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Abstract

Peer-to-Peer applications harness sharing between free resources (storage, contents, services, human 
presence, etc.). Most existing wireless P2P applications concern merely the sharing of a variety of con-
tents. For magnifying the sharing extent for wireless service provision in the vicinity (i.e., the wireless 
P2P environments), this chapter presents a novel approach (briefly named UbiSrvInt) that is an attempt 
to enable a pure P2P solution that is context aware and fault tolerant for ad-hoc wireless service provi-
sion. This approach empowers an autonomous peer to propel distributed problem solving (e.g., in the 
travel domain) through service sharing and execution in an intelligent P2P way. This approach of ad-hoc 
wireless service provision is not only highly robust to failure (based on a specific clustering analysis 
of failure correlation among peers) but also capable of inferring a user’s service needs (through a BDI 
reasoning mechanism utilizing the surrounding context) in ad-hoc wireless environments. The authors 
have implemented UbiSrvInt into a system platform with P-JXTA that shows good performance results 
on fault tolerance and context awareness.
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Introduction

In recent years, new services have mushroomed 
all over the web world, and people can easily 
attain a great number of services from the In-
ternet. A service usually performs in the role 
of computation facility or information provider. 
Popular examples include search services, agent 
services, entertainment services, transaction 
services, etc. Service composition then refers to 
the technique of creating complex services with 
the help of smaller, simpler and easily executable 
lightweight services or components (Chakraborty, 
2001). That is, we can handily create novel, in-
teresting and customized services by bundling 
existing services together to meet the demands 
of our customers.

On the other hand, mobile devices are in 
widespread use now, and myriad mobile ad hoc 
networking technologies (e.g., Bluetooth, IEEE 
802.11) unfold dramatically. Clever design of mo-
bile devices includes dramatically reduced size, 
enlarged storage, economic power consumption 
and accelerated CPU speed. This design not only 
improved the performance but also advanced the 
functionality of the mobile devices. The over-
whelming majority of mobile devices launched 
recently are all capable of supporting wireless 
Internet access as one of their key features. The 
next era of network enables the integration of 
various heterogeneous networks and makes it 
possible for people to surf between them through 
different kinds of wireless device anytime, any-
where and anyway. People are striding forward 
to a completely new Wireless Age.

Accordingly, it can be envisioned that in the 
forthcoming future everyone (who is walking on 
the street, dining in the restaurant or working in the 
office) outfits with hand-held or wearable mobile 
devices as the standard equipments to access any 
nearby available network for wanted services. 
As you move around, a software agent residing 
in your wireless devices autonomously searches 
and collects information about what is available 

from your current location. You may carry with 
you some useful lightweight services downloaded 
from the Internet or any wayside provisioning 
server. You may provide services on hand for 
nearby people who need them and equally attain 
desired services from nearby people who possess 
them. You may, moreover, compose those available 
wireless services to form an aggregated service 
tailoring to your contextualized needs, exhibiting 
moment of values of the services. In other words, 
the demand to create novel functionalities out of 
composing wireless services in the vicinity is 
extremely indispensable.

The aforementioned envisions manifest the 
significance of the problem of wireless service 
provision that aims for providing contextualized 
customized services to meet the concrete needs 
or requirements of a given client who is equipped 
with wireless mobile devices by utilizing resources 
available in its vicinity.

Wireless service provision in the vicinity 
requires a certain service platform installed at 
the side of mobile devices. Most existing service 
platforms (Casati et. Al., 2002) (Mao et. al., 2001) 
(Mennie et. Al., 2000) (Schuster et. al., 2000) 
(Gribble et. al., 1999) have been designed on a 
wired environment that is of high stability and 
bandwidth, performing against the nature of ad 
hoc networks. Furthermore, their centralized 
approaches exerted for service provision have 
their innate drawback while transplanting them 
to the wireless environment. The drawback is 
three-fold:

•	 Fault-tolerance: In centralized architec-
tures, if the server shuts down, everything 
else does as the server is the central point 
of failure.

•	 Scalability: The scalability is limited to 
the capacity of the central server. Should 
a large amount of requests be addressed to 
the server, the server easily becomes the 
bottleneck of traffic.
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•	 Extensibility: Centralized architectures 
are also often hard to expand owing to the 
limited resources of the central server.

There have been a few published researches 
(Benatallah et. al., 2002) (Chakraborty et. al., 
2002) (Sheng et. al., 2002) addressing the problem 
using decentralized P2P approach recently. How-
ever, when applied to wireless service provision 
they encountered certain problems mainly resting 
on the employment of the mediator (broker or co-
ordinator) technique. This hybrid P2P architecture 
has drawbacks similar to centralized architectures. 
Exemplars of the hybrid P2P drawback primarily 
rest on existence of centralized nodes: 

•	 Quality of wireless connection: This 
refers to the poor condition of the connec-
tion between mobile devices and the central 
node (e.g., intermittent disconnection and 
transmission latency). Information replied 
from a central node may take too long to 
reach the mobile device that originates the 
request. The client subsequently cannot at-
tain the desired information in time, but be 
bothered by stale and useless information.

•	 Real-time information: Another question 
is about information updating. Information 
is unlikely to be always up-to-date on the 
central node in a dynamically changing 
environment, such as traffic information.

•	 Infeasibility of mobile super peer: Suppos-
ing a super peer in hybrid P2P architectures 
can be mobile, the aforementioned problem 
can be partially resolved. However, this leads 
to other problems. Qualified mobile devices 
(providing extraordinary computing power, 
storage capacity and sufficient bandwidth 
to take charge of a server’s duty) are very 
uncommon in reality. Super-peers, if any, at 
proper place in proper time are not always 
reachable from all mobile devices.

Accordingly, (semi) centralized approaches 
cannot be served as a good solution to compose 
wireless services on the move. A better solution 
to wireless service provision is believed to have 
the duty segmented and delegated to peers (who 
are willing to and able to execute the proportioned 
duties, and bringing about the desired properties 
of salability and extensibility). That is, a pure P2P 
solution could be further explored so as to unfold 
alternative forms of wireless service provision 
via mobile ad hoc networking technologies (e.g., 
Bluetooth, IEEE 802.11).

Yet another inappropriateness of existing 
decentralized service provision architecture is 
that they did not take into account the issues of 
fault tolerance and context awareness. These two 
issues however are crucial especially dealing with 
mobile devices within wireless environments. 
The reasons are two folds: (1) Unreliability of 
between-peer wireless connection often results 
in unavailability of services. (2) Mobility of peers 
often engenders changes in user contexts and 
accordingly causes different needs. This chapter 
aims to provide an approach for P2P mobile ser-
vice provision, which is not only highly robust to 
failure but also keenly aware of the surrounding 
context in wireless environments.

In this chapter, we present an approach named 
UbiSrvInt (abbreviation of Ubiquitous Services 
Integration) that is a pure P2P solution for wire-
less service provision that has the salient features 
of fault tolerance and context awareness (that are 
further described as follows):

•	 Fault tolerance: There are several solu-
tions for handling system failures. The 
most common way is to re-execute it. It is 
indeed simple but very inefficient and not 
applicable in wireless mobile environments. 
The existing solutions (Chakraborty et. al, 
2002) (Dialani et. al., 2002) to this problem 
for distributed service-based architecture 
are to employ checkpoints to guard against 
such faults. However, this method increases 
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the traffic overhead of propagating check-
ing message. It is too complex and only 
operable while using process-based service 
description. Such mechanisms adhered to 
service composition systems primarily rest 
on post-failure recovery. In this chapter, a 
foresighted mechanism is exerted in the 
approach so as to improve the efficiency 
by delegating service execution to low-fault 
correlation peers. Hence, it can reduce the 
percentage of failure taking place. Further-
more, the elimination of the central node can 
make the design of the system immune to 
single point of failure.

•	 Context awareness: Context awareness re-
fers to the capability of adapting the involved 
decisions in accordance with the current 
user context and thus it is one of the most 
important preferred features from a mobile 
user’s perspective (as mobile situations of 
the user change over time). In our approach, 
each peer acts as an autonomous entity whose 
behavior is governed and adapted by its be-
liefs, desires and intentions that are captured 
from user profiles and real-time contextual 
information in user’s vicinity such as time, 
location, weather and so on. Thereby peers 
have the ability to reason and help users to 
get the right services in the right place at 
the right moment.

We have implemented UbiSrvInt that is to be 
installed on each peer so as to realize pure P2P 
wireless service provision in certain application 
domains (e.g., travel services, museum services, 
etc.). With UbiSrvInt functioning at each peer, 
the peer can avail itself of the available services 
of the peers in the vicinity, in a self-organized 
robust intelligent way. UbiSrvInt is unique in its 
combined consideration of context awareness 
and fault tolerance for P2P-based customized 
service provision in unreliable mobile ad-hoc 
networks.

The remainder of this chapter is organized as 
follows: Section 2 presents the contextualized 
fault-tolerant approach for P2P mobile service 
composition. A brief description of the implemen-
tation of UbiSrvInt is then provided in Section 3. 
Section 4 provides the performance evaluation 
of UbiSrvInt. Finally, Section 5 concludes this 
chapter with future fruitful research.

UbiSrvInt

The UbiSrvInt approach serves as the foundation 
(equipped in each mobile device) upon which P2P 
mobile services are discovered, executed, and 
composed with a pure P2P interaction model. It 
is a general-purpose approach attempting to sup-
port a large cross-section of P2P mobile services. 
This section is unfolded with a description of 
the basic concepts (Section 2.1) followed by the 
detailed descriptions of the approach components 
(Section 2.2) (but with a strong emphasis on the 
component that is in charge of fault tolerance as 
addressed in Section 2.3). 

Basic Concepts

The functionalities of the approach can roughly 
be structured into four layers shown in Figure 1 (a 
detailed structure of the approach will be shown in 

Figure 1. Basic concepts of UbiSrvInt
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Figure 3). The network layer concerns controlling 
the routing of messages, masking the differences 
in characteristics of different transmission and 
sub-network technologies to provide wireless 
transparent transfer of data between peers. The 
service discovery layer is responsible for discover-
ing the inferred services that are available nearby. 
With above discovered services as the inputs, the 
service composition layer carries out the integra-
tion of those services in a feasible order and ties in 
with the whole process of discovery. The service 
execution layer takes charge of the execution of 
assigned service components to yield services. 
The top of the approach is the application layer. 
It encapsulates different GUI facilities to serve 
as the means for the users to access different 
composite services.

One of the important characteristics of the 
approach is the use of a fault-tolerance module 
that provides capabilities for preventing failures 
in advance and recovering failures once any 
component fails. There are many useful ways 
to improve dependability, however, redundancy 
is the simplest technique typically employed in 
P2P systems. Due to the time criticality feature of 
the P2P mobile services, physical redundancy is 
believed to be the most appropriate redundancy 
approach (as opposed to the time redundancy 
approach), replicating additional service com-
ponents so as to assure the continued composite 
service in case the crash occurring to some of 
the service components.

Furthermore, the probability of a wireless 
mobile peer failing while a transaction is in 
progress is dependent upon several factors such 
as network routings, access points, operating 
system types and releases, device brands, service 
types, and user behaviors. Therefore, all peers 
have their respective probability distributions 
of failures, which may be mutual correlated. In 
UbiSrvInt fault tolerance is achieved through 
dispatching multiple replications of service 
components to different peers in the vicinity that 
fail independently.

For instance, when peer A subscribes the ser-
vice produced by peer B, a set of peers that fail 
with low correlation are delegated to produce the 
service required by peer A (as shown in Figure 
2). In the example of Figure 2 this mechanism 
provides threefold active replications of the ser-
vice component to prevent a single component 
failure. Peer A only interacts with peer B. Peer B 
handles peer A’s request and sends back the ser-
vice. Meanwhile, peer B replicates the component 
and dispatches them to peer set Cs. Each peer C 
executes the allotted component and returns the 
result of execution to peer B. 

There are two possible worlds of exploiting this 
physical-redundancy concept: (1) The process of 
service provision may be interrupted because the 
provider crashes and consequently halts service 
or the provider omits to respond to incoming re-
quests (as addressed in fail-silent (Powell et. al., 
1988) or fail-stop (Schlichting et. al., 1983)). In 
this situation the faulty peer stops functioning and 
produces no ill output. For instance, peer A sends 
its request to peer B which handles the request 
and delegates peer set Cs to execute service. Peer 
B waits only for the first reply and returns it to 
peer A. (2) Unlike the first situation that assumes 
all peers are harmless and no incorrect response, 
the second situation allows the occurrence of the 
reality where peer sometimes continues to operate 

Figure 2. Triple component physical redun-
dancy
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but produces wrong results to output (as addressed 
in Byzantine faults (Lamport et. al., 1982), which 
is obviously more troublesome to deal with). For 
instance, peer A sends its request to peer B which 
handles the request and delegates peer set Cs to 
execute the service. Peer B then acts as voter in 
this world, picks the majority winner of the three 
inputs obtained from peer set Cs, and returns the 
voting result to peer A.

The Architecture of UbiSrvInt 

UbiSrvInt is composed of several components (as 
shown in Figure 3). As follows show what each 
component does and how the components interact 
with each other in the architecture: (1) Reasoning 
Agent collects context information of its surround-
ings from an external context handling system 
(e.g., provisioning server or context provider) and 
a user profile so as to reason rationally for fur-
nishing the user with the tasks of adaptive service 
requests. (2) Sub-Tasking Agent is responsible 
for segmenting each task of service request into 
several subtasks. The sub-tasking information 
(i.e., the knowledge of the subtasks required to 
execute a particular task) is presumed to be at-
tained from external systems (e.g., provisioning 
servers) or other peers. (3) Discovery Agent is in 
charge of discovering the services conforming 
to the functionality listed on the subtasks list 
of Sub-Tasking Agent. (4) Composition Agent 
receives services acquired by Discovery Agent 
and integrates them into a composite service 
in a proper order (based on certain task-related 
knowledge to perform service composition). (5) 
Execution Agent then works on service execu-
tion that would involve Fault-Tolerance Module 
(FTM). (6) FTM is the focus of our approach that 
provides capabilities for preventing failures in 
advance and recovering failures once any service 
component fails.

The underlying assumptions behind the ap-
proach are three folds: (1) Heterogeneous devices 
can effortlessly connect to each other through 

Figure 3. The picturesque view of the UbiSrvInt 
infrastructure

Figure 4. The BDI reasoning process
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the component of Communication Gateway of 
the infrastructure. (2) Mobile services can be 
unfolded on the heterogeneous devices through 
transformation between different forms. The 
component descriptions of UbiSrvInt are then 
detailed in the following subsections.

Reasoning Agent

Reasoning is an implement to achieve the goal 
of taking possible courses of actions to provide 
adaptive services. The Reasoning Agent follows 
the belief-desire-intension (BDI) conception 
(Bratman et. al., 1988) and is responsible for 
receiving and interpreting service requests for 
its user, as shown in Figure 4.

The Reasoning Agent collects contextual 
surrounding information either from an exter-
nal context handling system (e.g., provisioning 
server or context provider) or from a user profile 
in order to reason rationally. The types of context 
information can be identified into five categories: 
(1) Environmental contexts (date, time, location, 
nearby people, weather, light, humidity, altitude, 
velocity, etc.) (2) Informational contexts (news, 
traffic, transportation timetable, movie timetable, 
stock prices, sports scores, weather forecasts, etc.) 
(3) Personal contexts (sex, age, personality, health, 
mood, behaviors, schedule, activity, preference, 
economic status, etc.) (4) Social contexts (relation-
ships, experiences, appointments, community 
activity, accessible personal contexts of people, 
etc.) (5) Resource contexts (network bandwidth, 
status of nearby printers, battery power, available 
services, etc.)

A variety of different context information can 
be gathered by external context handling systems 
(e.g., a sideway provisioning server available at 
a museum entrance) that often outfit sensors for 
collecting context information, such as environ-
mental contexts, informational contexts and some 
resources contexts. As to personal contexts and 
social contexts, they are sensitive and therefore 
should be protected from strangers or unfamiliar 

friends and thus retained in the user profiles at the 
side of mobile devices. Such kinds of information 
are only conveyed between peers according to the 
level of their relationships in order to keep the 
privacy of users. The P2P infrastructures enable 
the possibility of ubiquitous computing of all kinds 
of context information in contrast to a centralized 
approach, such as Client-Server infrastructures.

From the aspect of peers, the various con-
text information is gained from outside except 
personal contexts, hence we generally called 
them environment states to distinguish from the 
contexts gained from inside. We assume that the 
state of a peer’s environment can be characterized 
as a set of environment states S = {s1, s2, ...}. At 
any moment, the environment is in one of these 
states. The function sense represents the peer’s 
ability to observe its environment and attain the 
environment information, outputting a percept. 
The perception of the peer is assumed to be 
represented by a non-empty set P = {p1, p2, ...} 
of percepts. The sense function subsequently is 
formulated as follows:

sense: S → P,

which maps environment states to percepts. The 
environment information is regarded as a true 
belief of the peer that will change over time. 
Let Bel be the set of all possible beliefs and the 
peer’s belief revision function is a mapping that 
determines a new set of beliefs from the current 
percept and current beliefs:

revise: ℘(Bel) × P → ℘(Bel)

Note that the symbol ℘ denotes the powerset, 
the set of possible subsets, of any given set. 

The user can directly invoke specific service 
requests with certain constraints or conditions. 
The requirements made by the user are defined as 
a set Hr of human requirements. Let Des be the set 
of all possible desires. The peer’s desire can then 
be directly declared as shown in the commands 
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function that receives the requirements from the 
user and then output the desires:

commands: Hr → ℘(Des).

Alternatively, the peer’s desire can be indirectly 
derived from the user profile information. That 
is, Reasoning Agent can attain the information of 
the user’s preference from the User Profile. The 
user’s preference is defined as a set Hp of human 
preferences. Reasoning Agent subsequently can 
infer what the options available to the user are 
when there is no clear and definite instruction 
from outside. The option generation function, 
options, maps a set of human preferences and a 
set of beliefs to a set of desires:

options: ℘(Bel) × ℘(Hp) → ℘(Des)

The chosen options or commands become in-
tentions, which then constitutes the formal service 
requests. Intentions are then fed back into the 
agent’s future practical reasoning. Let Int be the 
set of all possible intentions. In order to make the 
final decision, the Reasoning Agent’s deliberation 
process is represented in the filter function:

filter: ℘(Bel) × ℘(Des) × ℘(Int) → ℘(Int)

which updates the agent’s intentions on the basis 
of its previously-held intentions and current be-
liefs and desires. As the result of deliberating, it 
infers user’s intension and outputs it as a formal 
service request for Sub-Tasking Agent. The ser-
vice requests are regarded as tasks, which will 
be allocated afterward. The generated tasks are 
defined as a set of tasks T. The request function 
is assumed to simply return any executable inten-
tions in a priority:

request: ℘(Int) → T,

in which each intention is correspondent to a 
directly executable task. The state of Reasoning 

Agent at any given moment is, deservedly, a triple 
(B, D, I), where B ⊆ Bel, D ⊆ Des, and I ⊆ Int.

Sub-Tasking Agent

Sub-Tasking Agent receives the task information 
from Reasoning Agent and subsequently decides 
how to segment the task appropriately. That is, 
Sub-Tasking Agent is responsible for dividing a 
generic task into several subtasks. 

Sub-Tasking Agent attains the sub-tasking 
information (i.e., the different subtasks required 
to execute a particular task) from an external sys-
tem, such as Provisioning Server or other peers. 
We assume that the task-related knowledge can 
be characterized as a set Kh of all given know-
how about sub-tasking a task. Subsequently, it 
generates a subtask list served as the input to 
Discovery Agent. Let Ts be the set of all possible 
subtasks, in which tsi denotes subtask i of task T. 
The generated subtask list is represented as

T = [ts1, ts2, ts3, ..., tsN]

The service sub-tasking function, decompose, 
of the Sub-Tasking Agent is a function

decompose: T × ℘(Kh) → ℘(Ts),

which maps the current task and correspond-
ing know-how to determine a feasible set of 
subtasks.

There are two possibilities for the Sub-
Tasking Agent to execute decompose function. 
The first situation is that Sub-Tasking Agent gets 
internal service request from Reasoning Agent. 
This kind of service requests will then be consid-
ered as initiating tasks. The other situation is that 
Sub-Tasking Agent works on task decomposition 
for external service request from other peers. In 
this situation it is Reasoning Agent that should 
decide whether the request can be handled or not. 
The factors that affect this decision are as follows: 
user settings, remaining power, resource capabil-
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ity (e.g. computing capability, available storage, 
bandwidth, etc.), and number of tasks in hand. 
The capability of each peer can be represented 
as a capability vector CV of the form

ℵ ≡ CV(e1, e2, ..., eM), ei ∈ [0,1]

using the symbol ℵ, in which ei denotes the stan-
dard normalized score of factor i. Let J be the set 
of two possible results of judgment, yes or no. 
Then the function judge is a mapping

judge: T × ℵ → J, J ∈ {0,1}

If the judgment result is positive, Sub-Tasking 
Agent will perform decomposition of the external 
service request to generate subtasks. Afterward, 
Composition Agent will execute the partial com-
position of those subtasks, which is introduced 
later. 

Discovery Agent

In a WP2P environment mobile peers can share 
with each other nearby myriad types of resources 
(e.g., storage, cycles, contents, services and hu-
man presence). The locations of nearby peers are 
represented by a set of peer locations L = {l1, l2, 
...}. Since peers can join and leave the environment 
at any time, the unpredictable movement makes 
resources discovering a challenge. 

In this research services are the primary 
resource type concerned for the purpose of wire-
less service provision. A service is referred as 
the execution result of a service component of a 
peer. Let Srv be the set of all possible services. 
Discovery Agent is responsible for discovering the 
services conforming to the functionalities listed 
in a subtasks list [ts1, ts2, ts3, ..., tsN]. The service 
discovery function, lookup, of Discovery Agent 
is a mapping as follow:

lookup: Ts → ℘(L),

in which Discovery Agent gets relevant peer 
location information from Local Register. The 
detail of Local Register will be described later. 
The service acquirement function, acquire, is a 
mapping as follows:

acquire: Ts × L → Srv,

which attains a service (i.e., just a look-up) via a 
remote call to an external nearby peer. The service 
will subsequently be delivered to Composition 
Agent immediately.

Composition Agent

Composition Agent is responsible for managing 
the order of integration of the discovered services. 
It receives services acquired by Discovery Agent 
and integrates them into a composite service in 
a proper order. Like Sub-Tasking Agent, Com-
position Agent requires task-related knowledge 
to perform service composition. The composite 
service is represented by a set named CSrv of 
composite services. The service composition 
function, compose, is now a function

compose: ℘(Srv) → CSrv,

which produces an aggregate service from several 
pieces of input services.

Execution Agent

The Execution Agent as implied by its name is 
responsible for service execution. The process 
involves the FTM, which is the core of UbiSrvInt 
(and will be detailed in Section 3). If a peer plays 
the role of a service dispatcher as the peer B shown 
in Figure 2, it invokes Service Dispatcher to send 
a service component to peers (that fail indepen-
dently) and waits for the result. On the other hand, 
if the peer plays the role of a service component 
receiver (as any peer in the peer set Cs shown in 
Figure 2), it executes the assigned component and 
returns its result to the dispatcher peer. 
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Peers that receive the same component ex-
ecute works in parallel and return their results as 
soon as possible in order to save time. Because 
the receiver peers are failure independent to each 
other the dispatcher peer is supposed to get one 
result at least. The service provisioning function, 
provision, of the Execution Agent of receiver peers 
is a simple function 

provision: Ts → Srv,

which returns the execution result of a sub-
task as a service is sent to the one of dispatcher 
peers.

Fault-Tolerance Module

The Fault-Tolerance Module (FTM) is the core 
mechanism of our approach. The main idea of 
the module is inspired by Introspective Failure 
Analysis (Weatherspoon et. al., 2002), which pre-
sumed that the probability of a component failing 
is independent of the duration of the coordination 
in progress, that all components have an identical 
probability of failure, and that components fail 
independently. However, their assumptions cannot 
faithfully reflect the reality (i.e., failures are often 
correlated) and will be relaxed in this paper.

FTM is composed of four parts (as shown in 
Figure 5): (1) Local Registry keeps monitoring 
nearby peers in order to collect such information 
as peer locations, user characters, device brands 
and types, operating system types and releases, 
access control settings, etc. (2) Failure Correla-
tion Modeler draws upon peer user information 
of several failure dimensions to develop models 
that perform time-series prediction of the failure 
correlation among peer types. (A peer type is a 
tuple enumerating peer properties from three 
different dimensions including human sources, 
software version, and hardware environment. 
These dimensions directly affect the availability 
and reliability of a peer.) (3) Low-Failure Set 

Creator receives as input the failure correlation 
model from Failure Correlation Modeler and 
produces the dispatch sets (of mutually highly 
failure-uncorrelated peers) using the most recent 
peer list recorded by Local Registry. (4) Service 
Dispatcher is responsible for delegating a service 
request to each peer listed in the dispatch set 
and waits for signed acknowledgement. Service 
Dispatcher records experience about the process 
of coordination and supply this information to 
Failure Correlation Modeler so as to refine the 
failure correlation model.

The main idea behind FTM is exerting physical 
redundancy for fault tolerance and fulfilled by a 
replication mechanism that mainly comprises two 
tasks: (1) the determination of a number of peer 
candidates for duplicating a service (enabled by 
the parts of Local Registry, Failure Correlation 
Modeler and Low-Failure Set Creator) (2) the 
execution of the replication process (enabled by 
the part of Service Dispatcher). The details of 
FTM’s four main parts will then be detailed in 
Section 3.1-3.4. 

Local Registry

Local Registry is responsible for monitoring 
peers in the vicinity. The information collected 

Figure 5. Fault-tolerance module (FTM) archi-
tecture
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includes peer identity, user information, device 
brands and types, operating system types and 
releases, and access settings. We assume that the 
identities of nearby peers can be represented by 
a set PI of peer identity and the access settings 
of the peers can be represented by a set PA = {L, 
M, H}1 of peer access setting. Through a user’s 
access setting UbiSrvInt is able to know if a user 
is willingness level to host a specified function. 
Access settings are of three different levels: (1) 
low: willing to provide available services that 
it has on hand to the request peer automatically 
anytime; (2) medium: allowing only familiar or 
trusty peers to access the available services; (3) 
high: ignoring all requests the user has received 
and thus any forms of service provisioning are 
disabled.

Local Registry accordingly produces a list 
of nearby2 peers, which is represented by a set PL 
of all possible peer entries. The monitor function 
is formulated as follows:

monitor – vicinity: ℘(PI) × ℘(PT) × ℘(PA) → PL,

in which PT represents the peer type which is the 
combination of several peer attributes. The ideas 
of peer type will be introduced in the following 
sections.

Failure Correlation Modeler

Failure Correlation Modeler takes charge of 
building compact models in order to group highly 
correlated peers together. Evolution and sharing 
are the two distinctive properties:

•	 Evolution: It is imperative for failure correla-
tion models to learn, adapt and grow toward 
maturity in a kind of continuous fashion 
rather than merely a one-shot experience. 
Fortunately, continued on-line data stream 
perfectly plays as the training examples to 
evolve the failure correlation models over 
time. What remains to require is an incre-

mental on-line learning algorithm that can 
process the on-line data so as to develop and 
then evolve the failure correlation models 
incrementally. 

•	 Sharing: P2P communication enhances 
and glorifies the network effect through 
resources sharing. To make the best use of 
that, the models built by Failure Correlation 
Modeler is gifted with the feature of shar-
ing. The models are constantly evolving 
and conveying themselves between peers to 
achieve the objective of Semi-Global so as 
to enable effective service provision. More 
details will be described afterward.

To cope with the required evolutionary prop-
erty, the primary task of Failure Correlation 
Modeler is modeled as a time-series problem. The 
highly correlated peers exhibit similar temporal 
patterns scattering along various time frames. 
Hence similar series of input data that have a simi-
lar failure distribution will be clustered together. 
This time-series problem is then unfolded with the 
descriptions of its data sequence, pattern matching 
and clustering analysis as shown below.

Data Sequences

A task (service request) that has been assigned to a 
dispatched peer is called a mission. The charge of 
the dispatched peer is producing a service. Assum-
ing that the outcome o of a mission is represented 
by 0 or 1 where 0 and 1 represent the outcomes 
of success and failure respectively: 

0,
1,

success
o

failure


= 


A series of mission outcomes from a dispatched 
peer is regarded as an experience, which is the 
object of study addressing this problem. The time 
series data, experience, consist of a sequence of 
N observed pairs,
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Epeer ≡ (oi, ti), i = 1, 2, ..., N

where oi denotes the measured value of the mis-
sion outcome at time ti and E denotes the set of 
experience.

A peer has several experiences correspond-
ing to the number of the dispatched peers it has 
interacted. A peer classifies different experiences 
systematically according to different dispatched 
peers.

Sliding Windows

We divide the time period of the inputted time 
series data into fixed size units. In other words, 
a divided segment is an aggregate of successive 
time. Each segment could be visualized as a sliding 
window, whose size is twenty-four hours. We then 
subdivide the segment into smaller equal parts. 
Each divided equal part is called a time slot as 
shown in Figure 6.

For each time slot, we calculate failure prob-
ability in order to analyze failure correlation 
between different peers in different time periods. 
Supposed that the number of experiences (the 
number of outcomes) of each service request in a 
time slot is No, the failure probability of the time 
slot is then represented by P:

o

No

i
i

peer N

O
tfP

∑
=== 1)(
∑
=
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i
iO
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,

where ∑
=

oN

i
iO

1

 denotes the total number of the 

failure occurrences in experiences of a specific 
dispatched peer in the time slot. Thus, a failure 
curve can be derived through counting failure 
probabilities of each time slot within a same 
sliding window. For different dispatched peers, 
the corresponding failure curves are preserved 
for further analysis.

In this research we use a time scale of day in 
our analysis to predict the failure correlation. The 
time series data segmented by the time scale of 
day is called day-patterns, which is represented 
by a set DP of all possible day-patterns. UbiS-
rvInt preserves a day-pattern for each peer. The 
newly attained experience will be used to refine 
the original day-pattern into a more updated 
day-pattern. The simplest way to get the new 
day-pattern is to average the data. The function 
of refinement day-pattern, refine-day-pattern, is 
formulated as follows:

refine – day – pattern: E → DP

Enhanced Day-Pattern Matching

Data sequence matching finds those sequences 
that are similar to one other, which is useful for 
the analysis of failure correlation among peers. 
Accordingly, Fault-Correlation Modeler aims 
to locate peers that mutual correlated along the 
time axis. It is assumed that the fault-correlated 
peers have similar shapes of day-pattern in the 
space constructed by a vertical axle of failure 

Figure 6. Sliding windows
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probability and a transverse axle of time. The 
similarity matching is then performed by com-
puting the distance between sequences in the 
time domain. 

Unlike common distance measures (e.g., Eu-
clidian), a distance measure suitable for FTM has 
to be invariant of gaps, offsets and amplitudes. 
For instance, there are four day-patterns, A, B, 
C, and D shown in Figure 7. B and C as well as 
A and D exhibit the same tendency at the same 
time. Obviously, B has the higher failure correla-
tion with C than that with A or D although B is of 
the closest distance to A (instead of C). Therefore, 
an enhanced similarity search method (Agrawal 
et. al., 1995) is necessary for matching pairs of 
subsequences if they are of the same shape, but 
differ due to the presence of gaps (Figure 8(a)) 
within a sequence or differences in offsets (Figure 
8(b)) or amplitudes (Figure 8(c)).

Peer Types Grouping

Rather than analyzing failure correlations among 
peers in the real network environment, we pro-
file peer types that enable the analysis of a more 
abstract level. This is more tractable because it 
greatly reduces the number of targets needed to 
be analyzed and clustered. We divide all peers 
into several groups according to their major 
properties. Three dimensions of properties for 
grouping peers are employed (and we believe these 
properties are staple sources of failure): (1) User 
behavior: Mobile devices are easily damaged from 
rough usage of users. On the other hand, human 
characteristics are believed to influence a user’s 
behavior somehow. Therefore, it is possible that 
the characters of a user would correlate closely 
with the failure of her or his mobile device. Hence, 
we select user characters to be the first dimension 
of peer type, which includes constellation, blood 
type, age, sex and occupation, etc. (2) Software: 
Software is another factor causing failures. There 
are many kinds of software installed in a mobile 
device but the most likely reason for a system 

Figure 7. Example of day-patterns

Figure 8. Enhanced similarity

(a) Gap Existence

(c) Amplitude Difference

(b) Offset Difference
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to fail is always because of its operating system 
(OS). Therefore, we select OS names and ver-
sions to be the second dimension of peer type. (3) 
Hardware: No doubt a breakdown of hardware 
will definitely cause failures and interrupt service 
provisioning immediately. Equipment failure is 
the most basic one of our concerns. Accordingly, 
we select device brands and types to be the final 
dimension of peer type. 

The peer type can be represented as an attribute 
vector PT of the form as follows:

ℑ ≡ PT( fuser, fos, fdevice),

where fuser , fos , and fdevice denotes the values of 
nominal variables, user characters, OS types and 
releases, and device brands and types.

Clustering Analysis

The objective is to merge similar day-patterns 
of peer types into clusters. Supposing M denotes 
the number of peer types. For each peer type, 
its day-pattern is being collected continuously. 
Accordingly, M sequences of day-patterns are 
summarized and each day-pattern Pj ( j=1,2…,M) 
consists of a sequence of pairs shown below:

(pij, ti), i = 1, 2, ..., N, j = 1, 2, ..., M,

where pij denotes the failure probability of peer 
type j at time ti that has elapsed since midnight. 

The clustering process starts with computing 
the mutual distances between all day-patterns, 
and ends with a pre-defined number of clusters 
formed. The two day-patterns which are most 
similar will be merged to a new day pattern. Such 
merging process is repeated until a pre-defined 
number of clusters are generated. The final day-
patterns then become the clusters.

The distance measure employed should be 
invariant to offset and amplitude as addressed in 
Figure 8. Suppose that we have two day-patterns 
yi and zi, i = 1, …, N. Combining the root-mean-

square distance measure with offset translation 
and amplitude scaling, resulting in a distance 
normalization measure:
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which can aid clustering patterns of similar shapes. 
The higher the value of the measure is, the higher 
failure correlation the two day-patterns have. The 
function of the complete distance normalization 
measure, enhanced-distance-counting, is then 
formulated as follows:

enhanced – distance – counting: DPi × DPj → D,

in which D denotes the distance between pair of 
day-patterns.

A number of methods can be used in 
clustering day-patterns, such as local k-means 
clustering, evolving clustering method (ECM) 
(Song et. al., 2001), evolving self organizing maps 
(ESOMs) (Deng et. al., 2000), or any other incre-
mental distance-based clustering methods. The 
model produced by Failure Correlation Modeler 
is represented by a set M of all possible models. 
The incremental-online-clustering function is 
formulated as follows:

incremental – online – clustering: D → M.

Semi-Global

When a new peer connects to the wireless service 
network (e.g. a new PDA user), it can rely on the 
experiences of other peers in the vicinity so as to 
promptly accommodate itself to the unfamiliar 
environment. Even though at the commencement 
of the whole service network where peers have only 
few experiences, peers can still gather these few 
experiences together to constitute a more reliable 
model and share.
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Failure Correlation Modeler communicates with 
other ones so as to exchange models among peers. 
The collected models will be merged into a coherent 
model that will be then conveyed to other Failure 
Correlation Modelers. The nearby peers can share 
the Semi-Global models in order to build a more 
precise Low-Failure set and prevent failure.

Low-Failure Set Creator

Low-Failure Set Creator is responsible for creating 
dispatch sets grouping mutually highly failure 
uncorrelated peers together. The dispatch set 
is represented by a set PS of all possible peers. 
It uses the failure correlation models to choose 
several peer types that have the lowest probability 
of correlated failures. Subsequently, it attains 
a list of peers (registered in Local Registry) in 
which the most suitable peers for the chosen peer 
types can be selected. The set-creating function 
is formulated as follows:

set – creating: m × PL → PS.

Component Dispatcher

Component Dispatcher is in charge of delegating 
a specific service request to each peer listed in the 
dispatch set and waits for all acknowledgements 
from the service request receivers. If some of 
them are of no response, Component Dispatcher 
will send unacknowledged service request again 
to the other peers on the dispatch sets to ensure 
the dispatch is effective, realizing physical redun-
dancy of fault tolerance.

Algorithm 2. Local registry

function Local-Registry (pt, pi, pa) returns a peer list 
input:	  pt, the peer type
	  pi, identity of the peer
	 pa, access setting of the peer
static:	  pl, nearby peer list

pl ← Monitor-Vicinity(pt, pi, pa)
return pl

Algorithm 3. Failure correlation modeler

	 function Failure-Correlation-Modeler(e, pt) returns a model
	 input:	 pt, the peer type
		   e, the experience
	 static:	 d, the distance between two day-patterns
		   m, failure correlation model
		  dp, day-pattern of any peer type

	 dp←Refine-Day-Pattern(e)
	 for each peer type i do
		  for each other peer type j do
			   d←Enhanced-Distance-Counting(dpi, dpj)
		  end
	 end
	 m←Incremental-OnLine-Clustering(d)
return m
	 function Enhanced-Distance-Counting (ei, ej) returns a distance
	 input:	ei , the experience of peer type i
		  ej , the experience of peer type j
	 static:	 d, the distance between two day-patterns

	 for	 ei and ej do
		  e←Offset-Translation(e)
		  e←Amplitude-Scaling(e)
	 end
	 d←Distance-Counting(ei, ej)
	 return d

Algorithm 4. Low-failure set creator

function Low-Failure-Set-Creator (m, pl) returns a dispatch set
input:	m, failure correlation model
	 pl, nearby peer list
static:	ps, a set of mutual highly uncorrelated peer

for each peer on the peer list do
	 if the access control of the peer is low then
		  ps←Set-Creating(m, pl)
	 end
return ps

Algorithm 5. Component dispatcher

function Component-Dispatcher (ps) returns an experience
input:	 ps, a set of mutual low failure correlated peer
static:	 e, the experience
	 t, time
	 o, mission outcomes

	 for each peer set do
		  loop do
			W   akeup-Peer()
			W   aiting-Ack()
			   if get ack before timeout then
				    Dispatch-Component()
			   if the dispatch number > the minimum limit then exit 
		  end
	 end
	 while not timeout do
		  o ← Get-Outcome-Report()
		  t ← Get-Time()
	 loop
	 e ← Refine-Failure-Probability(o, t)
return e
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With the aforementioned descriptions of the 
FTM module, the overall processes of the module 
are then outlined by the following pseudo-codes 
(Algorithms 2-5).

Implementation

UbiSrvInt is implemented with the technology of 
JXTA (http://www.jxta.org) going with Personal 
Java that works for handheld devices such as iPAQ. 
JXTA is a modular platform that provides simple 
and essential building blocks for developing a wide 
range of distributed services and applications. 
Both centralized and de-centralized services can 
be developed on top of the JXTA platform. JXTA 
services can be implemented to interoperate with 
other services giving rise to new P2P applica-
tions. The overall operations of UbiSrvInt are to 
be depicted by a use case diagram and an activity 
diagram (represented in UML) as shown in the 
Appendix (Figure A1& A2).

Ontologies are also extensively utilized in 
UbiSrvInt for capturing myriad types of resources 
and knowledge (context information, user and 
device profiles, composition knowledge and rea-
soning rules). Resource Description Framework 

(RDF) / Resource Description Framework Schema 
(RDFS) is employed to represent the ontologies 
in order to preserve the semantics of the above-
mentioned resources. In our implementation Jena 
(http://www.hpl.hp.com/semweb/jena.htm), a 
full-featured Java API, is exerted to create and 
manipulate the RDF graphs required. 

For a better understanding of the aforemen-
tioned resources and knowledge, as follows are 
the exemplar representations employed in the 
parts of Reasoning Agent, Sub-Tasking Agent 
and Fault-Tolerance Module.

Reasoning Agent

In order to provide users with personalized and 
contextualized service, a user intention reasoner is 
implemented conforming to the BDI conception. 
The knowledge involved in the BDI reasoning 
includes user profile, context information, and 
reasoning rules (that are subsequently represented 
with RDF graphs3).

The resource, user, is shown as an ellipse and 
is identified by a Uniform Resource Identifier 
(URI), in Figure 9 “http://....../user”. Resources 
have several properties represented by arcs, 
labeled with the names of properties. There 

Figure 9. User profile in a RDF graph
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are eight properties in this case. The name of 
a property is also a URI, but as it is rather long 
and cumbersome, the following diagrams show it 
only in a brief form. A property is compound by 
two parts, a namespace prefix and a local name 
in the namespace. Every property has a value 
which is either a literal shown in each rectangle 

or a resource shown in each ellipse. RDF can take 
other resources as their value as the “interest” in 
this case for instance. Here we use a combina-
tion of two properties, NS0:verb and NS0:noun, 
to represent the structure of user’s preferences, 
“interest”.

Figure 10. Context information represented with a RDF graph

Figure 11. Reasoning rules in a RDF graph
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(<Verb> <Noun>)

Note that each property NS1:thing of resource 
“interest” is a blank node since it has no specific 
name. 

Ranganathan’s Context Model (Ranganathan 
et. al., 2003) is used to describe the context in-
formation captured from the surrounding of user. 
Each clausal model of context is presented in a 
tuple of the form: (<ContextType> <Subject> 
<Relater> <Object>) similar to English sentence. 
A simple exemplar is shown in Figure 10 in the 
format of RDF graph.

As to the BDI reasoning rules, the same ex-
pressions are used to represent the premises and 
conclusions of a single rule, which is exemplified 
as shown in Figure 11.

Sub-Tasking Agent

Subtask Agent decomposes a required service 
by user into several pieces of subtasks and then 
integrates the received pieces of services to fulfill 

this service request. The service, i.e. task, decom-
position knowledge used here is also described 
using RDF document.

RDF defines a special kind of resources for 
representing collections of things. These re-
sources are called containers. In Figure 12, we 
use a specific kind of container, BAG, to represent 
an unordered collection of the decomposition 
knowledge. In this case, the resources is named 
“http://....../knowhow”, having an rdf:type prop-
erty whose value is rdf:Bag, “http://......#Bag”. In 
this case, the two members of the bag are repre-
sented by the property NS0:task. The ordering of 
properties is not significant in a bag. Hence we 
could switch the values between two properties 
and the resulting graph would represent the same 
information.

Fault-Tolerance Module

Fault-Tolerance Module plays a critical role in 
service providing. It determines the dispatched 
peer lists by calculating the failure correlation 

Figure 12. Decomposition knowledge in a RDF graph
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between different peer types, thus to create low 
failure correlation peer sets for service dispatch-
ing. Peers are grouped into different peer types 
regarding three dimensions: user characters, OS 
name and version, and device brand and type. 
Again, the knowledge of user profile and handheld 
device profile are described and stored in RDF 
forms as shown in Figure 9 and Figure 13.

On the other hand, in Fault-Tolerance Mod-
ule we do not exert a sophisticated incremental 
clustering method since what we emphasis in the 
experiments is the fault-tolerance mechanism. A 
combination of the k-means clustering (Hartigan 
et. al., 1979) and a data compression technique 
(Chen et. al., 2004) is employed to effectuate the 
incremental clustering method. 

The objects of the clustering method are day-
patterns, and naturally are the targets of the data 
compression. The rationale of the data compres-
sion is simply to merge the experiences attained 
from outside into a compact data set, i.e. the day-
pattern model. By this way, the clustering time 
can be effectively shortened by restraining the 
size of primitive clustering data in preparation. 
Also, the features of data can be preserved in a 
good condition at the same time. The day-pattern 
model is learning and adapting itself over time to 
evolve toward maturity.

Evaluation Results

Owing to the limitation of space, in this chapter 
the evaluations of UbiSrvInt are two folds: fault 
tolerance and context awareness. In this section, 
the performance of UbiSrvInt on fault tolerance 
will be furnished. As to context awareness of 
UbiSrvInt, small demo scenarios (as shown in 
Section 5.4) are exerted to show the functionality 
of UbiSrvInt on context awareness (as the preci-
sion of the reasoning is completely dependant on 
domain-specific knowledge and thus it is negli-
gible to evaluate the reasoning precision). Those 
demo scenario depicts the vision of ad-hoc wire-
less service provision that provides personalized 
and contextualized tourist services according to 
a user’s profile and his/her surrounding context. 
For complete details of the demo scenarios, please 
see (Chen et. al., 2004).

Since UbiSrvInt is unique in its capability of 
fault tolerance (as far as as-hoc wireless service 
provision is concerned), this section aims to in-
vestigate if the idea of FTM is feasible in WP2P 
service sharing networks.

•	 We first need to justify that the benefit of 
the replication mechanism (physical redun-
dancy of fault tolerance) devised and pro-
vided by FTM is greater than the overhead 

Figure 13. Handheld device profile in a RDF graph
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it generates. We also need to find proper 
values of the replication factor (k – the 
dispatch number per request) to meet ac-
ceptable levels of availability and to avoid 
unnecessary high cost.

•	 We then examine if the Semi-Global mecha-
nism indeed brings into full play the synergy 
of experience sharing of peers and make 
a decisive contribution to the success of 
FTM.

For the aforementioned attempted investi-
gations, several metrics are exerted to measure 
the overall service performance and overhead of 
UbiSrvInt. Performance is measured by solvability 
and efficiency of services. Overhead is then mea-
sured primarily by load along three dimensions: 
network traffic, processing cost, and clustering 
cost. The detailed explanation and calculation of 
these metrics are shown below:

•	 Performance: Performance is generally 
regarded as the overall throughput of com-
pleted services that peers provide through 
time. A service is defined as a task, which 
can be decomposed into several subtasks, i.e. 
lightweight services. A service is considered 
successful only if it is through a complete 
successful process of discovery, execution 
and integration of all the subtasks. We look 
at throughput from two perspectives:
○	 Service Solvability is measured in the 

services success rate, which represents 
the effectiveness of the system. The 
success rate is defined as the percent-
age of successful services through 
time.

Service Solvability =

Cumulative number  
of successful services
Cumulative number  
of requested services

○	 Service Efficiency is measured in the 
reciprocal of the service response time 
per successful service. For a successful 
service, we define the service response 
time as the time between when a formal 
request message is sent and when the 
first reply message of the request is 
received.

Service Efficiency =

Cumulative number  
of successful services
∑(The time service 
received – The time 
service requested)

•	 Load: Load is conceptually regarded as the 
amount of efforts that peers must engage 
for attaining successful results. One factor 
concerned in load measurement in networks 
is the flow of messages exchanged. Besides, 
the processing cost of service requests and 
the processing cost of clustering analysis are 
also considered. In examining the amount 
of efforts that peers must engage for attain-
ing successful results, three perspectives 
are then unfolded to formulate the load 
measurements:
○	 Network traffic is measured by count-

ing the number of message sent by 
peers to the network. An overhead of 
network traffic incurred by peers with 
respect to the total resulting successful 
services is then defined as follows:

Relative Network 
Traffic  = 

Cumulative number  
of forwarded messages

Cumulative number  
of successful services

○	 Processing cost is conceptually 
measured in the number4 of subtasks 
executed by peers. An overhead of 
processing cost incurred by peers with 
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respect to the total resulting successful 
services is defined as follows:

Relative  
Processing Cost  = 

Cumulative number  
of executed subtasks
Cumulative number  

of successful services

○	 Clustering cost is measured by cal-
culating the total time spent on the 
core process of FTM, clustering 
analysis. An overhead of clustering 
cost incurred with respect to the total 
resulting successful services is defined 
as follows:

Relative  
Clustering Cost  = 

Cumulative time  
spent on clustering
Cumulative number  

of successful services

The remainder of this section is unfolded as 
follows: (1) We first describe the parameters of the 

experiment setting, followed by a description of 
the experiment process (Section 4.1) (2) The fea-
sibility analysis of FTM in UbiSrvInt is provided 
in Section 4.2. (3) The examination of the effect 
of the Semi-Global mechanism is then furnished 
in Section 4.3. Discussions of the performance of 
UbiSrvInt on fault tolerance will be then inter-
spersed in the respective subsections.

Experiment Settings

The performance of FTM is affected by a wide 
range of parameters. We divide these parameters 
into global parameters and local parameters. 
A quick look at these parameters is shown 
Table 1.

Global parameters describe the background 
of environment used for running several minia-
ture peers from a macro point of view. They are 
application dependent environment constants, 
which include the number of peers in the net-
work, the total number of unique services that 
can be provided in the network, and the average 

Table 1. Experimental parameters
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number of subtasks that must be done for a single 
service, etc.

On the other hand, local parameters are param-
eters specific to the functionalities of UbiSrvInt; 
the values of the parameters may differ from peer 
to peer. These parameters describe the behaviors 
of peer, which include the storage capacity of 
services for each peer, the average time to request 
for a service per peer, and the average time of 
failure and recovery of a peer, etc.

Due to space limitation, we only explain cer-
tain parameter value settings and their correlative 
assumptions in our experiments (for complete 
descriptions of the parameters, please see (Chen 
et. al., 2004)):

•	 The size of service space Sservice is set to 10. 
What we called a service space is a pre-ex-
isting collection of services allowing peer 
access. The services in the service space 
are all composed by several subtasks. We 
assume that the subtask number Nsubtask of a 
particular service follows a normal distri-
bution with a mean of 4 and variance of 1 
(without loss of generalization). To reduce 
the effect of uncertain variables, the level 
of hierarchical service decomposition is 
set to 1. Thus a service only needs to be 
decomposed once by the request peer. We 
assume that peer can get the decomposition 
knowledge from outside world entities, such 
as provisioning servers or other peers.

•	 The service capacity Scapacity denotes the 
number of subtasks a peer can provide. We 
assume that service capacity per peer follows 
a normal Distribution with a mean of 20 and 
variance of 4 (without loss of generalization) 
for simulating the actual environment where 
the variety of mobile devices influences its 
capability of providing service.

•	 As to the behavior of peers, we assume that 
each peer process service requests with an 
exponentially distributed rate λrequest of 0.2 
per minutes (without loss of generaliza-

tion). That is to say, the average elapsed 
time to generate a demand of a service per 
peer is 5 minutes. Each service request Ri, 
0 ≤ i < Sservice, is chosen uniformly at random 
inside the service space. Thus, with the size 
of service space, Sservice, of 10, the average 
choosing rate Rchoosing of a service request is 
0.1.

•	 We simulate the failure occurrence for each 
peer with λ. To complement, we also set a 
repair rate λrepair for a peer. Both rates are 
simulated according to exponential distri-
butions. We assume that each peer has a 
different failure rate λi, 0 ≤ i < Snetwork. Ac-
cordingly, we set a range corresponding to 
different peer types, where that top failure 
rates λmax may be different in different ex-
periments (denoting stability of ubiquitous 
service environments). The parameter λi is 
attained from the weighted effects of user 
characters, OS versions and releases, and 
device brands and types respectively as 
follow:

λi = λmax (wuser Euser + wos Eos + wdevice Edevice)

wuser + wos + wdevice = 1,0 ≤ Euser ≤ 1,0 ≤ Eos ≤ 1,0 
≤ Edevice ≤ 1

	 in which Euser denotes the user effect, Eos 
denotes the OS effect, and Edevice denotes the 
device effect. In the simulation, wuser, wos, 
and wdevice are set to 0.2, 0.3, 0.5 separately. 
As to the repair rate, the mean time is fixed 
to 0.5 minutes because we suppose that 
most mobile device have a speedy recovery 
capability.

•	 We assume that occurrences of events in the 
simulation are all Poisson processes, includ-
ing the arrival requests, unexpected failures 
and the corresponding repairs from failures. 
A Poisson process is characterized by its rate 
function λ(t), which is the expected number 
of “events” or “arrivals” that occur per unit 
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time. Poisson processes are of the charac-
teristics: (1) Orderliness: Events don’t occur 
simultaneously. (2) Memorylessness: Any 
event occurring after time t is independent 
of any event occurring before time t. The 
exponential distribution is generally used 
to model Poisson processes, where events 
occur with constant probabilities per unit. 
Particularly, failures in an electronic device 
are usually memoryless and hence are well 
modeled by an exponential distribution.

In the simulation, the experiments will be 
conducted several times with different setting of 
configurations, which are defined by a set of global 
and local parameters as shown in Table 1. Most 
experiments are conducted given a simulation 
time Tsimulation of 2 hours. In the experiments, we 
use the aforementioned metrics to evaluate the 
behavior of UbiSrvInt for a changing dispatch 
number (k), dynamic vs. stable environments, 
and with vs. without the Semi-Global mechanism 
respectively. 

The results of the experiments are primarily 
illustrated with cumulative time sequence dia-

grams. That is, for each metric we accumulate 
observed values over time, and mark it on diagram 
every 10 minutes to draw a curve so as to see how 
trend changes. In other words, each data point 
on the curve denotes an overall value of the time 
point labeled on x-axis.

Feasibility Analysis of FTM

Since FTM is exerting physical redundancy for 
fault tolerance, FTM first determines a number 
of peer candidates (the dispatch number k) for 
duplicating a service and then execute the rep-
lication process (dispatching the service to the 
peer candidates). This section aims to examine 
how the system behaves as the dispatch number 
k increases and then justifies the feasibility of 
FTM (i.e., to show the benefit is greater than the 
overhead).

Since a higher k value denotes the higher 
level of replication in the mechanism of FTM, 
the mechanism exists only when k is greater 
than one. In the first set of experiments, we inject 
failures into each peer with a failure rate per peer 
per minute of λi which ranges from 0 to 0.1, i.e. 
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Figure 14. Performance results in dynamic ubiquitous service environments
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Figure 15. Load in dynamic ubiquitous service environments
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Figure 16. Performance results in stable ubiquitous service environments
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Figure 17. Load in stable ubiquitous service environments
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λmax is set to 0.1 (characterizing a fairly dynamic 
ubiquitous service environment). Note that the 
actual λi of each peer depends on the peer type it 
belongs to. Each experiment is carried out with a 
different configuration of k value. In the second 
set of experiments, we then conduct a series of 
experiments resembling to the first set but under 
relatively stable environments, where λmax is 0.05. 
Accordingly the failure rate λi per peer per minute 
lies in the range [0, 0.05]. The first and second 
sets of experiments are both conducted with the 
existence of the Semi-Global mechanism.

The evaluation results can briefly be itemized 
as follows:

•	 Performance in dynamic ubiquitous ser-
vice environments (Figure 14):
○	 Service solvability:
	 —k=4 >> k=3 >> k=2 >> k=1 (The 

performance in service solvability 
grows in proportion to the magnitude 
of k.)

	 —k=4 >> k=1 (The final overall service 
solvability in k value of 4 is more than 1.45 
times higher than the one in k value of 1.) 

	 —k=4 >> k=1 (Under a total average 
of the final overall solvability of 0.3, 
the difference in proportion between 
both sides - k=4 and k=1 - is more than 
32%, which is highly significant)

	 Note: “>>” represents a relationship 
of outperforming (with respect to a 
designated metric or measurement) 
between two cases of experiments 
using two different replication factors 
(k).

○	 Service efficiency:
	 —k=3 >> (K=4  k=2  k=1) (In 

general, all curves are on the rise as 
the time passed by. At the ends of the 
experiments, the final overall service 
efficiency for all k values are almost 
equivalent except for the value of 3. It 
is apparent especially in k value of 4 

and k value of 1. As to the k value of 
3, it gains the distinctly highest final 
overall service efficiency of all).

	 Note: “” represents an indistinguishable 
relationship (with respect to a designated 
metric or measurement) between two cases 
of experiments using two different replica-
tion factors (k).

•	 Load in dynamic ubiquitous service en-
vironments (Figure 15):
○	 Relative network traffic:
	 —k=1 >> k=2  k=3  k=4 (In general, 

the relative network traffic curves are 
ordered in an inverse way against the 
service solvability curves. As the k 
value increases, the relative load came 
from network traffic goes down.)

	 —k=1 >> Average of k=2,3,4 (The 
overheads of the final overall relative 
network traffic in the experiments 
with replication mechanism are close 
eventually in the experiments, which 
are lower than the overhead in k = 1 
over 18%6 on average at the ends of 
the experiments.) 

○	 Relative processing cost:
	 —(k=4  k=3  k=2) >> K=1 (The 

overall relative processing cost has 
the lowest load when k value is set to 
1. Besides, the final loads are about 
the same when the other k values are 
set.)

	 —Average of k=2,3,4 >> k=1 for more 
than around 2 units of subtasks (The 
overhead of the overall relative pro-
cessing cost incurred - for k of values 
other than 1 - is only around 2 units of 
subtasks per successful service request 
at the ends of the experiments. This 
is considerably low in our simulation 
environment.)

○	 Relative clustering cost:
	 —The difference between different 

values of k is only few milliseconds, 
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which is quite slight. Accordingly, we 
can neglect the impact of the clustering 
overhead on performance.

•	 Performance in stable ubiquitous service 
environments (Figure 16):
○	 Service solvability:
	 —(K=4  k=2) >> k=3 >> k=1 (In 

general, the overall performance of 
FTM still far outperforms the one 
without the replication mechanism, 
i.e. k = 1. But the level of replication 
in FTM has relatively limited impact 
on the performance in comparison 
with that of a dynamic environment. 
The experiment using a k value of 4 
is still performs well above the others, 
but the difference between that using 
a k value of 2 is a nuance in the later 
half of the experimental durations. 
This might suggest a lower clustering 
number is good enough to maximum 
effect on the service efficiency and we 
will elaborate the discussion at the end 
of this section.)

	 —k=4 >> k=1 (The final overall service 
solvability in k value of 4 is around 1.7 
times higher than the one in k value 
of 1 at the ends of the experiments. 
Furthermore, the difference in propor-
tion between both sides - k=4 and k=1 
- has been raised up to around 46%.)

○	 Service efficiency:
	 —K=4 >> (k=3  k=2) >> k=1 (For 

growing the value of the dispatch 
number k, the performance of FTM 
is improved in terms of the absolute 
values of service efficiency throughout 
the simulation. The rationale is that 
less failure rates yield more dispatched 
peers contributing their provisions of 
subtasks and thus a request peer can 
acquire what it needs earlier from any 
one who is dispatched. The experiment 
using a k value of 4 then persistently 
has the best efficiency.)

	 —k=4 >> k=1 (The overall service 
response time per successful service 
request in k value of 4 is at least 12.5 
seconds faster than that in k value of 
1 in the durations which represent at 
about 100 minutes faster in reality.) 

•	 Load in stable ubiquitous service environ-
ments (Figure 17):
○	 Relative network traffic:
	 —K=3 >> k=1 >> k=4 >> k=2 (The 

overheads from network traffic under 
replication mechanism are relatively 
smaller than the one without replica-
tion mechanism in general, in spite of 
the different levels of replication.)

○	 Relative Processing Cost:
	 —K=4 >> k=3 >> k=2 >> k=1 (For 

higher values of the dispatch number 
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Figure 18. Summarized results of FTM’s feasibility
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k, FTM gains higher processing costs 
relatively.)

	 —Increase is around 1.36 units per up-
grading of k. (On average, the increase 
in the overall relative processing cost 
when upgrading a level of replication 
is around 1.36 units at the ends of the 
experiments. This is believed to be a 
reasonable tradeoff with processing 
cost for a higher efficiency.)

○	 Relative clustering cost:
	 —Differences are only few millisec-

onds. (The average cost is slightly 
higher than that of k value being 1, 
although not a significant difference 
with only few milliseconds apart.)

	 —Average of k=4,3,2 is around 0.0147 
seconds. (The costs for K being 4,3,2 
start from a higher value and drop 
significantly to an average value of 
0.0147 seconds per successful service 
at the ends of the experiments.)

From Figure 14-17, we can conclude the fol-
lowing observations (that subsequently justify the 
feasibility of FTM):

•	 Under dynamic environments: The feasi-
bility of FTM is very positive because of the 
much better performance and the relatively 
lower overheads. Moreover, it shows that 
the efficiency of k = 3 is apparently higher 
then the others as its solvability is not far 
from k = 4, and its relative overheads are 
close to the others. The clustering number, 
i.e. replication level, can best effect service 
solvability, as the linear trend on the final 
overall service solvability as shown in Figure 
18. This results from the fact that higher 
failure rates yield less peers accomplishing 
task correctly. Hence the increase of number 
of dispatched peers results in the higher 
service solvability. In the meanwhile, the 

relative processing cost does not distinctly 
increase as k value increases.

•	 Under stable environments: The feasibil-
ity of FTM is affirmed once again since the 
enormous performance gained is sufficient 
to counteract the overhead involved in pro-
cessing. The result in k = 2 is notable. We 
found that the solvability of k = 2 is almost 
as good as k = 4. And it has the lowest rela-
tive overhead of network traffic and a second 
lower relative processing cost (only slightly 
higher than k = 1). Moreover, dispatch 
number k best effects service efficiency, as 
the linear trend on the final overall service 
efficiency shown in Figure 18. The process-
ing cost increases as k value increases. This 
results from the fact that lower failure rates 
yield more peers performing task correctly. 
Hence, we can manipulate the clustering 
number to maximum effect on the service 
efficiency by far.

•	 To extend the meaning of the results attained 
from stable environments, the quality of the 
replication is more effective than its quantity 
when the clustering data is relatively rich in 
contents. In stable environments, the behav-
iors of peers are more unobvious in terms of 
failure occurrence. Hence, a coarser failure 
correlation clustering is sufficient to clas-
sify peers into proper clusters to facilitate 
the replication mechanism. By contrast to 
dynamic environments, the quality of the 
replication will be more effective than its 
quantity if and only if a refined clustering 
performs, that is, plenty clustering data in 
content involved.

The Effects of the Semi-Global 
Mechanism

In this set of experiments, we follow the same 
configuration settings used in the first set of 
experiments (Section 4.2), except that the ex-
periments are conducted without the Semi-Global 
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mechanism in order to examine its influence on 
FTM. For this reason, all the other parameters 
are set exactly the same: the top failure rate λmax 
is set to 0.1 and the dispatch number k varies 
from 1 to 4.

In these experiments, the cumulative time 
sequence diagrams of the evaluation metrics 
are not deployed here one by one since we only 
interested in the final overall effect of the Semi-
Global mechanism in this phase. Hence we only 
capture the final results obtained at the ends of 
the experiments, i.e. after 2 hours, to see the final 
overall performance and load in each experiment. 
And the experimental results are compared and 
illustrated with bar charts instead.

The evaluation results (as shown in Figure 19) 
can briefly be itemized as follows:

•	 Service solvability:
	 —Average of K=4,3,2,1 with Semi-Global is 

1.5 times more than that of no Semi-Global. 
(The mean of the final overall performances 
of service solvability in experiments with 
Semi-Global is around 1.5 times higher then 
the mean in experiments without Semi-
Global at the ends of the experiments.)

	 —k=3 with Semi-Global is 1.75 times better 
than that of no Semi-Global and it is 43% 
difference in proportion)

	 —k=4 with Semi-Global is 1.85 times better 
than that of no Semi-Global and it is 46% 
difference in proportion.

•	 Service efficiency:
	 —k=3 with Semi-Global is 35 seconds faster 

than that of no Semi-Global. (The experi-
ments with Semi-Global show the higher 
performance comprehensively in terms of 
service efficiency. Especially in the case of 
k = 3, the difference is about 35 seconds per 
successful service.)

Following the above experiment results, we 
can conclude the beneficial results of the Semi-
Global mechanism. The replication factor is 
ineffectual without the complement of the Semi-
Global mechanism. 

The Semi-Global mechanism improves the 
accuracy of clustering so as to find the most ap-
propriate peer candidates to dispatch subtasks and 
subsequently attain a better service performance. 
That is, by way of dispatching peers who have the 
lowest failure correlation from each other, service-
sharing system can achieve higher solvability and 
efficiency in general. In other words, this experi-
ence sharing of the Semi-Global mechanism (in 
combination with physical redundancy of the 
replication mechanism) empowers UbiSrvInt with 
a unique capability of fault tolerance for wireless 
service composition.
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Figure 19. The positive effects of the semi-global mechanism
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Possible Application Scenarios of 
UbiSrvInt on Context Awareness

As a result of the rising and the flourishing of 
tourism, enormous capital has been invested in the 
tourist industry. It is highly suitable to have tour-
ism applications implemented on a P2P platform 
because of the characteristic of mobile tourists 
longing for various information and services on 
the fly. It is highly valuable to tourists for tour-
ist services being personalized, contextualized 
and capable of providing immediate access in 
an ad-hoc wireless manner for tourists. From 
system perspective, they must be lightweight 
and reliable. Let us envisage a possible scenario 
set in the future.

For instance, Amy is visiting a museum in her 
sightseeing tour. Her personal digital assistant 
(PDA) on hand with wireless support automati-
cally downloads “visiting route” service provided 
by museum while she is buying an entrance 
ticket. On her way to museum lobby, her PDA 
broadcasts the requests for “tourist distribu-
tion”, “showroom information”, “floor map” and 
“Chinese translation” services to nearby tourists. 
In a short while, her PDA has already collected 
those services it needs to compose a personalized 
service for Amy.

Amy gets a “Chinese version of visiting route” 
service without manual operation. Amy follows 
the route showed on her PDA, noticing that there 
are some useful facilities marked on the route 
such as information desk and female washroom. 
Her PDA requires and collects “art introduction” 
automatically while she is entering a different 
showroom. That is, Amy can always get the right 
information at the right time whenever needed. 
Of course, if she likes, she can choose vocal in-
troductions rather than written ones.

The preceding scenario illustrates an ad-hoc 
wireless service provision providing personalized 
and contextualized tourist services according to 
Amy’s profile and surrounding context. Moreover, 
suppose that Amy goes into the second showroom, 

one of the peers that provide “painting location”, 
which is part of the “art introduction” service, is 
suddenly lost connection. The traditional fault-
tolerance solution to this problem is to search for 
a candidate to re-execute the failed subtask and 
then compose them again. By that time Amy may 
leaved the second showroom already. In a WP2P 
environment and such a time critical situation, 
the time redundancy solution is unreasonable. 
Exerting UbiSrvInt, the failure will be avoided 
by analyzing the dependability of peers as far as 
possible, therefore providing customized service 
without wasting any time.

Alternative application scenario utilizing 
the social contexts (retained in the profiles of the 
users and processed by the BDI reasoning agent) 
extends the application scope of UbiSrvInt a step 
deeper. As follows shows a simple demonstration 
of the application:

1.	 Amy is a visitor (whose handheld profile 
is shown in Figure 20) of a museum in her 
sightseeing tour.

2.	 During Amy’s visiting of the museum, the 
context information provided by museums 
provisioning server will be faithfully record-
ed and displayed on this Context Information 
Panel (as shown in Figure 21) to notify Amy. 
The Context Information Panel shows the 
current states of user’s surrounding.

3.	 The BDI Reasoning Agent then obtains 
Amy’s profile (as shown in the User Profile 
Setting Panel of Figure 20) and the context 
information (as shown in the Context Infor-
mation Panel of Figure 21) to infer Amy’s true 
intentions. The knowledge about reasoning 
rules can be downloaded from provisioning 
servers or nearby peers. And the results of 
reasoning will be presented in the Service 
Recommendation Panel for Amy’s reference. 
(The Service Recommendation Panel can be 
set to automatic or manual. User can either 
authorize system to automatically reason-
ing while new context information is newly 
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obtained, or choose a manual control to 
silence system when user needs undisturbed 
environments, such as during a meeting, 
taking a nap, etc.)

Figure 20. Handheld profile setting panel (Auto-
matic / Manual)

Figure 21. Context information panel (Automatic 
/ Manual)

Figure 22. Service recommendation panel (auto-
matic / manual)

4.	 Amy’s friend, Bob, makes an appointment 
with Amy in the museum, but he is late. 
Before Bob’s arrival, Amy takes the oppor-
tunity to browse the gift shop and choose a 
birthday present for Candy, her classmate, 
because this morning Amy got a memoran-
dum about Candy’s birthday party from the 
PDA. Amy also sends a digital post-card 
of Egyptian culture downloaded from the 
museum to Eva, her younger sister, who is 
a college student with a major in Archeol-
ogy with the recommendation of the BDI 
reasoning agent (shown in Figure 22). The 
social context information is also stored in 
Amy’s PDA in the format of tuples such 
as:

	 (<relationship> <Candy> <friend> <Amy>)
	 (<profile> < Candy > <born> <1977/5/20>)
	 (<relationship> <Eva> <sister> <Amy>)
	 (<profile> <Eva> <love> <Egyptian culture>)

5.	 After Bob arrives the museum, his PDA 
gets an official welcome message from the 
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provisioning server resident in the museum. 
The message may look like such a tuple: 
(<location> <user> <entering> <Palace 
Museum>). The Reasoning Agent in Bob’s 
system gets the newly arrival context in-
formation, thus starts the inference. The 
incoming context information is shown on 
the Context Information Panel. The agent 
notices that Bob is a Spaniard and has a date 
with Amy, thus sensibly guesses that Bob 
may need (i) a Spanish translation of the 
museum tour guide and museum catalogue 
and (ii) a note message to inform Amy that 
he has arrived. The two services will be 
then automatically shown on the Service 
Recommend Panel. If Bob dislikes that, he 
can manually stop it, otherwise the services 
will be provided after they are fulfilled. The 
fulfilled services will be also recorded on 
the Service Recommendation Panel for user 
reference.

Related Works

This section gives some exemplars of existing 
relevant works on the infrastructures of e-service 
provision emphasizing on either service integra-
tion or service adaptation or service replication. 
The works about service integration, in gen-
eral, rely on complied knowledge (e.g., process 
schema, process template, or state charts) in 
terms of (semi-)centralized architectures. On 
the other hand, the works for service adapta-
tion mostly are condition-based and those for 
service replication then quest for load balancing. 
UbiSrvInt is distinct from these works in service 
provision based on inference-based adaptation 
and fault-correlation-analysis service replication 
(in addition to UbiSrvInt being a pure peer-to-
peer approach). 

eFlow (Casati et. al., 2002) is a platform devel-
oped at HP Laboratories for specifying, enacting, 
and monitoring composite e-services in order to 

aid in e-commerce. In eFlow, a composite service 
is described as a process schema that composes 
other basic or composite services. A composite 
service is modeled by a flow structure, which 
defines the order of execution among the nodes 
in the process. The graph may include service, 
decision, and event nodes. Service nodes represent 
the invocation of a basic or composite service; 
decision nodes specify the alternatives and rules 
controlling the execution flow, while event nodes 
enable service processes to send and receive sev-
eral types of events. A service process instance 
is an enactment of a process schema enacted by 
the eFlow engine. 

The Ninja (Mao et. al., 2001) project aims to 
develop a software infrastructure to support the 
next generation of Internet-based applications. In 
the Ninja project, a dynamic service composition 
platform has been designed and implemented 
with the goals of automation, scalability and 
fault-tolerance through use of cluster computing 
platforms, identification of common patterns of 
ad-hoc, application-specific compositions, clas-
sification of services into a strongly typed system, 
redundant control mechanisms for monitoring and 
recovery, and a continuous optimization process 
with feedback. Central to the architecture is the 
concept of path. A path is a flow of Applica-
tion Data Units through multiple services and 
transformational operators across the wide area. 
A mechanism, Automatic Path Creation (APC) 
service, plays an essential role by seamlessly 
supporting any new communication device in 
the infrastructure.

A SELF-SERV platform (Benatallah et. al., 
2002) for rapid composition of Web services 
has been developed based on Java and XML, in 
which web services are declaratively composed, 
and the resulting composite services are executed 
in a P2P and dynamic environment. SELF-SERV 
employs a declarative language for composing 
services based on state charts which support the 
expression of control-flow dependencies such 
as branching, merging, concurrency, etc. A P2P 
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service execution model, whereby the responsibil-
ity of coordinating the execution of a composite 
service, is distributed across several peer software 
components called coordinators. They are in 
charge of initiating, controlling, monitoring the 
associated services, and collaborating with their 
peers to manage service execution. The knowledge 
required while composing services is statically 
extracted from the state chart and represented in 
a simple tabular form.

Anamika (Dipanjan et. al., 2002) is a reactive 
service composition architecture for pervasive 
computing environments that is implemented over 
Bluetooth. Central to Anamika is the concept of a 
distributed broker that can execute at any node in 
the environment. A broker may be selected based 
on various parameters such as resource capability, 
geometric topology of the nodes and proximity 
of the node to the services that are required to 
compose a particular request. The architecture 
primarily deals with the discovery, integration 
and execution of the components of a composite 
request. The architecture introduces two distributed 
reactive techniques to carry out service composi-
tion in purely ad-hoc environments: Dynamic 
Broker Selection Technique, Distributed Broker-
ing Technique. The former approach centers on a 
procedure of dynamically selecting a device to be 
a broker for a single request in the environment. 
And the latter approach distributes the brokering 
of a particular request to different entities in the 
system by determining their suitability to execute 
a part of the composite request.

PCAP (Sheng et. al., 2004) devises the design 
of a distributed, adaptive, and context-aware 
framework for personalized service composition 
in terms of users annotating existing process 
templates (leading to personalized service-based 
processes). Personalization is the like of execution 
constraints encompassing temporal and spatial 
constraints, which respectively indicate when 
and where the user wants to see a task executed. 
The execution policies include the service selec-

tion policy and the service migration policy. For 
a specific task, users can specify how to select a 
service for this task. The service can be a fixed 
one (the task always uses this service), or can be 
selected from a specific service community or a 
public directory (e.g., UDDI) based on certain 
criteria (e.g., location of the mobile user).

ServiceGlobe (Keidl et. al., 2003) presents a 
generic dispatcher in web service provision for 
the purpose of load balancing and high service 
availability in terms of automatic service repli-
cation. The dispatcher performs load balancing 
(or load sharing) using several servers on the 
back-end with identically mirrored content and a 
dispatching strategy like round robin using load 
information about the back-end servers. 

Conclusion Remarks

In this chapter, a novel pure P2P approach solution 
(UbiSrvInt) for ad-hoc wireless service provision 
is presented. UbiSrvInt is unique in its context 
awareness and fault tolerance (that are fulfilled 
by the approach’s components - Reasoning Agent 
and Fault-Tolerance Module - respectively). The 
aim of this chapter is to empower users with 
mobile wireless devices to access personalized 
and contextualized services composed within the 
reachable ad-hoc network of services in a pure 
Peer-to-Peer manner. Accordingly, we provide a 
general-purpose approach (UbiSrvInt) so as to 
facilitate the discovery, integration, and provision 
of a large cross-section of P2P mobile services. 
UbiSrvInt advances existing service provision 
infrastructures (centralized or mediator-based) 
by its capability in the removal of the bottlenecks 
of the centralized/mediator nodes (for reliability, 
scalability, extensibility, real-time information). 
Moreover, UbiSrvInt takes into account fault 
tolerance and context awareness (that are vital 
for attaining high usability of the approach for 
wireless service provision). As for the complex-
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ity of UbiSrvInt, it is still manageable because 
most of the computation exerted is fairly effective 
and with the Moore’s Law the power of mobile 
devices would be aggressively improved (in terms 
of the capabilities of computation and capacity) 
as time goes. 

The performance of UbiSrvInt on fault toler-
ance is three-fold: (1) Under unreliable environ-
ments, sufficient dispatch number (replication 
level) should be provided to seek for distinctly 
higher service solvability. (2) As to reliable 
environments, lower replication level is good 
enough to gain favorable solvability and replica-
tion level could be raised to seek for distinctly 
higher service efficiency (if the extra process 
cost is either unconcerned by or unaware to 
users). (3) For synergy of Semi-Global, in both 
kinds of environments Semi-Global should be 
enabled for complementing FTM so as to gain an 
overall higher performance in all aspects. As to 
the functionality of UbiSrvInt on context aware-
ness, it has also been justified through relevant 
scenario demos of UbiSrvInt. In short, through 
the experiments and evaluations7 UbiSrvInt is 
justified for its claimed distinctive features of 
context awareness and fault tolerance.

Our future work includes the application 
of the UbiSrvInt approach to myriad service 
domains (e.g., travel, learning, etc.) in order to 
attain domain dependent statistics (such as level 
of increased satisfaction, efficiency and activity 
volume). For FTM, certain further investigation 
can be conducted, such as granularity of time slots 
in a sliding window (the more exquisite the day-
patterns the more segmented time slots), varied 
experiment parameters (e.g., network size), and 
advanced adaptability through personalized rea-
soning rules about a desired balance of accuracy 
and efficiency. We hope our work can shed light 
on further advanced platform development for 
contextualized P2P mobile service provision.

Implications for U-Commerce

For u-commerce, the nature of services focuses on 
actively sensing different customer’s role through 
different specific contextual attributes (e.g., time, 
location, resources, customer profiles) (Fano 
et. al., 2002) in order to meet customers’ needs 
and change the interactions with the customers 
(Varshney et. al., 2000) in terms of dynamic 
configurations of services and devices. To support 
u-commerce and the services, the environment 
features the ubiquitous networks that are full 
convergence, technologically heterogeneous, 
geographically dispersed, context sensing, ar-
chitecturally flexible and without a centralized 
control mechanism (Banavar et. al., 2002). How-
ever, the ubiquitous networks, in reality, are not 
as reliable as the wired networks and thus the 
issue of fault tolerance has to be considered in 
addition to context awareness. To meet this end, 
this chapter provides an approach for P2P mobile 
service provision, which is not only robust to 
failure but also aware of the surrounding context 
in ubiquitous networks. In other words, the IT 
infrastructure required for u-commerce and the 
services, in nature, have some differences from 
those of traditional e-commerce or m-commerce 
in terms of the two kinds of supports required 
(fault tolerant and context awareness). On top of 
the needed infrastructure supports, the values 
of the u-commerce services could then be real-
ized to the fullest extent (together with different 
directions of exploration on customers’ needs in 
ubiquitous contexts). 
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Endnotes

1	 L, M, H respectively indicates low, medium 
and high in the willingness of a user to host 
a specified function.

2	 Peers of vicinity are referring to those 
mobile peers accessible through wireless 
communication (e.g., Bluetooth).

3	 RDF is best thought of in the form of node 
and arc diagrams.

4	 The number of subtasks is used to substi-
tute for the total time of subtask execution 
because the services in the simulation are 
“virtual” and doesn’t really be executed.

5	 The value of 1.4 is attained from dividing 
the best final overall solvability, i.e. k=4, by 
the worst final overall solvability, i.e. k=1. 
(0.337/0.241)

6	 The value of 18% is attained from dividing 
the difference between the highest final 
overall relative network traffic, i.e. k=1, 
and the average of the final overall relative 
network traffic of the others, i.e. k=2,3,4, 
by the highest final overall relative network 
traffic. ((133.5-108.9)/133.5)

7	 Since UbiSrvInt is the first pure P2P ap-
proach solution for ad-hoc wireless service 
composition, instead of providing bench-
mark evaluations this chapter aims for jus-
tifying the usefulness and the effectiveness 
of the approach proposed. The usefulness is 
originated from the nature of fault tolerance 
and context awareness for ad-hoc wireless 
service provision. The effectiveness sub-
sequently is confirmed from the feasibility 
affirmation of the Fault-Tolerance Module 
and the manifesting demo scenarios of 
Reasoning Agent.
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Appendix: UbiSrvInt’s use case diagram and activity diagram 
(represented in UML)

Lookup Local Services

Edit Personal Profile

Set Acess Control Level

User

Provide Context Information

Reason out Intention

<<include>>

Context Provider

Integrate Partial Services

<<extend>>

Create Dispatch Set

Decompose A Service

<<extend>>

Provide Service KnowledgeKnowledge 
Provider

Provider PeerLookup External Services

Request Peer

Delegate Service Request

<<extend>>

<<include>>

<<include>>

Figure A1. UbiSrvInt’s use case diagram
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Context Provider

Select Context 
Category

Revise Context 
Beliefs

[ category exist ]

Create new 
Category

[ else ]

Acquire current 
Context

User

Acquire 
Personal Profile

Input immediate 
Requirements

Reason out 
Demands

Chose Fesible 
Tasks

Form Formal 
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Request Peer

Decompose into 
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Check Available 
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[ else ]
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Dispatch Set
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Delegate 
Service Request

* for each peer

Wait for Executed 
Results

[ time out ][ else ]

Integrate Partial 
Services

[ receive all ]

[ else ]

[ have any ]

* for each task

Figure A2. UbiSrvInt’s activity diagram


