
 135

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter IX
UbiSrvInt:

A Context-Aware Fault-Tolerant Approach
for WP2P Service Provision

Soe-Tsyr Yuan
National Chengchi University, Taiwan

Fang-Yu Chen
AsusTeK Computer Inc., Taiwan

Abstract

Peer-to-Peer applications harness sharing between free resources (storage, contents, services, human
presence, etc.). Most existing wireless P2P applications concern merely the sharing of a variety of con-
tents. For magnifying the sharing extent for wireless service provision in the vicinity (i.e., the wireless
P2P environments), this chapter presents a novel approach (briefly named UbiSrvInt) that is an attempt
to enable a pure P2P solution that is context aware and fault tolerant for ad-hoc wireless service provi-
sion. This approach empowers an autonomous peer to propel distributed problem solving (e.g., in the
travel domain) through service sharing and execution in an intelligent P2P way. This approach of ad-hoc
wireless service provision is not only highly robust to failure (based on a specific clustering analysis
of failure correlation among peers) but also capable of inferring a user’s service needs (through a BDI
reasoning mechanism utilizing the surrounding context) in ad-hoc wireless environments. The authors
have implemented UbiSrvInt into a system platform with P-JXTA that shows good performance results
on fault tolerance and context awareness.

136

UbiSrvInt

Introduction

In recent years, new services have mushroomed
all over the web world, and people can easily
attain a great number of services from the In-
ternet. A service usually performs in the role
of computation facility or information provider.
Popular examples include search services, agent
services, entertainment services, transaction
services, etc. Service composition then refers to
the technique of creating complex services with
the help of smaller, simpler and easily executable
lightweight services or components (Chakraborty,
2001). That is, we can handily create novel, in-
teresting and customized services by bundling
existing services together to meet the demands
of our customers.

On the other hand, mobile devices are in
widespread use now, and myriad mobile ad hoc
networking technologies (e.g., Bluetooth, IEEE
802.11) unfold dramatically. Clever design of mo-
bile devices includes dramatically reduced size,
enlarged storage, economic power consumption
and accelerated CPU speed. This design not only
improved the performance but also advanced the
functionality of the mobile devices. The over-
whelming majority of mobile devices launched
recently are all capable of supporting wireless
Internet access as one of their key features. The
next era of network enables the integration of
various heterogeneous networks and makes it
possible for people to surf between them through
different kinds of wireless device anytime, any-
where and anyway. People are striding forward
to a completely new Wireless Age.

Accordingly, it can be envisioned that in the
forthcoming future everyone (who is walking on
the street, dining in the restaurant or working in the
office) outfits with hand-held or wearable mobile
devices as the standard equipments to access any
nearby available network for wanted services.
As you move around, a software agent residing
in your wireless devices autonomously searches
and collects information about what is available

from your current location. You may carry with
you some useful lightweight services downloaded
from the Internet or any wayside provisioning
server. You may provide services on hand for
nearby people who need them and equally attain
desired services from nearby people who possess
them. You may, moreover, compose those available
wireless services to form an aggregated service
tailoring to your contextualized needs, exhibiting
moment of values of the services. In other words,
the demand to create novel functionalities out of
composing wireless services in the vicinity is
extremely indispensable.

The aforementioned envisions manifest the
significance of the problem of wireless service
provision that aims for providing contextualized
customized services to meet the concrete needs
or requirements of a given client who is equipped
with wireless mobile devices by utilizing resources
available in its vicinity.

Wireless service provision in the vicinity
requires a certain service platform installed at
the side of mobile devices. Most existing service
platforms (Casati et. Al., 2002) (Mao et. al., 2001)
(Mennie et. Al., 2000) (Schuster et. al., 2000)
(Gribble et. al., 1999) have been designed on a
wired environment that is of high stability and
bandwidth, performing against the nature of ad
hoc networks. Furthermore, their centralized
approaches exerted for service provision have
their innate drawback while transplanting them
to the wireless environment. The drawback is
three-fold:

•	 Fault-tolerance: In centralized architec-
tures, if the server shuts down, everything
else does as the server is the central point
of failure.

•	 Scalability: The scalability is limited to
the capacity of the central server. Should
a large amount of requests be addressed to
the server, the server easily becomes the
bottleneck of traffic.

 137

UbiSrvInt

•	 Extensibility: Centralized architectures
are also often hard to expand owing to the
limited resources of the central server.

There have been a few published researches
(Benatallah et. al., 2002) (Chakraborty et. al.,
2002) (Sheng et. al., 2002) addressing the problem
using decentralized P2P approach recently. How-
ever, when applied to wireless service provision
they encountered certain problems mainly resting
on the employment of the mediator (broker or co-
ordinator) technique. This hybrid P2P architecture
has drawbacks similar to centralized architectures.
Exemplars of the hybrid P2P drawback primarily
rest on existence of centralized nodes:

•	 Quality of wireless connection: This
refers to the poor condition of the connec-
tion between mobile devices and the central
node (e.g., intermittent disconnection and
transmission latency). Information replied
from a central node may take too long to
reach the mobile device that originates the
request. The client subsequently cannot at-
tain the desired information in time, but be
bothered by stale and useless information.

•	 Real-time information: Another question
is about information updating. Information
is unlikely to be always up-to-date on the
central node in a dynamically changing
environment, such as traffic information.

•	 Infeasibility of mobile super peer: Suppos-
ing a super peer in hybrid P2P architectures
can be mobile, the aforementioned problem
can be partially resolved. However, this leads
to other problems. Qualified mobile devices
(providing extraordinary computing power,
storage capacity and sufficient bandwidth
to take charge of a server’s duty) are very
uncommon in reality. Super-peers, if any, at
proper place in proper time are not always
reachable from all mobile devices.

Accordingly, (semi) centralized approaches
cannot be served as a good solution to compose
wireless services on the move. A better solution
to wireless service provision is believed to have
the duty segmented and delegated to peers (who
are willing to and able to execute the proportioned
duties, and bringing about the desired properties
of salability and extensibility). That is, a pure P2P
solution could be further explored so as to unfold
alternative forms of wireless service provision
via mobile ad hoc networking technologies (e.g.,
Bluetooth, IEEE 802.11).

Yet another inappropriateness of existing
decentralized service provision architecture is
that they did not take into account the issues of
fault tolerance and context awareness. These two
issues however are crucial especially dealing with
mobile devices within wireless environments.
The reasons are two folds: (1) Unreliability of
between-peer wireless connection often results
in unavailability of services. (2) Mobility of peers
often engenders changes in user contexts and
accordingly causes different needs. This chapter
aims to provide an approach for P2P mobile ser-
vice provision, which is not only highly robust to
failure but also keenly aware of the surrounding
context in wireless environments.

In this chapter, we present an approach named
UbiSrvInt (abbreviation of Ubiquitous Services
Integration) that is a pure P2P solution for wire-
less service provision that has the salient features
of fault tolerance and context awareness (that are
further described as follows):

•	 Fault tolerance: There are several solu-
tions for handling system failures. The
most common way is to re-execute it. It is
indeed simple but very inefficient and not
applicable in wireless mobile environments.
The existing solutions (Chakraborty et. al,
2002) (Dialani et. al., 2002) to this problem
for distributed service-based architecture
are to employ checkpoints to guard against
such faults. However, this method increases

138

UbiSrvInt

the traffic overhead of propagating check-
ing message. It is too complex and only
operable while using process-based service
description. Such mechanisms adhered to
service composition systems primarily rest
on post-failure recovery. In this chapter, a
foresighted mechanism is exerted in the
approach so as to improve the efficiency
by delegating service execution to low-fault
correlation peers. Hence, it can reduce the
percentage of failure taking place. Further-
more, the elimination of the central node can
make the design of the system immune to
single point of failure.

•	 Context awareness: Context awareness re-
fers to the capability of adapting the involved
decisions in accordance with the current
user context and thus it is one of the most
important preferred features from a mobile
user’s perspective (as mobile situations of
the user change over time). In our approach,
each peer acts as an autonomous entity whose
behavior is governed and adapted by its be-
liefs, desires and intentions that are captured
from user profiles and real-time contextual
information in user’s vicinity such as time,
location, weather and so on. Thereby peers
have the ability to reason and help users to
get the right services in the right place at
the right moment.

We have implemented UbiSrvInt that is to be
installed on each peer so as to realize pure P2P
wireless service provision in certain application
domains (e.g., travel services, museum services,
etc.). With UbiSrvInt functioning at each peer,
the peer can avail itself of the available services
of the peers in the vicinity, in a self-organized
robust intelligent way. UbiSrvInt is unique in its
combined consideration of context awareness
and fault tolerance for P2P-based customized
service provision in unreliable mobile ad-hoc
networks.

The remainder of this chapter is organized as
follows: Section 2 presents the contextualized
fault-tolerant approach for P2P mobile service
composition. A brief description of the implemen-
tation of UbiSrvInt is then provided in Section 3.
Section 4 provides the performance evaluation
of UbiSrvInt. Finally, Section 5 concludes this
chapter with future fruitful research.

UbiSrvInt

The UbiSrvInt approach serves as the foundation
(equipped in each mobile device) upon which P2P
mobile services are discovered, executed, and
composed with a pure P2P interaction model. It
is a general-purpose approach attempting to sup-
port a large cross-section of P2P mobile services.
This section is unfolded with a description of
the basic concepts (Section 2.1) followed by the
detailed descriptions of the approach components
(Section 2.2) (but with a strong emphasis on the
component that is in charge of fault tolerance as
addressed in Section 2.3).

Basic Concepts

The functionalities of the approach can roughly
be structured into four layers shown in Figure 1 (a
detailed structure of the approach will be shown in

Figure 1. Basic concepts of UbiSrvInt

 139

UbiSrvInt

Figure 3). The network layer concerns controlling
the routing of messages, masking the differences
in characteristics of different transmission and
sub-network technologies to provide wireless
transparent transfer of data between peers. The
service discovery layer is responsible for discover-
ing the inferred services that are available nearby.
With above discovered services as the inputs, the
service composition layer carries out the integra-
tion of those services in a feasible order and ties in
with the whole process of discovery. The service
execution layer takes charge of the execution of
assigned service components to yield services.
The top of the approach is the application layer.
It encapsulates different GUI facilities to serve
as the means for the users to access different
composite services.

One of the important characteristics of the
approach is the use of a fault-tolerance module
that provides capabilities for preventing failures
in advance and recovering failures once any
component fails. There are many useful ways
to improve dependability, however, redundancy
is the simplest technique typically employed in
P2P systems. Due to the time criticality feature of
the P2P mobile services, physical redundancy is
believed to be the most appropriate redundancy
approach (as opposed to the time redundancy
approach), replicating additional service com-
ponents so as to assure the continued composite
service in case the crash occurring to some of
the service components.

Furthermore, the probability of a wireless
mobile peer failing while a transaction is in
progress is dependent upon several factors such
as network routings, access points, operating
system types and releases, device brands, service
types, and user behaviors. Therefore, all peers
have their respective probability distributions
of failures, which may be mutual correlated. In
UbiSrvInt fault tolerance is achieved through
dispatching multiple replications of service
components to different peers in the vicinity that
fail independently.

For instance, when peer A subscribes the ser-
vice produced by peer B, a set of peers that fail
with low correlation are delegated to produce the
service required by peer A (as shown in Figure
2). In the example of Figure 2 this mechanism
provides threefold active replications of the ser-
vice component to prevent a single component
failure. Peer A only interacts with peer B. Peer B
handles peer A’s request and sends back the ser-
vice. Meanwhile, peer B replicates the component
and dispatches them to peer set Cs. Each peer C
executes the allotted component and returns the
result of execution to peer B.

There are two possible worlds of exploiting this
physical-redundancy concept: (1) The process of
service provision may be interrupted because the
provider crashes and consequently halts service
or the provider omits to respond to incoming re-
quests (as addressed in fail-silent (Powell et. al.,
1988) or fail-stop (Schlichting et. al., 1983)). In
this situation the faulty peer stops functioning and
produces no ill output. For instance, peer A sends
its request to peer B which handles the request
and delegates peer set Cs to execute service. Peer
B waits only for the first reply and returns it to
peer A. (2) Unlike the first situation that assumes
all peers are harmless and no incorrect response,
the second situation allows the occurrence of the
reality where peer sometimes continues to operate

Figure 2. Triple component physical redun-
dancy

140

UbiSrvInt

but produces wrong results to output (as addressed
in Byzantine faults (Lamport et. al., 1982), which
is obviously more troublesome to deal with). For
instance, peer A sends its request to peer B which
handles the request and delegates peer set Cs to
execute the service. Peer B then acts as voter in
this world, picks the majority winner of the three
inputs obtained from peer set Cs, and returns the
voting result to peer A.

The Architecture of UbiSrvInt

UbiSrvInt is composed of several components (as
shown in Figure 3). As follows show what each
component does and how the components interact
with each other in the architecture: (1) Reasoning
Agent collects context information of its surround-
ings from an external context handling system
(e.g., provisioning server or context provider) and
a user profile so as to reason rationally for fur-
nishing the user with the tasks of adaptive service
requests. (2) Sub-Tasking Agent is responsible
for segmenting each task of service request into
several subtasks. The sub-tasking information
(i.e., the knowledge of the subtasks required to
execute a particular task) is presumed to be at-
tained from external systems (e.g., provisioning
servers) or other peers. (3) Discovery Agent is in
charge of discovering the services conforming
to the functionality listed on the subtasks list
of Sub-Tasking Agent. (4) Composition Agent
receives services acquired by Discovery Agent
and integrates them into a composite service
in a proper order (based on certain task-related
knowledge to perform service composition). (5)
Execution Agent then works on service execu-
tion that would involve Fault-Tolerance Module
(FTM). (6) FTM is the focus of our approach that
provides capabilities for preventing failures in
advance and recovering failures once any service
component fails.

The underlying assumptions behind the ap-
proach are three folds: (1) Heterogeneous devices
can effortlessly connect to each other through

Figure 3. The picturesque view of the UbiSrvInt
infrastructure

Figure 4. The BDI reasoning process

 141

UbiSrvInt

the component of Communication Gateway of
the infrastructure. (2) Mobile services can be
unfolded on the heterogeneous devices through
transformation between different forms. The
component descriptions of UbiSrvInt are then
detailed in the following subsections.

Reasoning Agent

Reasoning is an implement to achieve the goal
of taking possible courses of actions to provide
adaptive services. The Reasoning Agent follows
the belief-desire-intension (BDI) conception
(Bratman et. al., 1988) and is responsible for
receiving and interpreting service requests for
its user, as shown in Figure 4.

The Reasoning Agent collects contextual
surrounding information either from an exter-
nal context handling system (e.g., provisioning
server or context provider) or from a user profile
in order to reason rationally. The types of context
information can be identified into five categories:
(1) Environmental contexts (date, time, location,
nearby people, weather, light, humidity, altitude,
velocity, etc.) (2) Informational contexts (news,
traffic, transportation timetable, movie timetable,
stock prices, sports scores, weather forecasts, etc.)
(3) Personal contexts (sex, age, personality, health,
mood, behaviors, schedule, activity, preference,
economic status, etc.) (4) Social contexts (relation-
ships, experiences, appointments, community
activity, accessible personal contexts of people,
etc.) (5) Resource contexts (network bandwidth,
status of nearby printers, battery power, available
services, etc.)

A variety of different context information can
be gathered by external context handling systems
(e.g., a sideway provisioning server available at
a museum entrance) that often outfit sensors for
collecting context information, such as environ-
mental contexts, informational contexts and some
resources contexts. As to personal contexts and
social contexts, they are sensitive and therefore
should be protected from strangers or unfamiliar

friends and thus retained in the user profiles at the
side of mobile devices. Such kinds of information
are only conveyed between peers according to the
level of their relationships in order to keep the
privacy of users. The P2P infrastructures enable
the possibility of ubiquitous computing of all kinds
of context information in contrast to a centralized
approach, such as Client-Server infrastructures.

From the aspect of peers, the various con-
text information is gained from outside except
personal contexts, hence we generally called
them environment states to distinguish from the
contexts gained from inside. We assume that the
state of a peer’s environment can be characterized
as a set of environment states S = {s1, s2, ...}. At
any moment, the environment is in one of these
states. The function sense represents the peer’s
ability to observe its environment and attain the
environment information, outputting a percept.
The perception of the peer is assumed to be
represented by a non-empty set P = {p1, p2, ...}
of percepts. The sense function subsequently is
formulated as follows:

sense: S → P,

which maps environment states to percepts. The
environment information is regarded as a true
belief of the peer that will change over time.
Let Bel be the set of all possible beliefs and the
peer’s belief revision function is a mapping that
determines a new set of beliefs from the current
percept and current beliefs:

revise: ℘(Bel) × P → ℘(Bel)

Note that the symbol ℘ denotes the powerset,
the set of possible subsets, of any given set.

The user can directly invoke specific service
requests with certain constraints or conditions.
The requirements made by the user are defined as
a set Hr of human requirements. Let Des be the set
of all possible desires. The peer’s desire can then
be directly declared as shown in the commands

142

UbiSrvInt

function that receives the requirements from the
user and then output the desires:

commands: Hr → ℘(Des).

Alternatively, the peer’s desire can be indirectly
derived from the user profile information. That
is, Reasoning Agent can attain the information of
the user’s preference from the User Profile. The
user’s preference is defined as a set Hp of human
preferences. Reasoning Agent subsequently can
infer what the options available to the user are
when there is no clear and definite instruction
from outside. The option generation function,
options, maps a set of human preferences and a
set of beliefs to a set of desires:

options: ℘(Bel) × ℘(Hp) → ℘(Des)

The chosen options or commands become in-
tentions, which then constitutes the formal service
requests. Intentions are then fed back into the
agent’s future practical reasoning. Let Int be the
set of all possible intentions. In order to make the
final decision, the Reasoning Agent’s deliberation
process is represented in the filter function:

filter: ℘(Bel) × ℘(Des) × ℘(Int) → ℘(Int)

which updates the agent’s intentions on the basis
of its previously-held intentions and current be-
liefs and desires. As the result of deliberating, it
infers user’s intension and outputs it as a formal
service request for Sub-Tasking Agent. The ser-
vice requests are regarded as tasks, which will
be allocated afterward. The generated tasks are
defined as a set of tasks T. The request function
is assumed to simply return any executable inten-
tions in a priority:

request: ℘(Int) → T,

in which each intention is correspondent to a
directly executable task. The state of Reasoning

Agent at any given moment is, deservedly, a triple
(B, D, I), where B ⊆ Bel, D ⊆ Des, and I ⊆ Int.

Sub-Tasking Agent

Sub-Tasking Agent receives the task information
from Reasoning Agent and subsequently decides
how to segment the task appropriately. That is,
Sub-Tasking Agent is responsible for dividing a
generic task into several subtasks.

Sub-Tasking Agent attains the sub-tasking
information (i.e., the different subtasks required
to execute a particular task) from an external sys-
tem, such as Provisioning Server or other peers.
We assume that the task-related knowledge can
be characterized as a set Kh of all given know-
how about sub-tasking a task. Subsequently, it
generates a subtask list served as the input to
Discovery Agent. Let Ts be the set of all possible
subtasks, in which tsi denotes subtask i of task T.
The generated subtask list is represented as

T = [ts1, ts2, ts3, ..., tsN]

The service sub-tasking function, decompose,
of the Sub-Tasking Agent is a function

decompose: T × ℘(Kh) → ℘(Ts),

which maps the current task and correspond-
ing know-how to determine a feasible set of
subtasks.

There are two possibilities for the Sub-
Tasking Agent to execute decompose function.
The first situation is that Sub-Tasking Agent gets
internal service request from Reasoning Agent.
This kind of service requests will then be consid-
ered as initiating tasks. The other situation is that
Sub-Tasking Agent works on task decomposition
for external service request from other peers. In
this situation it is Reasoning Agent that should
decide whether the request can be handled or not.
The factors that affect this decision are as follows:
user settings, remaining power, resource capabil-

 143

UbiSrvInt

ity (e.g. computing capability, available storage,
bandwidth, etc.), and number of tasks in hand.
The capability of each peer can be represented
as a capability vector CV of the form

ℵ ≡ CV(e1, e2, ..., eM), ei ∈ [0,1]

using the symbol ℵ, in which ei denotes the stan-
dard normalized score of factor i. Let J be the set
of two possible results of judgment, yes or no.
Then the function judge is a mapping

judge: T × ℵ → J, J ∈ {0,1}

If the judgment result is positive, Sub-Tasking
Agent will perform decomposition of the external
service request to generate subtasks. Afterward,
Composition Agent will execute the partial com-
position of those subtasks, which is introduced
later.

Discovery Agent

In a WP2P environment mobile peers can share
with each other nearby myriad types of resources
(e.g., storage, cycles, contents, services and hu-
man presence). The locations of nearby peers are
represented by a set of peer locations L = {l1, l2,
...}. Since peers can join and leave the environment
at any time, the unpredictable movement makes
resources discovering a challenge.

In this research services are the primary
resource type concerned for the purpose of wire-
less service provision. A service is referred as
the execution result of a service component of a
peer. Let Srv be the set of all possible services.
Discovery Agent is responsible for discovering the
services conforming to the functionalities listed
in a subtasks list [ts1, ts2, ts3, ..., tsN]. The service
discovery function, lookup, of Discovery Agent
is a mapping as follow:

lookup: Ts → ℘(L),

in which Discovery Agent gets relevant peer
location information from Local Register. The
detail of Local Register will be described later.
The service acquirement function, acquire, is a
mapping as follows:

acquire: Ts × L → Srv,

which attains a service (i.e., just a look-up) via a
remote call to an external nearby peer. The service
will subsequently be delivered to Composition
Agent immediately.

Composition Agent

Composition Agent is responsible for managing
the order of integration of the discovered services.
It receives services acquired by Discovery Agent
and integrates them into a composite service in
a proper order. Like Sub-Tasking Agent, Com-
position Agent requires task-related knowledge
to perform service composition. The composite
service is represented by a set named CSrv of
composite services. The service composition
function, compose, is now a function

compose: ℘(Srv) → CSrv,

which produces an aggregate service from several
pieces of input services.

Execution Agent

The Execution Agent as implied by its name is
responsible for service execution. The process
involves the FTM, which is the core of UbiSrvInt
(and will be detailed in Section 3). If a peer plays
the role of a service dispatcher as the peer B shown
in Figure 2, it invokes Service Dispatcher to send
a service component to peers (that fail indepen-
dently) and waits for the result. On the other hand,
if the peer plays the role of a service component
receiver (as any peer in the peer set Cs shown in
Figure 2), it executes the assigned component and
returns its result to the dispatcher peer.

144

UbiSrvInt

Peers that receive the same component ex-
ecute works in parallel and return their results as
soon as possible in order to save time. Because
the receiver peers are failure independent to each
other the dispatcher peer is supposed to get one
result at least. The service provisioning function,
provision, of the Execution Agent of receiver peers
is a simple function

provision: Ts → Srv,

which returns the execution result of a sub-
task as a service is sent to the one of dispatcher
peers.

Fault-Tolerance Module

The Fault-Tolerance Module (FTM) is the core
mechanism of our approach. The main idea of
the module is inspired by Introspective Failure
Analysis (Weatherspoon et. al., 2002), which pre-
sumed that the probability of a component failing
is independent of the duration of the coordination
in progress, that all components have an identical
probability of failure, and that components fail
independently. However, their assumptions cannot
faithfully reflect the reality (i.e., failures are often
correlated) and will be relaxed in this paper.

FTM is composed of four parts (as shown in
Figure 5): (1) Local Registry keeps monitoring
nearby peers in order to collect such information
as peer locations, user characters, device brands
and types, operating system types and releases,
access control settings, etc. (2) Failure Correla-
tion Modeler draws upon peer user information
of several failure dimensions to develop models
that perform time-series prediction of the failure
correlation among peer types. (A peer type is a
tuple enumerating peer properties from three
different dimensions including human sources,
software version, and hardware environment.
These dimensions directly affect the availability
and reliability of a peer.) (3) Low-Failure Set

Creator receives as input the failure correlation
model from Failure Correlation Modeler and
produces the dispatch sets (of mutually highly
failure-uncorrelated peers) using the most recent
peer list recorded by Local Registry. (4) Service
Dispatcher is responsible for delegating a service
request to each peer listed in the dispatch set
and waits for signed acknowledgement. Service
Dispatcher records experience about the process
of coordination and supply this information to
Failure Correlation Modeler so as to refine the
failure correlation model.

The main idea behind FTM is exerting physical
redundancy for fault tolerance and fulfilled by a
replication mechanism that mainly comprises two
tasks: (1) the determination of a number of peer
candidates for duplicating a service (enabled by
the parts of Local Registry, Failure Correlation
Modeler and Low-Failure Set Creator) (2) the
execution of the replication process (enabled by
the part of Service Dispatcher). The details of
FTM’s four main parts will then be detailed in
Section 3.1-3.4.

Local Registry

Local Registry is responsible for monitoring
peers in the vicinity. The information collected

Figure 5. Fault-tolerance module (FTM) archi-
tecture

 145

UbiSrvInt

includes peer identity, user information, device
brands and types, operating system types and
releases, and access settings. We assume that the
identities of nearby peers can be represented by
a set PI of peer identity and the access settings
of the peers can be represented by a set PA = {L,
M, H}1 of peer access setting. Through a user’s
access setting UbiSrvInt is able to know if a user
is willingness level to host a specified function.
Access settings are of three different levels: (1)
low: willing to provide available services that
it has on hand to the request peer automatically
anytime; (2) medium: allowing only familiar or
trusty peers to access the available services; (3)
high: ignoring all requests the user has received
and thus any forms of service provisioning are
disabled.

Local Registry accordingly produces a list
of nearby2 peers, which is represented by a set PL
of all possible peer entries. The monitor function
is formulated as follows:

monitor – vicinity: ℘(PI) × ℘(PT) × ℘(PA) → PL,

in which PT represents the peer type which is the
combination of several peer attributes. The ideas
of peer type will be introduced in the following
sections.

Failure Correlation Modeler

Failure Correlation Modeler takes charge of
building compact models in order to group highly
correlated peers together. Evolution and sharing
are the two distinctive properties:

•	 Evolution: It is imperative for failure correla-
tion models to learn, adapt and grow toward
maturity in a kind of continuous fashion
rather than merely a one-shot experience.
Fortunately, continued on-line data stream
perfectly plays as the training examples to
evolve the failure correlation models over
time. What remains to require is an incre-

mental on-line learning algorithm that can
process the on-line data so as to develop and
then evolve the failure correlation models
incrementally.

•	 Sharing: P2P communication enhances
and glorifies the network effect through
resources sharing. To make the best use of
that, the models built by Failure Correlation
Modeler is gifted with the feature of shar-
ing. The models are constantly evolving
and conveying themselves between peers to
achieve the objective of Semi-Global so as
to enable effective service provision. More
details will be described afterward.

To cope with the required evolutionary prop-
erty, the primary task of Failure Correlation
Modeler is modeled as a time-series problem. The
highly correlated peers exhibit similar temporal
patterns scattering along various time frames.
Hence similar series of input data that have a simi-
lar failure distribution will be clustered together.
This time-series problem is then unfolded with the
descriptions of its data sequence, pattern matching
and clustering analysis as shown below.

Data Sequences

A task (service request) that has been assigned to a
dispatched peer is called a mission. The charge of
the dispatched peer is producing a service. Assum-
ing that the outcome o of a mission is represented
by 0 or 1 where 0 and 1 represent the outcomes
of success and failure respectively:

0,
1,

success
o

failure


= 


A series of mission outcomes from a dispatched
peer is regarded as an experience, which is the
object of study addressing this problem. The time
series data, experience, consist of a sequence of
N observed pairs,

146

UbiSrvInt

Epeer ≡ (oi, ti), i = 1, 2, ..., N

where oi denotes the measured value of the mis-
sion outcome at time ti and E denotes the set of
experience.

A peer has several experiences correspond-
ing to the number of the dispatched peers it has
interacted. A peer classifies different experiences
systematically according to different dispatched
peers.

Sliding Windows

We divide the time period of the inputted time
series data into fixed size units. In other words,
a divided segment is an aggregate of successive
time. Each segment could be visualized as a sliding
window, whose size is twenty-four hours. We then
subdivide the segment into smaller equal parts.
Each divided equal part is called a time slot as
shown in Figure 6.

For each time slot, we calculate failure prob-
ability in order to analyze failure correlation
between different peers in different time periods.
Supposed that the number of experiences (the
number of outcomes) of each service request in a
time slot is No, the failure probability of the time
slot is then represented by P:

o

No

i
i

peer N

O
tfP

∑
=== 1)(
∑
=

oN

i
iO

1
,

where ∑
=

oN

i
iO

1

 denotes the total number of the

failure occurrences in experiences of a specific
dispatched peer in the time slot. Thus, a failure
curve can be derived through counting failure
probabilities of each time slot within a same
sliding window. For different dispatched peers,
the corresponding failure curves are preserved
for further analysis.

In this research we use a time scale of day in
our analysis to predict the failure correlation. The
time series data segmented by the time scale of
day is called day-patterns, which is represented
by a set DP of all possible day-patterns. UbiS-
rvInt preserves a day-pattern for each peer. The
newly attained experience will be used to refine
the original day-pattern into a more updated
day-pattern. The simplest way to get the new
day-pattern is to average the data. The function
of refinement day-pattern, refine-day-pattern, is
formulated as follows:

refine – day – pattern: E → DP

Enhanced Day-Pattern Matching

Data sequence matching finds those sequences
that are similar to one other, which is useful for
the analysis of failure correlation among peers.
Accordingly, Fault-Correlation Modeler aims
to locate peers that mutual correlated along the
time axis. It is assumed that the fault-correlated
peers have similar shapes of day-pattern in the
space constructed by a vertical axle of failure

Figure 6. Sliding windows

 147

UbiSrvInt

probability and a transverse axle of time. The
similarity matching is then performed by com-
puting the distance between sequences in the
time domain.

Unlike common distance measures (e.g., Eu-
clidian), a distance measure suitable for FTM has
to be invariant of gaps, offsets and amplitudes.
For instance, there are four day-patterns, A, B,
C, and D shown in Figure 7. B and C as well as
A and D exhibit the same tendency at the same
time. Obviously, B has the higher failure correla-
tion with C than that with A or D although B is of
the closest distance to A (instead of C). Therefore,
an enhanced similarity search method (Agrawal
et. al., 1995) is necessary for matching pairs of
subsequences if they are of the same shape, but
differ due to the presence of gaps (Figure 8(a))
within a sequence or differences in offsets (Figure
8(b)) or amplitudes (Figure 8(c)).

Peer Types Grouping

Rather than analyzing failure correlations among
peers in the real network environment, we pro-
file peer types that enable the analysis of a more
abstract level. This is more tractable because it
greatly reduces the number of targets needed to
be analyzed and clustered. We divide all peers
into several groups according to their major
properties. Three dimensions of properties for
grouping peers are employed (and we believe these
properties are staple sources of failure): (1) User
behavior: Mobile devices are easily damaged from
rough usage of users. On the other hand, human
characteristics are believed to influence a user’s
behavior somehow. Therefore, it is possible that
the characters of a user would correlate closely
with the failure of her or his mobile device. Hence,
we select user characters to be the first dimension
of peer type, which includes constellation, blood
type, age, sex and occupation, etc. (2) Software:
Software is another factor causing failures. There
are many kinds of software installed in a mobile
device but the most likely reason for a system

Figure 7. Example of day-patterns

Figure 8. Enhanced similarity

(a) Gap Existence

(c) Amplitude Difference

(b) Offset Difference

148

UbiSrvInt

to fail is always because of its operating system
(OS). Therefore, we select OS names and ver-
sions to be the second dimension of peer type. (3)
Hardware: No doubt a breakdown of hardware
will definitely cause failures and interrupt service
provisioning immediately. Equipment failure is
the most basic one of our concerns. Accordingly,
we select device brands and types to be the final
dimension of peer type.

The peer type can be represented as an attribute
vector PT of the form as follows:

ℑ ≡ PT(fuser, fos, fdevice),

where fuser , fos , and fdevice denotes the values of
nominal variables, user characters, OS types and
releases, and device brands and types.

Clustering Analysis

The objective is to merge similar day-patterns
of peer types into clusters. Supposing M denotes
the number of peer types. For each peer type,
its day-pattern is being collected continuously.
Accordingly, M sequences of day-patterns are
summarized and each day-pattern Pj (j=1,2…,M)
consists of a sequence of pairs shown below:

(pij, ti), i = 1, 2, ..., N, j = 1, 2, ..., M,

where pij denotes the failure probability of peer
type j at time ti that has elapsed since midnight.

The clustering process starts with computing
the mutual distances between all day-patterns,
and ends with a pre-defined number of clusters
formed. The two day-patterns which are most
similar will be merged to a new day pattern. Such
merging process is repeated until a pre-defined
number of clusters are generated. The final day-
patterns then become the clusters.

The distance measure employed should be
invariant to offset and amplitude as addressed in
Figure 8. Suppose that we have two day-patterns
yi and zi, i = 1, …, N. Combining the root-mean-

square distance measure with offset translation
and amplitude scaling, resulting in a distance
normalization measure:

N
zz

zz
yy

yy

d

ii

nvm

2

minmax

min

minmax

min








−
−

−
−
−

∑

=

which can aid clustering patterns of similar shapes.
The higher the value of the measure is, the higher
failure correlation the two day-patterns have. The
function of the complete distance normalization
measure, enhanced-distance-counting, is then
formulated as follows:

enhanced – distance – counting: DPi × DPj → D,

in which D denotes the distance between pair of
day-patterns.

A number of methods can be used in
clustering day-patterns, such as local k-means
clustering, evolving clustering method (ECM)
(Song et. al., 2001), evolving self organizing maps
(ESOMs) (Deng et. al., 2000), or any other incre-
mental distance-based clustering methods. The
model produced by Failure Correlation Modeler
is represented by a set M of all possible models.
The incremental-online-clustering function is
formulated as follows:

incremental – online – clustering: D → M.

Semi-Global

When a new peer connects to the wireless service
network (e.g. a new PDA user), it can rely on the
experiences of other peers in the vicinity so as to
promptly accommodate itself to the unfamiliar
environment. Even though at the commencement
of the whole service network where peers have only
few experiences, peers can still gather these few
experiences together to constitute a more reliable
model and share.

 149

UbiSrvInt

Failure Correlation Modeler communicates with
other ones so as to exchange models among peers.
The collected models will be merged into a coherent
model that will be then conveyed to other Failure
Correlation Modelers. The nearby peers can share
the Semi-Global models in order to build a more
precise Low-Failure set and prevent failure.

Low-Failure Set Creator

Low-Failure Set Creator is responsible for creating
dispatch sets grouping mutually highly failure
uncorrelated peers together. The dispatch set
is represented by a set PS of all possible peers.
It uses the failure correlation models to choose
several peer types that have the lowest probability
of correlated failures. Subsequently, it attains
a list of peers (registered in Local Registry) in
which the most suitable peers for the chosen peer
types can be selected. The set-creating function
is formulated as follows:

set – creating: m × PL → PS.

Component Dispatcher

Component Dispatcher is in charge of delegating
a specific service request to each peer listed in the
dispatch set and waits for all acknowledgements
from the service request receivers. If some of
them are of no response, Component Dispatcher
will send unacknowledged service request again
to the other peers on the dispatch sets to ensure
the dispatch is effective, realizing physical redun-
dancy of fault tolerance.

Algorithm 2. Local registry

function Local-Registry (pt, pi, pa) returns a peer list
input:	 pt, the peer type
	 pi, identity of the peer
	 pa, access setting of the peer
static:	 pl, nearby peer list

pl ← Monitor-Vicinity(pt, pi, pa)
return pl

Algorithm 3. Failure correlation modeler

	 function Failure-Correlation-Modeler(e, pt) returns a model
	 input:	 pt, the peer type
		 e, the experience
	 static:	 d, the distance between two day-patterns
		 m, failure correlation model
		 dp, day-pattern of any peer type

	 dp←Refine-Day-Pattern(e)
	 for each peer type i do
		 for each other peer type j do
			 d←Enhanced-Distance-Counting(dpi, dpj)
		 end
	 end
	 m←Incremental-OnLine-Clustering(d)
return m
	 function Enhanced-Distance-Counting (ei, ej) returns a distance
	 input:	ei , the experience of peer type i
		 ej , the experience of peer type j
	 static:	 d, the distance between two day-patterns

	 for	 ei and ej do
		 e←Offset-Translation(e)
		 e←Amplitude-Scaling(e)
	 end
	 d←Distance-Counting(ei, ej)
	 return d

Algorithm 4. Low-failure set creator

function Low-Failure-Set-Creator (m, pl) returns a dispatch set
input:	m, failure correlation model
	 pl, nearby peer list
static:	ps, a set of mutual highly uncorrelated peer

for each peer on the peer list do
	 if the access control of the peer is low then
		 ps←Set-Creating(m, pl)
	 end
return ps

Algorithm 5. Component dispatcher

function Component-Dispatcher (ps) returns an experience
input:	 ps, a set of mutual low failure correlated peer
static:	 e, the experience
	 t, time
	 o, mission outcomes

	 for each peer set do
		 loop do
			W akeup-Peer()
			W aiting-Ack()
			 if get ack before timeout then
				 Dispatch-Component()
			 if the dispatch number > the minimum limit then exit
		 end
	 end
	 while not timeout do
		 o ← Get-Outcome-Report()
		 t ← Get-Time()
	 loop
	 e ← Refine-Failure-Probability(o, t)
return e

150

UbiSrvInt

With the aforementioned descriptions of the
FTM module, the overall processes of the module
are then outlined by the following pseudo-codes
(Algorithms 2-5).

Implementation

UbiSrvInt is implemented with the technology of
JXTA (http://www.jxta.org) going with Personal
Java that works for handheld devices such as iPAQ.
JXTA is a modular platform that provides simple
and essential building blocks for developing a wide
range of distributed services and applications.
Both centralized and de-centralized services can
be developed on top of the JXTA platform. JXTA
services can be implemented to interoperate with
other services giving rise to new P2P applica-
tions. The overall operations of UbiSrvInt are to
be depicted by a use case diagram and an activity
diagram (represented in UML) as shown in the
Appendix (Figure A1& A2).

Ontologies are also extensively utilized in
UbiSrvInt for capturing myriad types of resources
and knowledge (context information, user and
device profiles, composition knowledge and rea-
soning rules). Resource Description Framework

(RDF) / Resource Description Framework Schema
(RDFS) is employed to represent the ontologies
in order to preserve the semantics of the above-
mentioned resources. In our implementation Jena
(http://www.hpl.hp.com/semweb/jena.htm), a
full-featured Java API, is exerted to create and
manipulate the RDF graphs required.

For a better understanding of the aforemen-
tioned resources and knowledge, as follows are
the exemplar representations employed in the
parts of Reasoning Agent, Sub-Tasking Agent
and Fault-Tolerance Module.

Reasoning Agent

In order to provide users with personalized and
contextualized service, a user intention reasoner is
implemented conforming to the BDI conception.
The knowledge involved in the BDI reasoning
includes user profile, context information, and
reasoning rules (that are subsequently represented
with RDF graphs3).

The resource, user, is shown as an ellipse and
is identified by a Uniform Resource Identifier
(URI), in Figure 9 “http://....../user”. Resources
have several properties represented by arcs,
labeled with the names of properties. There

Figure 9. User profile in a RDF graph

 151

UbiSrvInt

are eight properties in this case. The name of
a property is also a URI, but as it is rather long
and cumbersome, the following diagrams show it
only in a brief form. A property is compound by
two parts, a namespace prefix and a local name
in the namespace. Every property has a value
which is either a literal shown in each rectangle

or a resource shown in each ellipse. RDF can take
other resources as their value as the “interest” in
this case for instance. Here we use a combina-
tion of two properties, NS0:verb and NS0:noun,
to represent the structure of user’s preferences,
“interest”.

Figure 10. Context information represented with a RDF graph

Figure 11. Reasoning rules in a RDF graph

152

UbiSrvInt

(<Verb> <Noun>)

Note that each property NS1:thing of resource
“interest” is a blank node since it has no specific
name.

Ranganathan’s Context Model (Ranganathan
et. al., 2003) is used to describe the context in-
formation captured from the surrounding of user.
Each clausal model of context is presented in a
tuple of the form: (<ContextType> <Subject>
<Relater> <Object>) similar to English sentence.
A simple exemplar is shown in Figure 10 in the
format of RDF graph.

As to the BDI reasoning rules, the same ex-
pressions are used to represent the premises and
conclusions of a single rule, which is exemplified
as shown in Figure 11.

Sub-Tasking Agent

Subtask Agent decomposes a required service
by user into several pieces of subtasks and then
integrates the received pieces of services to fulfill

this service request. The service, i.e. task, decom-
position knowledge used here is also described
using RDF document.

RDF defines a special kind of resources for
representing collections of things. These re-
sources are called containers. In Figure 12, we
use a specific kind of container, BAG, to represent
an unordered collection of the decomposition
knowledge. In this case, the resources is named
“http://....../knowhow”, having an rdf:type prop-
erty whose value is rdf:Bag, “http://......#Bag”. In
this case, the two members of the bag are repre-
sented by the property NS0:task. The ordering of
properties is not significant in a bag. Hence we
could switch the values between two properties
and the resulting graph would represent the same
information.

Fault-Tolerance Module

Fault-Tolerance Module plays a critical role in
service providing. It determines the dispatched
peer lists by calculating the failure correlation

Figure 12. Decomposition knowledge in a RDF graph

 153

UbiSrvInt

between different peer types, thus to create low
failure correlation peer sets for service dispatch-
ing. Peers are grouped into different peer types
regarding three dimensions: user characters, OS
name and version, and device brand and type.
Again, the knowledge of user profile and handheld
device profile are described and stored in RDF
forms as shown in Figure 9 and Figure 13.

On the other hand, in Fault-Tolerance Mod-
ule we do not exert a sophisticated incremental
clustering method since what we emphasis in the
experiments is the fault-tolerance mechanism. A
combination of the k-means clustering (Hartigan
et. al., 1979) and a data compression technique
(Chen et. al., 2004) is employed to effectuate the
incremental clustering method.

The objects of the clustering method are day-
patterns, and naturally are the targets of the data
compression. The rationale of the data compres-
sion is simply to merge the experiences attained
from outside into a compact data set, i.e. the day-
pattern model. By this way, the clustering time
can be effectively shortened by restraining the
size of primitive clustering data in preparation.
Also, the features of data can be preserved in a
good condition at the same time. The day-pattern
model is learning and adapting itself over time to
evolve toward maturity.

Evaluation Results

Owing to the limitation of space, in this chapter
the evaluations of UbiSrvInt are two folds: fault
tolerance and context awareness. In this section,
the performance of UbiSrvInt on fault tolerance
will be furnished. As to context awareness of
UbiSrvInt, small demo scenarios (as shown in
Section 5.4) are exerted to show the functionality
of UbiSrvInt on context awareness (as the preci-
sion of the reasoning is completely dependant on
domain-specific knowledge and thus it is negli-
gible to evaluate the reasoning precision). Those
demo scenario depicts the vision of ad-hoc wire-
less service provision that provides personalized
and contextualized tourist services according to
a user’s profile and his/her surrounding context.
For complete details of the demo scenarios, please
see (Chen et. al., 2004).

Since UbiSrvInt is unique in its capability of
fault tolerance (as far as as-hoc wireless service
provision is concerned), this section aims to in-
vestigate if the idea of FTM is feasible in WP2P
service sharing networks.

•	 We first need to justify that the benefit of
the replication mechanism (physical redun-
dancy of fault tolerance) devised and pro-
vided by FTM is greater than the overhead

Figure 13. Handheld device profile in a RDF graph

154

UbiSrvInt

it generates. We also need to find proper
values of the replication factor (k – the
dispatch number per request) to meet ac-
ceptable levels of availability and to avoid
unnecessary high cost.

•	 We then examine if the Semi-Global mecha-
nism indeed brings into full play the synergy
of experience sharing of peers and make
a decisive contribution to the success of
FTM.

For the aforementioned attempted investi-
gations, several metrics are exerted to measure
the overall service performance and overhead of
UbiSrvInt. Performance is measured by solvability
and efficiency of services. Overhead is then mea-
sured primarily by load along three dimensions:
network traffic, processing cost, and clustering
cost. The detailed explanation and calculation of
these metrics are shown below:

•	 Performance: Performance is generally
regarded as the overall throughput of com-
pleted services that peers provide through
time. A service is defined as a task, which
can be decomposed into several subtasks, i.e.
lightweight services. A service is considered
successful only if it is through a complete
successful process of discovery, execution
and integration of all the subtasks. We look
at throughput from two perspectives:
○	 Service Solvability is measured in the

services success rate, which represents
the effectiveness of the system. The
success rate is defined as the percent-
age of successful services through
time.

Service Solvability =

Cumulative number
of successful services
Cumulative number
of requested services

○	 Service Efficiency is measured in the
reciprocal of the service response time
per successful service. For a successful
service, we define the service response
time as the time between when a formal
request message is sent and when the
first reply message of the request is
received.

Service Efficiency =

Cumulative number
of successful services
∑(The time service
received – The time
service requested)

•	 Load: Load is conceptually regarded as the
amount of efforts that peers must engage
for attaining successful results. One factor
concerned in load measurement in networks
is the flow of messages exchanged. Besides,
the processing cost of service requests and
the processing cost of clustering analysis are
also considered. In examining the amount
of efforts that peers must engage for attain-
ing successful results, three perspectives
are then unfolded to formulate the load
measurements:
○	 Network traffic is measured by count-

ing the number of message sent by
peers to the network. An overhead of
network traffic incurred by peers with
respect to the total resulting successful
services is then defined as follows:

Relative Network
Traffic =

Cumulative number
of forwarded messages

Cumulative number
of successful services

○	 Processing cost is conceptually
measured in the number4 of subtasks
executed by peers. An overhead of
processing cost incurred by peers with

 155

UbiSrvInt

respect to the total resulting successful
services is defined as follows:

Relative
Processing Cost =

Cumulative number
of executed subtasks
Cumulative number

of successful services

○	 Clustering cost is measured by cal-
culating the total time spent on the
core process of FTM, clustering
analysis. An overhead of clustering
cost incurred with respect to the total
resulting successful services is defined
as follows:

Relative
Clustering Cost =

Cumulative time
spent on clustering
Cumulative number

of successful services

The remainder of this section is unfolded as
follows: (1) We first describe the parameters of the

experiment setting, followed by a description of
the experiment process (Section 4.1) (2) The fea-
sibility analysis of FTM in UbiSrvInt is provided
in Section 4.2. (3) The examination of the effect
of the Semi-Global mechanism is then furnished
in Section 4.3. Discussions of the performance of
UbiSrvInt on fault tolerance will be then inter-
spersed in the respective subsections.

Experiment Settings

The performance of FTM is affected by a wide
range of parameters. We divide these parameters
into global parameters and local parameters.
A quick look at these parameters is shown
Table 1.

Global parameters describe the background
of environment used for running several minia-
ture peers from a macro point of view. They are
application dependent environment constants,
which include the number of peers in the net-
work, the total number of unique services that
can be provided in the network, and the average

Table 1. Experimental parameters

156

UbiSrvInt

number of subtasks that must be done for a single
service, etc.

On the other hand, local parameters are param-
eters specific to the functionalities of UbiSrvInt;
the values of the parameters may differ from peer
to peer. These parameters describe the behaviors
of peer, which include the storage capacity of
services for each peer, the average time to request
for a service per peer, and the average time of
failure and recovery of a peer, etc.

Due to space limitation, we only explain cer-
tain parameter value settings and their correlative
assumptions in our experiments (for complete
descriptions of the parameters, please see (Chen
et. al., 2004)):

•	 The size of service space Sservice is set to 10.
What we called a service space is a pre-ex-
isting collection of services allowing peer
access. The services in the service space
are all composed by several subtasks. We
assume that the subtask number Nsubtask of a
particular service follows a normal distri-
bution with a mean of 4 and variance of 1
(without loss of generalization). To reduce
the effect of uncertain variables, the level
of hierarchical service decomposition is
set to 1. Thus a service only needs to be
decomposed once by the request peer. We
assume that peer can get the decomposition
knowledge from outside world entities, such
as provisioning servers or other peers.

•	 The service capacity Scapacity denotes the
number of subtasks a peer can provide. We
assume that service capacity per peer follows
a normal Distribution with a mean of 20 and
variance of 4 (without loss of generalization)
for simulating the actual environment where
the variety of mobile devices influences its
capability of providing service.

•	 As to the behavior of peers, we assume that
each peer process service requests with an
exponentially distributed rate λrequest of 0.2
per minutes (without loss of generaliza-

tion). That is to say, the average elapsed
time to generate a demand of a service per
peer is 5 minutes. Each service request Ri,
0 ≤ i < Sservice, is chosen uniformly at random
inside the service space. Thus, with the size
of service space, Sservice, of 10, the average
choosing rate Rchoosing of a service request is
0.1.

•	 We simulate the failure occurrence for each
peer with λ. To complement, we also set a
repair rate λrepair for a peer. Both rates are
simulated according to exponential distri-
butions. We assume that each peer has a
different failure rate λi, 0 ≤ i < Snetwork. Ac-
cordingly, we set a range corresponding to
different peer types, where that top failure
rates λmax may be different in different ex-
periments (denoting stability of ubiquitous
service environments). The parameter λi is
attained from the weighted effects of user
characters, OS versions and releases, and
device brands and types respectively as
follow:

λi = λmax (wuser Euser + wos Eos + wdevice Edevice)

wuser + wos + wdevice = 1,0 ≤ Euser ≤ 1,0 ≤ Eos ≤ 1,0
≤ Edevice ≤ 1

	 in which Euser denotes the user effect, Eos
denotes the OS effect, and Edevice denotes the
device effect. In the simulation, wuser, wos,
and wdevice are set to 0.2, 0.3, 0.5 separately.
As to the repair rate, the mean time is fixed
to 0.5 minutes because we suppose that
most mobile device have a speedy recovery
capability.

•	 We assume that occurrences of events in the
simulation are all Poisson processes, includ-
ing the arrival requests, unexpected failures
and the corresponding repairs from failures.
A Poisson process is characterized by its rate
function λ(t), which is the expected number
of “events” or “arrivals” that occur per unit

 157

UbiSrvInt

time. Poisson processes are of the charac-
teristics: (1) Orderliness: Events don’t occur
simultaneously. (2) Memorylessness: Any
event occurring after time t is independent
of any event occurring before time t. The
exponential distribution is generally used
to model Poisson processes, where events
occur with constant probabilities per unit.
Particularly, failures in an electronic device
are usually memoryless and hence are well
modeled by an exponential distribution.

In the simulation, the experiments will be
conducted several times with different setting of
configurations, which are defined by a set of global
and local parameters as shown in Table 1. Most
experiments are conducted given a simulation
time Tsimulation of 2 hours. In the experiments, we
use the aforementioned metrics to evaluate the
behavior of UbiSrvInt for a changing dispatch
number (k), dynamic vs. stable environments,
and with vs. without the Semi-Global mechanism
respectively.

The results of the experiments are primarily
illustrated with cumulative time sequence dia-

grams. That is, for each metric we accumulate
observed values over time, and mark it on diagram
every 10 minutes to draw a curve so as to see how
trend changes. In other words, each data point
on the curve denotes an overall value of the time
point labeled on x-axis.

Feasibility Analysis of FTM

Since FTM is exerting physical redundancy for
fault tolerance, FTM first determines a number
of peer candidates (the dispatch number k) for
duplicating a service and then execute the rep-
lication process (dispatching the service to the
peer candidates). This section aims to examine
how the system behaves as the dispatch number
k increases and then justifies the feasibility of
FTM (i.e., to show the benefit is greater than the
overhead).

Since a higher k value denotes the higher
level of replication in the mechanism of FTM,
the mechanism exists only when k is greater
than one. In the first set of experiments, we inject
failures into each peer with a failure rate per peer
per minute of λi which ranges from 0 to 0.1, i.e.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

S
er

vi
ce

 S
ol

va
bi

lit
y

(%
)

k=1

k=2

k=3

k=4

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

S
er

vi
ce

 E
ffi

ci
en

cy
 (1

/s
ec

on
ds

)

k=1

k=2

k=3

k=4

service solvability (%) service efficiency (1/seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

S
er

vi
ce

 S
ol

va
bi

lit
y

(%
)

k=1

k=2

k=3

k=4

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

S
er

vi
ce

 E
ffi

ci
en

cy
 (1

/s
ec

on
ds

)

k=1

k=2

k=3

k=4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

S
er

vi
ce

 S
ol

va
bi

lit
y

(%
)

k=1

k=2

k=3

k=4

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

S
er

vi
ce

 E
ffi

ci
en

cy
 (1

/s
ec

on
ds

)

k=1

k=2

k=3

k=4

service solvability (%) service efficiency (1/seconds)

Figure 14. Performance results in dynamic ubiquitous service environments

158

UbiSrvInt

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
P

ro
ce

ss
in

g
C

os
t (

su
bt

as
ks

)

k=1

k=2

k=3

k=4
0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
N

et
w

or
k

Tr
af

fic
 (m

es
sa

ge
s)

k=1

k=2

k=3

k=4

relative network traffic (messages) relative processing cost (subtasks)

0.00

0.03

0.06

0.09

0.12

0.15

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
C

lu
st

er
in

g
C

os
t (

se
co

nd
s)

k=1

k=2

k=3

k=4

relative clustering cost (seconds)

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
P

ro
ce

ss
in

g
C

os
t (

su
bt

as
ks

)

k=1

k=2

k=3

k=4
0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
N

et
w

or
k

Tr
af

fic
 (m

es
sa

ge
s)

k=1

k=2

k=3

k=4

relative network traffic (messages) relative processing cost (subtasks)

0.00

0.03

0.06

0.09

0.12

0.15

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
C

lu
st

er
in

g
C

os
t (

se
co

nd
s)

k=1

k=2

k=3

k=4

relative clustering cost (seconds)

Figure 15. Load in dynamic ubiquitous service environments

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

S
er

vi
ce

 E
ffi

ci
en

cy
 (1

/s
ec

on
ds

)

k=1

k=2

k=3

k=4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

S
er

vi
ce

 S
ol

va
bi

lit
y

(%
)

k=1

k=2

k=3

k=4

service solvability (%) service efficiency (1/seconds)

Figure 16. Performance results in stable ubiquitous service environments

0.00

0.03

0.06

0.09

0.12

0.15

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
C

lu
st

er
in

g
C

os
t (

se
co

nd
s)

k=1

k=2

k=3

k=4

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
Pr

oc
es

si
ng

 C
os

t (
su

bt
as

ks
)

k=1

k=2

k=3

k=4

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
N

et
w

or
k

Tr
af

fic
 (m

es
sa

ge
s)

k=1

k=2

k=3

k=4

relative network traffic (messages) relative processing cost (subtasks) relative clustering cost (seconds)

0.00

0.03

0.06

0.09

0.12

0.15

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
C

lu
st

er
in

g
C

os
t (

se
co

nd
s)

k=1

k=2

k=3

k=4

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
Pr

oc
es

si
ng

 C
os

t (
su

bt
as

ks
)

k=1

k=2

k=3

k=4

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100 110 120

Simulation Time (minutes)

R
el

at
iv

e
N

et
w

or
k

Tr
af

fic
 (m

es
sa

ge
s)

k=1

k=2

k=3

k=4

relative network traffic (messages) relative processing cost (subtasks) relative clustering cost (seconds)

Figure 17. Load in stable ubiquitous service environments

 159

UbiSrvInt

λmax is set to 0.1 (characterizing a fairly dynamic
ubiquitous service environment). Note that the
actual λi of each peer depends on the peer type it
belongs to. Each experiment is carried out with a
different configuration of k value. In the second
set of experiments, we then conduct a series of
experiments resembling to the first set but under
relatively stable environments, where λmax is 0.05.
Accordingly the failure rate λi per peer per minute
lies in the range [0, 0.05]. The first and second
sets of experiments are both conducted with the
existence of the Semi-Global mechanism.

The evaluation results can briefly be itemized
as follows:

•	 Performance in dynamic ubiquitous ser-
vice environments (Figure 14):
○	 Service solvability:
	 —k=4 >> k=3 >> k=2 >> k=1 (The

performance in service solvability
grows in proportion to the magnitude
of k.)

	 —k=4 >> k=1 (The final overall service
solvability in k value of 4 is more than 1.45
times higher than the one in k value of 1.)

	 —k=4 >> k=1 (Under a total average
of the final overall solvability of 0.3,
the difference in proportion between
both sides - k=4 and k=1 - is more than
32%, which is highly significant)

	 Note: “>>” represents a relationship
of outperforming (with respect to a
designated metric or measurement)
between two cases of experiments
using two different replication factors
(k).

○	 Service efficiency:
	 —k=3 >> (K=4  k=2  k=1) (In

general, all curves are on the rise as
the time passed by. At the ends of the
experiments, the final overall service
efficiency for all k values are almost
equivalent except for the value of 3. It
is apparent especially in k value of 4

and k value of 1. As to the k value of
3, it gains the distinctly highest final
overall service efficiency of all).

	 Note: “” represents an indistinguishable
relationship (with respect to a designated
metric or measurement) between two cases
of experiments using two different replica-
tion factors (k).

•	 Load in dynamic ubiquitous service en-
vironments (Figure 15):
○	 Relative network traffic:
	 —k=1 >> k=2  k=3  k=4 (In general,

the relative network traffic curves are
ordered in an inverse way against the
service solvability curves. As the k
value increases, the relative load came
from network traffic goes down.)

	 —k=1 >> Average of k=2,3,4 (The
overheads of the final overall relative
network traffic in the experiments
with replication mechanism are close
eventually in the experiments, which
are lower than the overhead in k = 1
over 18%6 on average at the ends of
the experiments.)

○	 Relative processing cost:
	 —(k=4  k=3  k=2) >> K=1 (The

overall relative processing cost has
the lowest load when k value is set to
1. Besides, the final loads are about
the same when the other k values are
set.)

	 —Average of k=2,3,4 >> k=1 for more
than around 2 units of subtasks (The
overhead of the overall relative pro-
cessing cost incurred - for k of values
other than 1 - is only around 2 units of
subtasks per successful service request
at the ends of the experiments. This
is considerably low in our simulation
environment.)

○	 Relative clustering cost:
	 —The difference between different

values of k is only few milliseconds,

160

UbiSrvInt

which is quite slight. Accordingly, we
can neglect the impact of the clustering
overhead on performance.

•	 Performance in stable ubiquitous service
environments (Figure 16):
○	 Service solvability:
	 —(K=4  k=2) >> k=3 >> k=1 (In

general, the overall performance of
FTM still far outperforms the one
without the replication mechanism,
i.e. k = 1. But the level of replication
in FTM has relatively limited impact
on the performance in comparison
with that of a dynamic environment.
The experiment using a k value of 4
is still performs well above the others,
but the difference between that using
a k value of 2 is a nuance in the later
half of the experimental durations.
This might suggest a lower clustering
number is good enough to maximum
effect on the service efficiency and we
will elaborate the discussion at the end
of this section.)

	 —k=4 >> k=1 (The final overall service
solvability in k value of 4 is around 1.7
times higher than the one in k value
of 1 at the ends of the experiments.
Furthermore, the difference in propor-
tion between both sides - k=4 and k=1
- has been raised up to around 46%.)

○	 Service efficiency:
	 —K=4 >> (k=3  k=2) >> k=1 (For

growing the value of the dispatch
number k, the performance of FTM
is improved in terms of the absolute
values of service efficiency throughout
the simulation. The rationale is that
less failure rates yield more dispatched
peers contributing their provisions of
subtasks and thus a request peer can
acquire what it needs earlier from any
one who is dispatched. The experiment
using a k value of 4 then persistently
has the best efficiency.)

	 —k=4 >> k=1 (The overall service
response time per successful service
request in k value of 4 is at least 12.5
seconds faster than that in k value of
1 in the durations which represent at
about 100 minutes faster in reality.)

•	 Load in stable ubiquitous service environ-
ments (Figure 17):
○	 Relative network traffic:
	 —K=3 >> k=1 >> k=4 >> k=2 (The

overheads from network traffic under
replication mechanism are relatively
smaller than the one without replica-
tion mechanism in general, in spite of
the different levels of replication.)

○	 Relative Processing Cost:
	 —K=4 >> k=3 >> k=2 >> k=1 (For

higher values of the dispatch number

0.000
0.002
0.004
0.006

0.008
0.010
0.012
0.014

1 2 3 4

Dispatch Number (k)

S
er

vi
ce

 E
ffi

ci
en

cy
 (1

/s
ec

on
ds

)

즖=[0,0.05]

Linear Trend
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

k=1 k=2 k=3 k=4

Dispatch Number (k)

S
er

vi
ce

 S
ol

va
bi

lit
y

(%
)

즖=[0,0.1]

Linear Trend

Linear trend on service solvability Linear on service efficiency

0.000
0.002
0.004
0.006

0.008
0.010
0.012
0.014

1 2 3 4

Dispatch Number (k)

S
er

vi
ce

 E
ffi

ci
en

cy
 (1

/s
ec

on
ds

)

즖=[0,0.05]

Linear Trend
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

k=1 k=2 k=3 k=4

Dispatch Number (k)

S
er

vi
ce

 S
ol

va
bi

lit
y

(%
)

즖=[0,0.1]

Linear Trend

Linear trend on service solvability Linear on service efficiency

Figure 18. Summarized results of FTM’s feasibility

 161

UbiSrvInt

k, FTM gains higher processing costs
relatively.)

	 —Increase is around 1.36 units per up-
grading of k. (On average, the increase
in the overall relative processing cost
when upgrading a level of replication
is around 1.36 units at the ends of the
experiments. This is believed to be a
reasonable tradeoff with processing
cost for a higher efficiency.)

○	 Relative clustering cost:
	 —Differences are only few millisec-

onds. (The average cost is slightly
higher than that of k value being 1,
although not a significant difference
with only few milliseconds apart.)

	 —Average of k=4,3,2 is around 0.0147
seconds. (The costs for K being 4,3,2
start from a higher value and drop
significantly to an average value of
0.0147 seconds per successful service
at the ends of the experiments.)

From Figure 14-17, we can conclude the fol-
lowing observations (that subsequently justify the
feasibility of FTM):

•	 Under dynamic environments: The feasi-
bility of FTM is very positive because of the
much better performance and the relatively
lower overheads. Moreover, it shows that
the efficiency of k = 3 is apparently higher
then the others as its solvability is not far
from k = 4, and its relative overheads are
close to the others. The clustering number,
i.e. replication level, can best effect service
solvability, as the linear trend on the final
overall service solvability as shown in Figure
18. This results from the fact that higher
failure rates yield less peers accomplishing
task correctly. Hence the increase of number
of dispatched peers results in the higher
service solvability. In the meanwhile, the

relative processing cost does not distinctly
increase as k value increases.

•	 Under stable environments: The feasibil-
ity of FTM is affirmed once again since the
enormous performance gained is sufficient
to counteract the overhead involved in pro-
cessing. The result in k = 2 is notable. We
found that the solvability of k = 2 is almost
as good as k = 4. And it has the lowest rela-
tive overhead of network traffic and a second
lower relative processing cost (only slightly
higher than k = 1). Moreover, dispatch
number k best effects service efficiency, as
the linear trend on the final overall service
efficiency shown in Figure 18. The process-
ing cost increases as k value increases. This
results from the fact that lower failure rates
yield more peers performing task correctly.
Hence, we can manipulate the clustering
number to maximum effect on the service
efficiency by far.

•	 To extend the meaning of the results attained
from stable environments, the quality of the
replication is more effective than its quantity
when the clustering data is relatively rich in
contents. In stable environments, the behav-
iors of peers are more unobvious in terms of
failure occurrence. Hence, a coarser failure
correlation clustering is sufficient to clas-
sify peers into proper clusters to facilitate
the replication mechanism. By contrast to
dynamic environments, the quality of the
replication will be more effective than its
quantity if and only if a refined clustering
performs, that is, plenty clustering data in
content involved.

The Effects of the Semi-Global
Mechanism

In this set of experiments, we follow the same
configuration settings used in the first set of
experiments (Section 4.2), except that the ex-
periments are conducted without the Semi-Global

162

UbiSrvInt

mechanism in order to examine its influence on
FTM. For this reason, all the other parameters
are set exactly the same: the top failure rate λmax
is set to 0.1 and the dispatch number k varies
from 1 to 4.

In these experiments, the cumulative time
sequence diagrams of the evaluation metrics
are not deployed here one by one since we only
interested in the final overall effect of the Semi-
Global mechanism in this phase. Hence we only
capture the final results obtained at the ends of
the experiments, i.e. after 2 hours, to see the final
overall performance and load in each experiment.
And the experimental results are compared and
illustrated with bar charts instead.

The evaluation results (as shown in Figure 19)
can briefly be itemized as follows:

•	 Service solvability:
	 —Average of K=4,3,2,1 with Semi-Global is

1.5 times more than that of no Semi-Global.
(The mean of the final overall performances
of service solvability in experiments with
Semi-Global is around 1.5 times higher then
the mean in experiments without Semi-
Global at the ends of the experiments.)

	 —k=3 with Semi-Global is 1.75 times better
than that of no Semi-Global and it is 43%
difference in proportion)

	 —k=4 with Semi-Global is 1.85 times better
than that of no Semi-Global and it is 46%
difference in proportion.

•	 Service efficiency:
	 —k=3 with Semi-Global is 35 seconds faster

than that of no Semi-Global. (The experi-
ments with Semi-Global show the higher
performance comprehensively in terms of
service efficiency. Especially in the case of
k = 3, the difference is about 35 seconds per
successful service.)

Following the above experiment results, we
can conclude the beneficial results of the Semi-
Global mechanism. The replication factor is
ineffectual without the complement of the Semi-
Global mechanism.

The Semi-Global mechanism improves the
accuracy of clustering so as to find the most ap-
propriate peer candidates to dispatch subtasks and
subsequently attain a better service performance.
That is, by way of dispatching peers who have the
lowest failure correlation from each other, service-
sharing system can achieve higher solvability and
efficiency in general. In other words, this experi-
ence sharing of the Semi-Global mechanism (in
combination with physical redundancy of the
replication mechanism) empowers UbiSrvInt with
a unique capability of fault tolerance for wireless
service composition.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

k=1 k=2 k=3 k=4

Dispatch Number (k)

S
er

vi
ce

 S
ol

va
bi

lit
y

(%
)

Semi-Global

None
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

k=1 k=2 k=3 k=4

Dispatch Number (k)

S
er

vi
ce

 E
ffi

ci
en

cy
 (1

/s
ec

on
ds

)

Semi-Global

None

service solvability (%) service efficiency (1/seconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

k=1 k=2 k=3 k=4

Dispatch Number (k)

S
er

vi
ce

 S
ol

va
bi

lit
y

(%
)

Semi-Global

None
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

k=1 k=2 k=3 k=4

Dispatch Number (k)

S
er

vi
ce

 E
ffi

ci
en

cy
 (1

/s
ec

on
ds

)

Semi-Global

None

service solvability (%) service efficiency (1/seconds)

Figure 19. The positive effects of the semi-global mechanism

 163

UbiSrvInt

Possible Application Scenarios of
UbiSrvInt on Context Awareness

As a result of the rising and the flourishing of
tourism, enormous capital has been invested in the
tourist industry. It is highly suitable to have tour-
ism applications implemented on a P2P platform
because of the characteristic of mobile tourists
longing for various information and services on
the fly. It is highly valuable to tourists for tour-
ist services being personalized, contextualized
and capable of providing immediate access in
an ad-hoc wireless manner for tourists. From
system perspective, they must be lightweight
and reliable. Let us envisage a possible scenario
set in the future.

For instance, Amy is visiting a museum in her
sightseeing tour. Her personal digital assistant
(PDA) on hand with wireless support automati-
cally downloads “visiting route” service provided
by museum while she is buying an entrance
ticket. On her way to museum lobby, her PDA
broadcasts the requests for “tourist distribu-
tion”, “showroom information”, “floor map” and
“Chinese translation” services to nearby tourists.
In a short while, her PDA has already collected
those services it needs to compose a personalized
service for Amy.

Amy gets a “Chinese version of visiting route”
service without manual operation. Amy follows
the route showed on her PDA, noticing that there
are some useful facilities marked on the route
such as information desk and female washroom.
Her PDA requires and collects “art introduction”
automatically while she is entering a different
showroom. That is, Amy can always get the right
information at the right time whenever needed.
Of course, if she likes, she can choose vocal in-
troductions rather than written ones.

The preceding scenario illustrates an ad-hoc
wireless service provision providing personalized
and contextualized tourist services according to
Amy’s profile and surrounding context. Moreover,
suppose that Amy goes into the second showroom,

one of the peers that provide “painting location”,
which is part of the “art introduction” service, is
suddenly lost connection. The traditional fault-
tolerance solution to this problem is to search for
a candidate to re-execute the failed subtask and
then compose them again. By that time Amy may
leaved the second showroom already. In a WP2P
environment and such a time critical situation,
the time redundancy solution is unreasonable.
Exerting UbiSrvInt, the failure will be avoided
by analyzing the dependability of peers as far as
possible, therefore providing customized service
without wasting any time.

Alternative application scenario utilizing
the social contexts (retained in the profiles of the
users and processed by the BDI reasoning agent)
extends the application scope of UbiSrvInt a step
deeper. As follows shows a simple demonstration
of the application:

1.	 Amy is a visitor (whose handheld profile
is shown in Figure 20) of a museum in her
sightseeing tour.

2.	 During Amy’s visiting of the museum, the
context information provided by museums
provisioning server will be faithfully record-
ed and displayed on this Context Information
Panel (as shown in Figure 21) to notify Amy.
The Context Information Panel shows the
current states of user’s surrounding.

3.	 The BDI Reasoning Agent then obtains
Amy’s profile (as shown in the User Profile
Setting Panel of Figure 20) and the context
information (as shown in the Context Infor-
mation Panel of Figure 21) to infer Amy’s true
intentions. The knowledge about reasoning
rules can be downloaded from provisioning
servers or nearby peers. And the results of
reasoning will be presented in the Service
Recommendation Panel for Amy’s reference.
(The Service Recommendation Panel can be
set to automatic or manual. User can either
authorize system to automatically reason-
ing while new context information is newly

164

UbiSrvInt

obtained, or choose a manual control to
silence system when user needs undisturbed
environments, such as during a meeting,
taking a nap, etc.)

Figure 20. Handheld profile setting panel (Auto-
matic / Manual)

Figure 21. Context information panel (Automatic
/ Manual)

Figure 22. Service recommendation panel (auto-
matic / manual)

4.	 Amy’s friend, Bob, makes an appointment
with Amy in the museum, but he is late.
Before Bob’s arrival, Amy takes the oppor-
tunity to browse the gift shop and choose a
birthday present for Candy, her classmate,
because this morning Amy got a memoran-
dum about Candy’s birthday party from the
PDA. Amy also sends a digital post-card
of Egyptian culture downloaded from the
museum to Eva, her younger sister, who is
a college student with a major in Archeol-
ogy with the recommendation of the BDI
reasoning agent (shown in Figure 22). The
social context information is also stored in
Amy’s PDA in the format of tuples such
as:

	 (<relationship> <Candy> <friend> <Amy>)
	 (<profile> < Candy > <born> <1977/5/20>)
	 (<relationship> <Eva> <sister> <Amy>)
	 (<profile> <Eva> <love> <Egyptian culture>)

5.	 After Bob arrives the museum, his PDA
gets an official welcome message from the

 165

UbiSrvInt

provisioning server resident in the museum.
The message may look like such a tuple:
(<location> <user> <entering> <Palace
Museum>). The Reasoning Agent in Bob’s
system gets the newly arrival context in-
formation, thus starts the inference. The
incoming context information is shown on
the Context Information Panel. The agent
notices that Bob is a Spaniard and has a date
with Amy, thus sensibly guesses that Bob
may need (i) a Spanish translation of the
museum tour guide and museum catalogue
and (ii) a note message to inform Amy that
he has arrived. The two services will be
then automatically shown on the Service
Recommend Panel. If Bob dislikes that, he
can manually stop it, otherwise the services
will be provided after they are fulfilled. The
fulfilled services will be also recorded on
the Service Recommendation Panel for user
reference.

Related Works

This section gives some exemplars of existing
relevant works on the infrastructures of e-service
provision emphasizing on either service integra-
tion or service adaptation or service replication.
The works about service integration, in gen-
eral, rely on complied knowledge (e.g., process
schema, process template, or state charts) in
terms of (semi-)centralized architectures. On
the other hand, the works for service adapta-
tion mostly are condition-based and those for
service replication then quest for load balancing.
UbiSrvInt is distinct from these works in service
provision based on inference-based adaptation
and fault-correlation-analysis service replication
(in addition to UbiSrvInt being a pure peer-to-
peer approach).

eFlow (Casati et. al., 2002) is a platform devel-
oped at HP Laboratories for specifying, enacting,
and monitoring composite e-services in order to

aid in e-commerce. In eFlow, a composite service
is described as a process schema that composes
other basic or composite services. A composite
service is modeled by a flow structure, which
defines the order of execution among the nodes
in the process. The graph may include service,
decision, and event nodes. Service nodes represent
the invocation of a basic or composite service;
decision nodes specify the alternatives and rules
controlling the execution flow, while event nodes
enable service processes to send and receive sev-
eral types of events. A service process instance
is an enactment of a process schema enacted by
the eFlow engine.

The Ninja (Mao et. al., 2001) project aims to
develop a software infrastructure to support the
next generation of Internet-based applications. In
the Ninja project, a dynamic service composition
platform has been designed and implemented
with the goals of automation, scalability and
fault-tolerance through use of cluster computing
platforms, identification of common patterns of
ad-hoc, application-specific compositions, clas-
sification of services into a strongly typed system,
redundant control mechanisms for monitoring and
recovery, and a continuous optimization process
with feedback. Central to the architecture is the
concept of path. A path is a flow of Applica-
tion Data Units through multiple services and
transformational operators across the wide area.
A mechanism, Automatic Path Creation (APC)
service, plays an essential role by seamlessly
supporting any new communication device in
the infrastructure.

A SELF-SERV platform (Benatallah et. al.,
2002) for rapid composition of Web services
has been developed based on Java and XML, in
which web services are declaratively composed,
and the resulting composite services are executed
in a P2P and dynamic environment. SELF-SERV
employs a declarative language for composing
services based on state charts which support the
expression of control-flow dependencies such
as branching, merging, concurrency, etc. A P2P

166

UbiSrvInt

service execution model, whereby the responsibil-
ity of coordinating the execution of a composite
service, is distributed across several peer software
components called coordinators. They are in
charge of initiating, controlling, monitoring the
associated services, and collaborating with their
peers to manage service execution. The knowledge
required while composing services is statically
extracted from the state chart and represented in
a simple tabular form.

Anamika (Dipanjan et. al., 2002) is a reactive
service composition architecture for pervasive
computing environments that is implemented over
Bluetooth. Central to Anamika is the concept of a
distributed broker that can execute at any node in
the environment. A broker may be selected based
on various parameters such as resource capability,
geometric topology of the nodes and proximity
of the node to the services that are required to
compose a particular request. The architecture
primarily deals with the discovery, integration
and execution of the components of a composite
request. The architecture introduces two distributed
reactive techniques to carry out service composi-
tion in purely ad-hoc environments: Dynamic
Broker Selection Technique, Distributed Broker-
ing Technique. The former approach centers on a
procedure of dynamically selecting a device to be
a broker for a single request in the environment.
And the latter approach distributes the brokering
of a particular request to different entities in the
system by determining their suitability to execute
a part of the composite request.

PCAP (Sheng et. al., 2004) devises the design
of a distributed, adaptive, and context-aware
framework for personalized service composition
in terms of users annotating existing process
templates (leading to personalized service-based
processes). Personalization is the like of execution
constraints encompassing temporal and spatial
constraints, which respectively indicate when
and where the user wants to see a task executed.
The execution policies include the service selec-

tion policy and the service migration policy. For
a specific task, users can specify how to select a
service for this task. The service can be a fixed
one (the task always uses this service), or can be
selected from a specific service community or a
public directory (e.g., UDDI) based on certain
criteria (e.g., location of the mobile user).

ServiceGlobe (Keidl et. al., 2003) presents a
generic dispatcher in web service provision for
the purpose of load balancing and high service
availability in terms of automatic service repli-
cation. The dispatcher performs load balancing
(or load sharing) using several servers on the
back-end with identically mirrored content and a
dispatching strategy like round robin using load
information about the back-end servers.

Conclusion Remarks

In this chapter, a novel pure P2P approach solution
(UbiSrvInt) for ad-hoc wireless service provision
is presented. UbiSrvInt is unique in its context
awareness and fault tolerance (that are fulfilled
by the approach’s components - Reasoning Agent
and Fault-Tolerance Module - respectively). The
aim of this chapter is to empower users with
mobile wireless devices to access personalized
and contextualized services composed within the
reachable ad-hoc network of services in a pure
Peer-to-Peer manner. Accordingly, we provide a
general-purpose approach (UbiSrvInt) so as to
facilitate the discovery, integration, and provision
of a large cross-section of P2P mobile services.
UbiSrvInt advances existing service provision
infrastructures (centralized or mediator-based)
by its capability in the removal of the bottlenecks
of the centralized/mediator nodes (for reliability,
scalability, extensibility, real-time information).
Moreover, UbiSrvInt takes into account fault
tolerance and context awareness (that are vital
for attaining high usability of the approach for
wireless service provision). As for the complex-

 167

UbiSrvInt

ity of UbiSrvInt, it is still manageable because
most of the computation exerted is fairly effective
and with the Moore’s Law the power of mobile
devices would be aggressively improved (in terms
of the capabilities of computation and capacity)
as time goes.

The performance of UbiSrvInt on fault toler-
ance is three-fold: (1) Under unreliable environ-
ments, sufficient dispatch number (replication
level) should be provided to seek for distinctly
higher service solvability. (2) As to reliable
environments, lower replication level is good
enough to gain favorable solvability and replica-
tion level could be raised to seek for distinctly
higher service efficiency (if the extra process
cost is either unconcerned by or unaware to
users). (3) For synergy of Semi-Global, in both
kinds of environments Semi-Global should be
enabled for complementing FTM so as to gain an
overall higher performance in all aspects. As to
the functionality of UbiSrvInt on context aware-
ness, it has also been justified through relevant
scenario demos of UbiSrvInt. In short, through
the experiments and evaluations7 UbiSrvInt is
justified for its claimed distinctive features of
context awareness and fault tolerance.

Our future work includes the application
of the UbiSrvInt approach to myriad service
domains (e.g., travel, learning, etc.) in order to
attain domain dependent statistics (such as level
of increased satisfaction, efficiency and activity
volume). For FTM, certain further investigation
can be conducted, such as granularity of time slots
in a sliding window (the more exquisite the day-
patterns the more segmented time slots), varied
experiment parameters (e.g., network size), and
advanced adaptability through personalized rea-
soning rules about a desired balance of accuracy
and efficiency. We hope our work can shed light
on further advanced platform development for
contextualized P2P mobile service provision.

Implications for U-Commerce

For u-commerce, the nature of services focuses on
actively sensing different customer’s role through
different specific contextual attributes (e.g., time,
location, resources, customer profiles) (Fano
et. al., 2002) in order to meet customers’ needs
and change the interactions with the customers
(Varshney et. al., 2000) in terms of dynamic
configurations of services and devices. To support
u-commerce and the services, the environment
features the ubiquitous networks that are full
convergence, technologically heterogeneous,
geographically dispersed, context sensing, ar-
chitecturally flexible and without a centralized
control mechanism (Banavar et. al., 2002). How-
ever, the ubiquitous networks, in reality, are not
as reliable as the wired networks and thus the
issue of fault tolerance has to be considered in
addition to context awareness. To meet this end,
this chapter provides an approach for P2P mobile
service provision, which is not only robust to
failure but also aware of the surrounding context
in ubiquitous networks. In other words, the IT
infrastructure required for u-commerce and the
services, in nature, have some differences from
those of traditional e-commerce or m-commerce
in terms of the two kinds of supports required
(fault tolerant and context awareness). On top of
the needed infrastructure supports, the values
of the u-commerce services could then be real-
ized to the fullest extent (together with different
directions of exploration on customers’ needs in
ubiquitous contexts).

References

Agrawal, R., Lin, K, Sawhney, H., & Shim, K.
(1995). Fast Similarity Search in the Presence of
Noise, Scaling, and Translation in Time-Series Da-
tabases. In Proceedings of the 21st International
Conference on Very Large Databases (VLDB’95),
Zurich, Switzerland.

168

UbiSrvInt

Banavar, G., & Bernstein, A. (2002). Software
Infrastructure and Design Challenges for Ubiq-
uitous Computing Applications. Communications
of ACM, 45(12), 92-96.

Benatallah, B., Dumas, M., Sheng, Q., & Ngu, A.
(2002). Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services. In 18th
International Conference on Data Engineering
(ICDE’02), San Jose, CA, USA.

Bratman, M., Israel, D., & Pollack, M. (1988).
Plans and Resource Bounded Practical Reasoning.
Computational Intelligence, 4(4), 349-355.

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy,
V., & M. Shan. (2002). Adaptive and Dynamic
Service Composition in eFlow. HP Lab Techni-
cal Report HPL-2000-39, Palo Alto: Software
Technology Laboratory.

Chakraborty, D. (2001). Service Composition in
Ad-hoc Environments. Ph.D Dissertation Pro-
posal, Technical Report TR-CS-01-20.

Chakraborty, D., Perich, F., Joshi, A., Finin, T., &
Yesha, Y. (2002). A Reactive Service Composition
Architecture for Pervasive Computing Environ-
ments. Technical Report TR-CS-02-02, University
of Maryland at Baltimore, USA.

Chen, F. Y., & Yuan, S. T. (2004). A Study on
Contextualized Fault-tolerant Service Composi-
tion in WP2P Environments. Technical Report,
Fu-Jen University, Taiwan.

Deng, D., & Kasabov, N. (2000). ESOM: An
Algorithm to Evolve Self-Organizing Maps
from On-line Data Streams. In Proceedings of
the IJCNN’2000 on Neural Networks Neural
Computing: New Challenges and Perspectives
for the New Millennium, 6, 3-8.

Dialani, V., Miles, S., Morcan, L., Rourc, D., &
luck, M. (2002). Transparent Fault Tolerance for
Web Services Based Architectures. In Proceed-
ings of the 8th International Euro-Par Conference
(EURO-PAR’02), Paderborn, Germany.

Dipanjan, C. et al. (2002). A Reactive Service
Composition Architecture for Pervasive Comput-
ing Environments. 7th Personal Wireless Com-
munications Conference, Singapore.

Fano, A., & Gershman, A. (2002). The Future
of Business Services in the Age of Ubiquitous
Computing. Communications of ACM, 45(12),
63-87.

Gribble, S. D., Welsh, M., Brewer, E. A., & Culler,
D. E. (1999). The NINJA project pages. http://ninja.
cs.berkeley.edu.

Hartigan, J. A., & Wong, M. A. (1979). A K-Means
Clustering Algorithm. J. Royal Statistical Society,
Ser. C, Applied Statistics, 28, 100-108.

Jena, http://www.hpl.hp.com/semweb/jena.htm

Keidl, M., Seltzsam, S., & Kemper, A. (2003).
Reliable Web Service Execution and Deploy-
ment in Dynamic Environments. Lecture Notes
in Computer Science, 2819, 104-118.

Lamport, L., Shostak, R., & Pease, M. (1982). The
Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems, 4(3),
382-401.

Mao, Z., Brewer, E., & Katz R. (2001). Fault-
tolerant, Scalable, Wide-area Internet Service
Composition. Technical Report UCB/CSD-1-1129,
Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore
County, USA.

Mennie, D., & Pagurek, B. (2000). An Archi-
tecture to Support Dynamic Composition of
Service Components. In Proceedings of the 5th
International Workshop on Component -Oriented
Programming (WCOP 2000), Sophia Antipolis
and Cannes, France.

Powell, D., Verissimo, P., Bonn, G., Waeselynck,
F., & Seaton, D. (1988). The Delta-4 approach
to dependability in open distributed computing
systems. In Proceedings of The 18th International

 169

UbiSrvInt

Symposium on Fault-Tolerant Computing, Tokyo,
Japan.

Project JXTA. http://www.jxta.org

Ranganathan, A., & Campbell, R. (2003). A Mid-
dleware for Context-Aware Agents in Ubiquitous
Computing Environments. ACM/IFIP/USENIX
International Middleware Conference, Rio de
Janeiro, Brazil.

Schlichting, R., & Schneider, F. (1983). Fail-stop
Processors: An Approach to Designing Fault-
Tolerant Computing Systems. ACM Transactions
on Computer Systems, 1(3), 222-238.

Schuster, H., Georgakopoulos, D., Cichocki, A.,
& Baker, D. (2000). Modeling and Composing
Service-based and Reference Process-based
Multi-enterprise Processes. In Proceedings of
the International Conference on Advanced In-
formation Systems Engineering (CAiSE2000),
Stockholm, Sweden.

Sheng, Q. Z., Benatallah, B., & Maamar, Z.
(2004). Enabling Personalized Composition and
Adaptive Provisioning of Web Services. The 16th
International Conference on Advanced Informa-
tion Systems Engineering, Riga, Latvia.

Sheng, Q., Benatallah, B., Dumas, M., & Mak,
E. (2002). SELF-SERV: A Platform for Rapid
Composition of Web Services in a Peer-to-Peer
Environment. In Proceedings of the 28th Very
Large DataBase Conference (VLDB’2002), Hong
Kong, China.

Song, Q., & Kasabov, N. (2001). ECM - A Novel
On-line, Evolving Clustering Method and Its Ap-
plications. In Proceedings of the Fifth Biannual
Conference on Artificial Neural Networks and
Expert Systems (ANNES2001), Dunedin, New
Zealand.

Varshney, U., Vetter, R. J., & Kalakota, R. (2000).
Mobile Commerce: A New Frontier. IEEE Com-
puter, (pp. 32-38).

Weatherspoon, H., Moscovitz, T., & Kubiatowicz,
J. (2002). Introspective Failure Analysis: Avoid-
ing Correlated Failures in Peer-to-Peer Systems.
In Proceedings of the International Workshop
on Reliable Peer-to-Peer Distributed Systems
(SRDS’02), Osaka , Japan.

Endnotes

1	 L, M, H respectively indicates low, medium
and high in the willingness of a user to host
a specified function.

2	 Peers of vicinity are referring to those
mobile peers accessible through wireless
communication (e.g., Bluetooth).

3	 RDF is best thought of in the form of node
and arc diagrams.

4	 The number of subtasks is used to substi-
tute for the total time of subtask execution
because the services in the simulation are
“virtual” and doesn’t really be executed.

5	 The value of 1.4 is attained from dividing
the best final overall solvability, i.e. k=4, by
the worst final overall solvability, i.e. k=1.
(0.337/0.241)

6	 The value of 18% is attained from dividing
the difference between the highest final
overall relative network traffic, i.e. k=1,
and the average of the final overall relative
network traffic of the others, i.e. k=2,3,4,
by the highest final overall relative network
traffic. ((133.5-108.9)/133.5)

7	 Since UbiSrvInt is the first pure P2P ap-
proach solution for ad-hoc wireless service
composition, instead of providing bench-
mark evaluations this chapter aims for jus-
tifying the usefulness and the effectiveness
of the approach proposed. The usefulness is
originated from the nature of fault tolerance
and context awareness for ad-hoc wireless
service provision. The effectiveness sub-
sequently is confirmed from the feasibility
affirmation of the Fault-Tolerance Module
and the manifesting demo scenarios of
Reasoning Agent.

170

UbiSrvInt

Appendix: UbiSrvInt’s use case diagram and activity diagram
(represented in UML)

Lookup Local Services

Edit Personal Profile

Set Acess Control Level

User

Provide Context Information

Reason out Intention

<<include>>

Context Provider

Integrate Partial Services

<<extend>>

Create Dispatch Set

Decompose A Service

<<extend>>

Provide Service KnowledgeKnowledge
Provider

Provider PeerLookup External Services

Request Peer

Delegate Service Request

<<extend>>

<<include>>

<<include>>

Figure A1. UbiSrvInt’s use case diagram

 171

UbiSrvInt

Context Provider

Select Context
Category

Revise Context
Beliefs

[category exist]

Create new
Category

[else]

Acquire current
Context

User

Acquire
Personal Profile

Input immediate
Requirements

Reason out
Demands

Chose Fesible
Tasks

Form Formal
Requests

Request Peer

Decompose into
Subtasks

Lookup External
Services

Check Available
Services

[else]

Acquire
Dispatch Set

[have all]

Delegate
Service Request

* for each peer

Wait for Executed
Results

[time out][else]

Integrate Partial
Services

[receive all]

[else]

[have any]

* for each task

Figure A2. UbiSrvInt’s activity diagram

