ele-
mentary siphons. As a result, the control policy for weakly
dependent siphons is rather conservative (Li and Zhou 2004)
since negative terms in the controllability are ignored.

Chao (2010a) develops a better MLI (Marking Linear
Inequality) test by discovering how [S] relates to those of its
component elementary siphons. The resulting control pol-
icy for weakly dependent hence can reach more good states.
It turns out that the complementary set [S] and those of its
component siphons follow the same relationship as that of
T -characteristic vectors.

So far, none in the literature deal with how a compound
siphon S relates to those of its component siphons. As a
result, one has to synthesize compound siphons from com-
pound resource circuits (i.e., containing only resource places)
using our method in Chao (2006). Furthermore, we have
developed theory (Chao 2007) to efficiently extract SMS
incrementally rather than the traditional global approach.
Only linear number of basic siphons needs to be searched.
Adding and deleting common sets of places from existing
ones (called composition method), one can derive the com-
pound siphons with much reduced search time. It is eas-
ily subject to computer implementation in a very efficient
way compared with all current techniques since all these
steps can be expressed in terms of formulas. However, the
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relationship between a compound siphon S and its compo-
nent siphons remains unknown. We will show that the rela-
tionship follows that of T -characteristic vectors.

We discover that different cases can be unified by the same
physics resulting in a single formula to compute dependent
siphons, their complementary set of places, and characteristic
T -vectors. This helps to memorize the formula and simplify
the implementation since the codes for different cases can be
shortened with a single set of codes for the uniform formula.
This relieves the problem of computing siphons (and related
variables for controlling the siphons), the number of which
grows exponentially with the size of a net. Furthermore, it is
desirable to compute S, [S], and η directly from the structures
independent to whether S is a strongly or a weakly dependent
siphon. We are the very first to uncover the uniform method
to do so.

The rest of the paper is organized as follows. Section
“Preliminaries” presents the preliminaries about Petri nets
and S3PR, respectively. Section “Motivation” motivates the
reader by presenting some simple examples. The results are
proved and generalized in “Theory” section. A well-known
S3PR example has been illustrated to show the advantages
in “Computation by structures”. Finally, section “Example”
concludes the paper.

Preliminaries

Here only the definitions used in this paper are presented.
The reader may refer to Murata (1989) and Chao (2006) for
more Petri net details. For a Petri net (N , M0), a non-empty
subset S(resp. τ) of places is called a siphon (resp. trap) if
·S ⊆ S· (resp. · τ ⊆ τ·, i.e., every transition having an output
(resp. input) place in S has an input (resp. output) place in
S(resp. τ). If M0 (S) = ∑

p∈s M0 (p) = 0, S is called an
empty siphon at M0. A minimal siphon does not contain a
siphon as a proper subset. It is called a strict minimal siphon
(SMS), if it does not contain a trap.

A P-vector (place vector) is a column vector Y : P → Z
indexed by P where Z is the set of integers. The incidence
matrix of N is a matrix [N ] : P×T → Z indexed by P and T
such that [N ] = [N ]+ − [N ]− where [N ]+(p, t) = F(t, p)

and [N ]−(p, t) = F(p, t). We denote column vectors where
every entry equals 0 by 0. Y T and [N ]T are the transposed
versions of a vector Y and a matrix [N ], respectively. Y is a
P-invariant (place invariant) if and only if Y · �= 0 and Y T [N ]
= 0T hold where ‘·’ means a vector or matrix multiplication.
||Y || = p ∈ P|Y (p) �= 0 is the support of Y . A minimal
P-invariant does not contain another P-invariant as a proper
subset.

Definition 1 (Ezpeleta 1995) A System of Simple Sequen-
tial Process with Resources (S3 P R) is a Petri net

N = (P ∪ p0 ∪ PR, T, F) defined as the union of a set of
nets Ni = (Pi ∪{p0

i }∪ PRi , Ti , Fi ) sharing common places,
where the following statements are true:

1. p0
i is called the process idle place of Ni . Elements in Pi

and PRi are called activity and resource places, respec-
tively. A resource place is called a resource for short in
case of no confusion.

2. PRi �= �; Pi �= �; p0
i /∈ Pi ; (Pi ∪ {p0

i }) ∩ PRi =
�;∀p ∈ Pi ,∀t ∈ ·p,∀t ′ ∈ p·, ∃rp ∈ PRi , ·t ∩ PRi =
t ′· ∩ PRi = {rp}; ∀r ∈ PRi ,

··r ∩ Pi = r ·· Pi �= �; ∀r ∈
PRi ,

·r ∩ r · = �; and ··(p0
i ) ∩ PRi = �.

3. N
′
i is a strongly connected state machine, where N

′
i =

(Pi ∪ {p0
i }, Ti , Fi ) is the resulting net after the places in

PRi and related arcs are removed from Ni .
4. Every circuit of N

′
i contains place p0

i .

5. Any two N
′
i are composable when they share a set of

common places. Every shared place must be a resource.
6. H(r) = ··r ∩ P denotes the set of holders of r (operation

places that use r). Any resource r is associated with a
minimal P-invariant whose support is denoted by �r =
r ∪ H(r).

An S3PR is composed of some state machines (with
choices) holding and releasing some common resources.
Figure 1 shows an example of S3PR. For a net system
(N , M0), a non-empty subset S (resp. τ) of places is called
a siphon (resp. trap) if ·S ⊆ S· (resp. τ · ⊆ · τ), i.e., every
transition having an output (resp. input) place in S has an
input (resp. output) place in S(resp. τ). R(S) is the set of
resource places in S.

S is called an empty siphon at M0 If M0 (S)=∑
p∈s M0 (p)

= 0. A minimal siphon does not contain a siphon as a proper
subset. It is called an SMS (Strict Minimal Siphon), denoted
by S, if it does not contain a trap.
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Fig. 1 An example S3PR with strongly dependent siphon
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If a siphon S ⊂ ||Y ||, then [S] = ||Y ||\S is called the
complementary siphon of S and S ∪ [S] = ∩r∈S�r is the
support of a P-invariant.

Tokens in a siphon S of an ordinary Petri net can either
leak out to the complementary set [S] of S or stay in S. Thus
the sum of tokens in S ∪ [S] is a constant. S ∪ [S] forms the
support of a minimal P-invariant.

Let � ⊆ P be a subset of places of N. P-vector λ� is called
the characteristic P-vector of � iff ∀p ∈ �, λ�(p) = 1; oth-
erwise λ�(p) = 0. η is called the characteristic T -vector of
�, if ηT = λT

� · [N ], where [N ] is the incidence matrix.
Physically, the firing of a transition t where [η (t) > 0, η(t)
= 0, and η(t) < 0] increases, maintains and decreases the
number of tokens in S, respectively. Let ηSα , ηSβ ,…, and
ηSγ , ({α, β, . . . , γ } ⊆ {1, 2, . . . , k}) be a linear indepen-
dent maximal set of matrix [η]. Then 
E = {Sα, Sβ, . . . , Sγ }
is called a set of elementary siphons. S /∈ 
E is called a
strongly dependent siphon if ηS = ∑

Si ∈
E
aiηSi where

ai ≥ 0. S /∈ 
E is called a weakly dependent siphon
if ∃ non-empty A, B ⊂ 
E , such that A ∩ B = � and
ηS = ∑

Si ∈A aiηSi − ∑
Si ∈B aiηSi where ai > 0.

Li and Zhou (2004) propose to find elementary siphons
by constructing the characteristic P-vector (resp. T -vector)
vector matrix [λ] (resp. [η]) of the siphons in N followed by
finding linearly independent vectors in [λ] (resp. [η]). The
siphons corresponding to these independent vectors are the
elementary siphons in the net system. Note that the above
calculation of linearly independent vectors do not assume N
to be an S3PR and are applicable to arbitrary nets.

Definition 2 (Chao 2006, 2010a,b) A sequence of nodes
x1x2. . .xn is called a path of N if ∀i ∈ {1, 2, . . .,

n−1}, xi+1 ∈ x ·
i . An elementary path from x1 and xn is a path

whose nodes are all different (except, perhaps, x1 and xn). A
circuit is an elementary path with x1 = xn . A net N is strong
connected if for every node pair (ni , n j ), ni , n j ∈ P ∪ T ,
there is a directed path from ni to n j .

The strongly connected circuit from which an SMS can be
synthesized is called a core circuit. An elementary resource
circuit is called a basic circuit, denoted by cb. The siphon
constructed from cb is called a basic siphon. A compound
circuit c is a circuit consisting of multiply interconnected
elementary circuits c1, c2, . . ., cn extending between Process
1 and 2. The SMS synthesized from compound circuit c
using the Handle-Construction Procedure in Chao (2006)
is called an n-compound siphon S. If for every pair of
i, j, ci , ci+1, intersect at a resource place and ri (resp. Path
[r1t1r2. . .ri ti . . .rk−1tk−1rk]1), then c = c1oc2o . . . cn−1ocn

(resp. c1 ⊕ c2 ⊕ . . .⊕ cn−1 ⊕ cn). The corresponding synthe-
sized siphon is denoted by S = S1oS2o . . . Sn−1o Sn (resp.
S = S1 ⊕ S2 ⊕ . . . ⊕ Sn−1 ⊕ Sn).

Motivation

This section motivates the reader about the uniform formula
described earlier. First we observe that (Table 1) for a strongly
dependent 2-compound siphon,

ς = ς1 + ς2 − ς1,2 (1)

where ς12 is the ς value for the siphon with R(S) = R(S1 ∩
S2), where ς = S, [S], and η, R(S) is the set of resource
places in S.

Next extend this equation to a weakly dependent
2-compound siphon (Table 2).

In Fig. 2, there are 3 elementary siphons S1 − S3 and 1
weakly dependent siphon S4; their characteristic T-vectors η

are shown in Table 2. In both cases, all compound siphons S,
their [S] and η share the same uniform formula.

Since the number of SMS grows exponentially with the
size of a net, the time complexity of computing η for all
compound siphons is exponential and quite time consum-
ing. Thus, it is desired to compute compound siphons S,
their complementary set of places [S], and T -characteristic

Table 1 Types of siphons for
the net in Fig. 1 SMS [S] η Set of places c

S1 p2, p7 [-t1 + t2 + t6 − t7] p9, p10, p3, p6 c1 = [p9 t6 p10 t2 p9]

S2 p3, p8 [-t2 + t3 + t7 − t8] p10, p11, p4, p7 c2 = [p10 t7 p11 t3 p10]

S3 p2, p3, p7, p8 [-t1 + t3 + t6 − t8] p9, p10, p6, p11, p4 c3 = c1o c2

Table 2 Four SMS in Fig. 2 and their η. (η4 = η1 + η2 − η3)

SMS [S] η Set of places c

S1 p2, p3, p8, p9, p10, p11 [t2 − t4 + t8 − t9] p4, p12, p13, p14, p15 c1 = [p15t2 p14t3 p13t8 p15]
S2 p3, p4, p7, p8, p9, p10 [t1 − t3 + t7 − t10] p5, p11, p14, p15, p16 c2=[p14t4 p16t1 p15t2 p14]

S3 p3, p8, p9, p10 [t2 − t3 − t4 + t7] p4, p11, p14, p15 c3 = [p15t2 p14t6 p15]

S4 p2, p3, p4, p7, p8, p9, p10, p11 [t1 + t8 − t9 − t10] p5, p12, p13, p14, p15, p16 c4 = c1 ⊕ c2
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Fig. 2 Example weakly
2-compound siphon.
(η0 = η1 + η2 − η3)
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vectors η efficiently. To do so, we need to generalize Equation
(1).

Theory

The following theorem provides the foundation for the uni-
form formula mentioned earlier.

Theorem 1 (Theorem 2 in (Chao 2010a)):
Let (N0, M0) be a net system and S0 be a dependent SMS

w.r.t. elementary siphons S1, S2, …, Sn, Sn+1, Sn+2, …, and
Sn+m where ηS0 = ∑n

i=1

(
aiηSi

) − ∑m
j=1

(
bn+jηSn+j

) =
σ a−σ b, σ a =∑n

i=1

(
aiηSi

)
, and σ b = ∑m

j=1
(
bn+jηSn+j

)
.

Then

1. ∀S ∈ S0, S1, S2, . . . , Sn, Sn+1, Sn+2, . . . , Sn+m, ηS

= −η[S] (characteristic T-vector of the complementary
set of siphon S equals the negative of that of S).

2. λ[S0] = ∑n
i=1

(
aiλ[Si ]

) − ∑m
j=1

(
bn+ jλ[Sn+ j ]

)
, where

ai , b j ∈ R (set of real numbers), i ∈, 2, . . . , n and j ∈
[1, 2, . . . , m] (characteristic P-vectors of the comple-
mentary sets of siphon S0, S1, S2, . . . , Sn, Sn+1, Sn+2,

. . . , Sn+m follow the same equation as that of the cor-
responding characteristic T-vectors).

3. The Marking Equality (ME) holds : M ([S0]) = ∑n
i=1

(ai M ([Si ]))−∑m
j=1

(
bn+ j M

([
Sn+ j

]))
.M ∈ R(N , M0)

(total tokens in the complementary sets of siphon S0, S1,

S2, . . . , Sn, Sn+1, Sn+2, . . . , Sn+m follow the same equa-
tion as that of the corresponding characteristic
T-vectors).

Proof please refer to the proof of Theorem 2 in Chao (2010a).
��

This ME (marking equality) says that the total number
of tokens trapped in [S0] and [Si ], follow the same linear
algebraic relationship between ηS0 and ηSi , i = 1, 2, . . ., n,

n + 1, . . ., n + m. This is because physically, -ηS(t) is the
number of tokens removed from S by firing t once.

Computation by structures

Recall that it is desirable to compute S, [S], and η directly
from the structures independent to whether S is a strongly or
a weakly dependent siphon. We are the very first to uncover
the uniform method to do so.

We first deal with strongly 2-compound siphons based on
the following lemma.

Lemma 1 Let r ∈ PR, the minimal siphon containing r is
S = �(r) = {r} ∪ H(r) (also the support of a minimal
P-invariant) with [S] = � and ηS = 0.

Proof Obvious. ��
Theorem 2 For every compound circuit made of cb1 and cb2

in an S3PR corresponding to an SMS S0 such that cb1 ∩ cb2

= r ,

1) η0 = η1 + η2, where r ∈ PR and η0 is the η value for S0

2) η0 = η1 + η2 − η12, where η12 is the characteristic
T-vector of the minimal siphon containing r.

3) [S0] = [S1] + [S2] − [S12].
4) S0 = S1 + S2 − S12.
5) ς = ς1 + ς2 − ς1,2, where ς = S, o [S], o η.

Proof 1. See the proof for Theorem 1 in Chao (2006).
2. It follows from Lemma 1 that η12 = 0. Thus, η0 = η1 +

η2+η1 + η2 − η12.
3. By Lemma 1, [S12] = �. By Corollary 3 in Li and Zhou

(2004), [S0] = [S1] + [S2]. Hence, [S0] = [S1] + [S2] −
[S12].

4. (S1+[S1])+(S2+[S2]) = ∑
r∈R1

� (r)+∑
r∈R2

� (r) =
∑

r∈R3
� (r) + ∑

r∈R1∩R2
� (r).
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∑
r∈R3

� (r)=s1+[s1]+s2+[s2]−∑
r∈R1∩R2

� (r) .S0+
[S0] = S0 + ([S1] + [S2] − [S12]) = ∑

r∈R3
� (r)

= s1 + [s1] + s2 + [s2] − ∑
r∈R1∩R2

� (r).
S0 = S1+S2 - (

∑
r∈R1∩R2

� (r)−[s12]) = S1+S2−S12,
where S12 = ∑

r∈R1∩R2
� (r) − [s12].

5. It follows from Parts 1–4 of this theorem.
��

This theorem proves Eq. (1) for a strongly 2-compound
siphon. Let S0 be a strongly dependent siphon, S1, S2, …,
and Sn be elementary siphons, with c0 = c1o c2o …o cn . c0

(the core circuit from which to synthesize S0) is a compound
resource circuit containing c1, c2,...,cn and the intersection
between any two ci and c j , i = j − 1 > 0, is exactly a
resource place, where ci (i= 0, 1, 2,…, n) is the core cir-
cuit from which to synthesize Si . We show in Theorem 2 of
(Chao 2006) that ηS0 = ηS1 + ηS2 + · · · + ηSn . Based on
Theorem 3 the uniformity also holds for this case of strongly
n-dependent siphons.

Thus, if S0 is a WDS (weakly dependent siphon), the inter-
section between any two ci and c j,i = j−1 > 0 must contain
more than one resource place.

In Fig. 2, c1 ∩ c2 = [p15t2 p14] is not a single resource
place, where η1(t15) = η2(t15) = 1. If � = c1 ∩ c2 is not in a
third basic circuit, we have η4(t15) = η1(t15) + η2(t15) = 2
against the fact in (Li and Zhou 2004) that any η(t) must
be one of 1, 0, and -1. Thus, � must be in a third basic
circuit c3 from which to synthesize S3 so that η4(t15) =
η1(t15) + η2(t15) − η3(t15) = 1.

Thus, if S4 weakly depends on S1 and S2—synthesized
from basic circuits c1 and c2, respectively, then there exists
a third siphon S3 such that η4 = η1 + η2 − η3.

Define S1,2 = S3 and S0 = S1 ⊕ S2 since R(S1 ∩ S2)

= R(S3). S1 ⊕ S2 is similar to S1 o S2 in terms of controlla-
bility to be shown later. S1⊕S2 is different than S1o S2 in that
R(S1 ∩ S2) for the former contains more than one resource
place while the latter contains only one resource place.

Definition 3 Let (N0, M0) be a net system and S0 = S1 ⊕S2

denotes the fact that S0 is a weakly dependent SMS w.r.t.
elementary siphons S1, S2, and S1,2 = S3 such that η0

= η1 + η2 − η3.

Theorem 3 Let S = S1 ⊕ S2. Then η0 = η1 + η2 − η3.

Proof Let t be a transition in � · ∪ · �, where � = R(c0).
There are two cases:

1) ca
1 ∪ c2b is a single resource place. The case has been

proved in Chao (2006).
2) ca

1 ∪ cb
2 contains more than a single resource place. It

holds that ηi (t) = η0(t), and η j (t) = η3(t), where i, j ∈
{1, 2}, i �= j ⇒ ηi (t) + η j (t) − η3(t) = ηi (t) = η0(t).
This theorem is thus proved.
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t18

p18
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Fig. 3 Another example of weakly dependent siphons spanning more
than two processes

��
We now propose the following:

Theorem 4 Let S0 = S1 ⊕S2 as defined in Definition 2, then

1) [S0] = [S1] ∪ [S2],
2) [S0] = [S1] + [S2] − [S3],
3) [S1] ∩ [S2] = [S1,2],
4) S0 = S1 + S2 − [S12],
5) ς = ς1 + ς2 − ς1,2, where ς = S, o [S], o η, and
6) M([S0]) = M([S1]) + M([S2]) − M([S1,2]).

Proof 1. [S0] = {([S1]\[S1,2]) ∪ [S1,2]} ∪ {([S2]\[S1,2])
∪ [S1,2]}
= [S1] ∪ [S2], where [Si ] = ([Si ]\[S1,2]) ∪ [S1,2].
Hence, [S0] = [S1] ∪ [S2].

2. By Theorem 3, we have η0 = η1 + η2 − η3, which leads
to [S0] = [S1] + [S2] − [S3] by Corollary 1.

3. The fact that [S0] = [S1] ∪ [S2] implies that
[S0] = [S1] + [S2] − [S1] ∩ [S2]. Comparing this with
Part 2 of this theorem leads to [S1]∩[S2] = [S3] = [S1,2]
(By Def. 5, S1,2 = S3).
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Fig. 4 Example weakly 3-compound siphon

Table 3 Eight SMS S, and core
circuits in Fig. 4 S Set of places c

S1 p5, p17, p14, p15, p16 c1 = [p14t4 p16t1 p15t2 p14]

S2 p4, p26, p12, p13, p14, p15 c2 = [p15t2 p14t3 p13t18 p12t8 p15]

S3 p2, p27, p11, p12, p13 c3 = [p13t18 p12t17 p17t14 p13]

S4 p4, p17, p14, p15 c4 = [p15t2 p14t6 p15]

S5 p2, p26, p12, p13 c5 = [p13t18 p12t12 p13]

S6 p5, p27, p11, p12, p13, p14, p15, p16 c6 = c1 ⊕ c2 ⊕ c3

S7 p5, p26, p12, p13, p14, p15, p16 c7 = c1 ⊕ c2

S8 p4, p27, p11, p12, p13, p14, p15 c8 = c2 ⊕ c3

Table 4 Eight SMS S, [S] and
η in Fig. 4 S [S] η

S1 p3, p4, p7, p8, p9, p10 t1 − t3 + t7 − t10

S2 p2, p3, p8, p9, p10, p17, p21, p23, p24,p25 t2 − t4 + t13 − t17

S3 p20, p21, p23, p24, p25, p26 -t8 + t14 − t16 + t18

S4 p3, p8, p9, p10 t2 − t3 − t4 + t7

S5 p21, p23, p24, p25 -t8 + t13 − t17 + t18

S6 p2, p3, p4, p7, p8, p9, p10, p17, p20, p21, p23, p24, p25, p26 t1 − t10 + t14 − t16

S7 p2, p3, p4, p7, p8, p9, p10, p17, p21, p23, p24, p25 t1 − t10 + t13 − t17

S8 p2, p3, p8, p9, p10, p17, p20, p21, p23, p24, p25, p26 t2 − t4 + t14 − t16

4. The proof is the same as that of Part 4 of Theorem 1.
5. It follows from Theorem 3 and Parts 2 and 4 of this the-

orem.
6. From Part 3 of Theorem 1, we have M([S0]) =

M([S1]) + M([S2]) − M([S1,2]).
��

Consider the S3PR in Fig. 2, [S0]= p2, p3, p4, p7, p8, p9,

p10, p11. Based on Table 1, one can verify that 1) [S0]
= [S1] ∪ [S2] and 2) [S1] ∩ [S2] = [S1,2] = S3. The same

conclusion applies to the net in Fig. 3 where the transitions
involved span more than two processes.

This theorem confirms the uniform computation for a
weakly 2-compound siphon. The following theorem extends
the uniform computation to a weakly n-compound siphon.

Theorem 5 Let S0 = S1 ⊕ S2 ⊕ · · · ⊕ Sn Then

1) η0 = η1 + η2 + · · · + ηn − η1,2 − η2,3 − · · · − ηn−1,n.
2) [S0] = [S1]+ [S2]+ · · · + [Sn]− [S1,2]− [S2,3] − · · · −

[Sn−1,n ].
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Table 5 Eight SMS S and
dependency in Fig. 4. S Set of places Dependency

S1 p5, p17, p14, p15, p16

S2 p4, p26, p12, p13, p14, p15

S3 p2, p27, p11, p12, p13

S4 p4, p17, p14, p15

S5 p2, p26, p12, p13

S6 p5, p27, p11, p12, p13, p14, p15, p16 S6 = S1 ⊕ S2 ⊕ S3 = S1 + S2 + S3 − S12 − S23

S7 p5, p26, p12, p13, p14, p15, p16 S7 = S1 ⊕ S2 = S1 + S2 − S12

S8 p4, p27, p11, p12, p13, p14, p15 S8 = S2 ⊕ S3 = S2 + S3 − S23

Table 6 Eight SMS [S] and dependency in Fig. 4

[S] Set of places Dependency

[S1] p3, p4, p7, p8, p9, p10

[S2] p2, p3, p8, p9, p10, p17, p21, p23, p24, p25

[S3] p20, p21,p23, p24, p25, p26

[S4] p3, p8, p9, p10

[S5] p21, p23, p24, p25

[S6] p2, p3, p4, p7, p8, p9, p10, p17, p20, p21, p23, p24, p25, p26 [S6] = [S1] ⊕ [S2] ⊕ [S3] = [S1] + [S2] + [S3] − [S12] − [S23]
[S7] p2, p3, p4, p7, p8, p9, p10, p17, p21, p23, p24, p25 [S7] = [S1] ⊕ [S2] = [S1] + [S2] − [S12]
[S8] p2, p3, p8, p9, p10, p17, p20, p21, p23, p24, p25, p26 [S8] = [S2] ⊕ [S3] = [S2] + [S3] − [S23]

Table 7 Eight SMS η and dependency in Fig. 4

η Characteristic T-vectors Dependency

η1 t1 − t3 + t7 − t10

η2 t2 − t4 + t13 − t17

η3 -t8 + t14 − t16 + t18

η4 t2 − t3 − t4 + t7

η5 -t8 + t13 − t17 + t18

η6 t1 − t10 + t14 − t16 η6= η1 + η2+ η3– η12– η23

η7 t1 − t10 + t13 − t17 η7= η1+ η2– η12

η8 t2 − t4 + t14 − t16 η8 = η2 + η3 – η23

3) S0 = S1 + S2 + · · · + Sn − S1,2 − S2,3 − · · · − Sn−1,n.
4) ς = ς1 + ς2 + · · · + ςn − ς1,2 − ς2,3 − · · · − ςn−1,n.

Proof 1. Prove by induction. The case of n = 2 holds by
Theorem 5. Let S0 = S∗⊕Sn where S∗ = S1⊕S2⊕· · ·⊕
Sn−1 and the corresponding core circuit c∗ = c1 ⊕ c2 ⊕
· · · ⊕ cn−1. Assume it holds for the case of n − 1. Thus,
η∗ = η1+η2+· · ·+ηn−1−η1,2−η2,3−· · ·−ηn−2, n − 1.
c0 = c∗ ⊕ cn is a compound circuit containing c∗ and
cn . By Theorem 3, η0 = η∗ + ηn − η∗,n , where η∗,n is
the η value for the SMS S’ with R(S′) = R(S∗ ∩ Sn)

= R(Sn−1 ∩ Sn) ⇒ η0 = η∗ + ηn − ηn−1,n ⇒ η0

= η1 + η2 + . . . + ηn − η1,2 − η2,3 − . . . − ηn−1,n .

2. Prove by induction. The case of n = 2 holds by Part 2 of
Theorem 4. Let S0 = S∗⊕Sn where S∗ = S1⊕S2⊕· · ·⊕
Sn−1. Assume it holds for the case of n-1. Thus, [S∗] =
[S1]+[S2]+· · ·+[Sn−1]−[S2,3]−· · ·−[Sn−2,n−1]. ∃p ∈
[S0] ∩ [Sn], p /∈ [Si ], i ∈ 1, 2, . . ., n − 1 ⇒ [S0] must
contain a term [Sn] since p appears exactly once in both
[S0] and [Sn]. Places p

′
in [S∗]∩ [Sn], however, appears

twice in [S∗] + [Sn]. Thus, they must be deleted from
[S∗]+[Sn] to get [S0] = [S∗]+[Sn]−[S∗]∩[Sn]. [S∗]∩
[Sn] = [Sn−1] ∩ [Sn] = [Sn−1,n] (Part 3 of Theorem 4)
⇒ [S0] = [S∗]+[Sn]−[S∗]∩[Sn] = [S1]+[S2]+· · ·+
[Sn−1] − [S2,3] − · · · − [Sn−2,n−1] + [Sn] − [Sn−1,n] =
[S1] + [S2] + · · · + [Sn] − [S2,3] − · · · − [Sn−1,n].

3. The proof by induction is similar to that for Parts 1 and
2 of this theorem.

4. It follows Parts 1–3 of this theorem.
��

Thus, we prove the uniform formula for weakly
n-compound siphons. It covers strongly dependent siphons as
a special case where there are no negative terms in ηs0. Thus,
the uniform formula holds irrespective to whether the com-
pound siphon is strongly or weakly. This further enhances
the uniformity of the formula.

One can employ Fig. 4 to demonstrate Theorem 5. As
shown in Tables 3, 4, 5, 6 and 7, S, [S] and η for weakly
compound siphons, all share the same formula verifying
Theorem 5.
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Fig. 5 A more complicated Petri net model of an FMS with weakly dependent siphons (Liu et al. 2011a)

Example

Figure 5 shows a classical example [adapted from Liu
et al. (2011a)] with both strongly and weakly dependent
siphons. The net system is an S3PR and contains deadlocks.
With the theory developed in this paper, it is easy (even
manually without software help) to identify all basic and
compound siphons. They happen to be elementary and
dependent siphons, respectively. The uniform formulas fur-
ther help compute all SMS, S, [S], and η, from which one

can construct the controlled model to be more permissive than
that in Li and Zhou (2004) as shown in Liu et al. (2011a).
There are eight elementary or basic siphons synthesized from
8 resource circuits using the handle-construction procedure
in Chao (2006), 4 weakly and 21 strongly dependent siphons
as shown in Tables 8 and 9 respectively. For example, S3

is a strongly dependent SMS w.r.t. to S4 and S18, S2 is a
weakly dependent SMS w.r.t. to S17 and S20, and S28 is
another weakly dependent SMS w.r.t. to S4 and S20, respec-
tively.

Table 8 Elementary or basic siphons, resource circuits, and η for the net in Fig. 5

Basic siphons Places c η

S1 p10, p16, p22, p26 [p22t10 p26t16 p22] -t9 + t10 − t15 + t16

S4 p4, p10, p17, p21, p22, p24, p26 [p21t17 p26t16 p22t5 p24t4 p21] -t3 + t5 − t11 + t13 − t8 + t10 − t15 + t17

S10 p4, p9, p12, p17, p21, p24 [p21t13 p24t4 p21] -t3 + t4 − t11 + t13

S16 p2, p4, p8, p13, p17, p21, p26 [p21t17 p26t9 p21] -t8 + t9 − t16 + t17

S17 p2, p4, p8, p12, p19, p20,p21, p23, p25 [p21t3 p23t2 p20t19 p25t18 p21] -t1 + t3 + t8 − t17 + t19

S18 p2, p4, p8, p12, p18, p21,p25 [p21t8 p25t18 p21] -t7 + t8 − t17 + t18

S19 p2, p4, p8, p12, p17, p21, p23, p28 [p21t3 p23t28 p21] -t2 + t3 − t27 + t28

S20 p10, p21, p22, p23, p26, p29 [p21t17 p26t16 p22t29 p23t28 p21] -t2 + t3 − t27+ t28
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Table 9 Compound siphons, and their η relationship for the net in Fig. 5

Compound siphons Places η Relationship

S2 p2, p4, p8, p10, p19, p20, p21, p22, p23, p24, p25, p26, p29 η2= η17 + η20 - η19

S3 p4, p10, p18, p21, p22, p24, p25, p26 η3 = η4 + η18

S5 p4, p9, p13, p19, p20, p21, p23, p24, p25, p26 η5 = η10+ η16 + η17

S6 p4, p9, p13, p18, p21, p24, p25, p26 η6 = η10 + η16 + η18

S7 p4, p9, p13, p17, p21, p24, p26 η7 = η10 + η16

S8 p4, p9, p12, p19, p20, p21, p23, p24, p25 η8 = η10 + η17

S9 p4, p9, p12, p18, p21, p24, p25 η9 = η10 + η18

S11 p2, p4, p8, p10, p19, p20, p21, p22, p23, p25, p26 η11 = η1 + η16 + η17

S12 p2, p4, p8, p13, p19, p20, p21, p23, p25, p26 η12 = η16 + η17

S13 p2, p4, p8, p10, p18, p21, p22, p25, p26 η13 = η1 + η16 + η18

S14 p2, p4, p8, p13, p18, p21, p25, p26 η14 = η16 + η18

S15 p2, p4, p8, p10, p17, p21, p22, p26 η15 = η1 + η16

S21 p2, p4, p8, p13, p17, p21, p23, p26, p28 η21 = η19 + η16

S22 p4, p9, p12, p17, p21, p23, p24, p28 η22 = η10 + η19

S23 p2, p4, p8, p12, p18, p21, p23, p25, p28 η23 = η18+ η19

S24 p2, p4, p8, p13, p18, p21, p23, p25, p26, p28 η24 = η16 + η18 + η19

S25 p4, p9, p13, p17, p21, p23, p24, p26, p28 η25 = η10 + η16 + η19

S26 p4, p9, p12, p18, p21, p23, p25, p28 η26 = η10 + η18 + η19

S27 p4, p9, p13, p18, p21, p23, p24, p25, p26, p28 η27 = η10 + η16 + η18 + η19

S28 p4, p10, p17, p21, p22, p23, p26, p29 η28 = η4 + η20 - η1 - η16

S29 p4, p10, p18, p21, p22, p23, p25, p26, p29 η29 = η4 + η18 + η20 - η1 - η16

S30 p4, p10, p19, p21, p22, p23, p25, p26, p29 η30 = η4 + η17 + η20 - η1 - η16 - η19

Note that R(S2) = R(S17∪S20) = {R2, M1} contains two
resource places, from which one can synthesize Basic Siphon
S19. Hence, R(S2) = S17⊕S20 is a weakly dependent siphon.
Also R(S28) = R(S4 ∪ S20) = {R2, R3, M4} contains three
resource places; one can synthesize two basic siphons S16

and S1, accordingly. Thus, S12 in Theorem 4 is a 2-compound
siphon S15 (shown in Table 9 depending on S16 and S1) rather
than a basic siphon.

Similarly, S29 is also a weakly dependent SMS w.r.t. to S4

and S20, respectively. But it strongly depends on S28 and S19.
Hence, S29 = S28 o S19 = (S4 ⊕ S20) o S19, so is the structure
of the core subnet c29 = c28 o c19 = (c4 ⊕ c20) o c19. All
S29, [S29] and η29can be computed uniformly, much more
efficiently than the traditional way of finding out all SMS
and extracting elementary siphons. Finally, c29 = (c4oc17).
For strongly dependent siphons, the same formula also holds
except Si, j = [Si, j ] = �, ηi, j = 0,∀i �= j .

Conclusion

In summary, we propose a new method to compute SMS
(strict minimal siphons), and uniform formulas to compute
SMS, their complementary sets and characteristic T -vectors
for both strongly and weakly n-compound siphons based on

the same underlying physics. We further propose to gener-
alize it to a compound siphon consisting of n basic siphons.
This helps to retain the formula in brain without consulting
the references and simplify the computation plus its imple-
mentation to reduce the lines of codes. Future work can be
directed to large S3PR and more complicated systems.
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