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Parallel Magnetic Resonance Imaging 
Acquisition and Reconstruction: 
Application to Functional and 
Spectroscopic Imaging in Human Brain
Fa-Hsuan Lin and Shang-Yueh Tsai 

 INTRODUCTION

Magnetic resonance imaging (MRI) has 
contributed significantly to modern cancer 
diagnosis and treatment planning because 
of its noninvasive nature, versatile image 
contrast, and high spatiotemporal resolu-
tion. For decades, the quest for higher 
sensitivity and greater spatial and/or tem-
poral resolution has been approached by 
means of increasing major field strengths, 
enhancing gradient performance, and 
improving radio frequency (RF) technol-
ogy. In this chapter, we present recent 
MRI advances that use an RF coil array 
to achieve “ parallel” data acquisition for 
higher spatiotemporal resolution.

In the context of cancer imaging, parallel 
MRI has immediate potential application 
to two long-standing challenges. First, in 
interventional MRI increased performance 
of real-time imaging is generally depend-
ent on high spatiotemporal resolution. 
Second, magnetic resonance spectroscopic 
imaging (MRSI) has been widely utilized 
for diagnosis and quantification of cancer. 
However, given that 2D or 3D imaging of 
MRS data has been hampered by lengthy 
data encoding time, it has been rendered 
less clinically feasible. With the aid of 

parallel MRI, the challenges of achieving 
high spatiotemporal resolution and data 
encoding time can be mitigated.

In the following sections, we will present 
the theory of parallel MRI data acquisition 
and associated reconstruction algorithms, 
followed by examples of applications 
of parallel MRI for functional MRI and 
MRS. Although we focus on the applica-
tions of parallel MRI for brain imaging, 
the general concept of parallel MRI can be 
adaptively extended to other organs and 
systems with appropriate modifications 
to the data acquisition system and image 
reconstruction algorithm.

 PRINCIPLES OF PARALLEL MRI

Parallel MRI is a recent advance in MRI 
technology that utilizes simultaneous data 
acquisitions from multiple RF coil receiv-
ers to improve the spatiotemporal resolu-
tion of imaging. The advantage of high 
signal-to-noise ratio (SNR) in phased array 
(Roemer et al. 1990), along with reduced 
k-space sampling schemes (Carlson and 
Minemura 1993) forms the core of parallel 
MRI. The idea of utilizing spatially vary-
ing sensitivity from different channels of 
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an RF array to reduce imaging encoding 
time was initially implemented in different 
imaging approaches (Hutchinson and Raff 
1988; Carlson and Minemura 1993; Ra 
and Rim 1993). Currently, there exist two 
major commercially available implemen-
tations of parallel MRI: the image space 
sensitivity encoding (SENSE) approach 
(Pruessmann et al. 1999), and the k-space 
spatial harmonics (SMASH) approach 
(Sodickson and Manning 1997), along with 
its derivative, generalized autocalibrat-
ing partial parallel acquisition (GRAPPA) 
(Griswold et al. 2002). Implementation 
of parallel MRI requires data from mul-
tiple RF coil receivers, each of which 
observes the spatial distribution of the 
imaged object’s spin density modulated by 
the coil sensitivity profile of the individual 
RF coil. The reduced k-space sampling in 
classical Fourier imaging produces aliased 
images in individual receivers. Given the 
coil sensitivity profiles from the RF array, 
we can unfold these aliased images.

Parallel MRI techniques can reduce scan 
time and thereby improve temporal resolu-
tion. Alternatively, parallel MRI can be 
used to increase the spatial resolution of an 
image within the same amount of acquisi-
tion time (Weiger et al. 2000). Additional 
benefits of the parallel MRI technique 
include lowered susceptibility artifact due 
to reduced read-out duration, decreased 
geometrical distortion due to increased 
phase-encoding bandwidth (Bammer et al. 
2001; Schmidt et al. 2005), and lower 
echo-planar imaging (EPI) acoustic noise 
due to reduced gradient switching (de 
Zwart et al. 2002c).

A major price for the above-mentioned 
advantages is decreased image SNR. The 
reduction in SNR arises from two sources: 
reduced number of data  samples, and 

 reconstruction instability due to  correlations 
in spatial information, as determined by 
the geometrical arrangement of the array 
coil. The first of these disadvantages is an 
inevitable result of reducing the number of 
samples. The second disadvantage might 
be addressed by optimizing coil geometry 
(de Zwart et al. 2002a) or by improving 
the stability of the reconstruction algorithm 
(Lin et al. 2004). Increased noise originat-
ing from correlated spatial information 
from the array elements can be estimated 
from the array geometry and quantified by 
the geometric factor map (g-factor map) 
(Pruessmann et al. 1999).

In practice, parallel MRI can be divided 
into two parts: data acquisition and image 
reconstruction. In data acquisition, the 
goal is to optimize the k-space travers-
ing trajectory in order to achieve desired 
spatiotemporal resolution. In image recon-
struction, the goal is to utilize the informa-
tion available in an RF array to reconstruct 
high spatiotemporal resolution images with 
minimal aliasing artifact resulting from the 
Nyquist sampling theorem.

 PARALLEL MRI ACQUISITIONS

The time required to traverse the k-space is 
closely related to total data acquisition time 
in traditional MRI. The purpose of paral-
lel MRI is to avoid “full” sampling of the 
k-space by skipping certain data collection 
points. The skipped k-space data produce 
aliased images, as predicted by the Nyquist 
sampling theorem. Using information from 
all channels in the RF coil array, the 
skipped data can be numerically interpo-
lated from sampled data to restore full field-
of-view (FOV) images without aliasing 
artifacts. Typically, in rectilinear Cartesian 
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 coordinates, parallel MRI skips data in the 
phase-encoding direction; skipping data in 
the frequency-encoding direction saves lit-
tle data acquisition time because the dura-
tion of the frequency-encoding gradient is 
the same regardless of whether sampling 
is full or skipped. Parallel MRI acquisi-
tion with skipped phase encoding data 
can reduce data acquisition time and thus 
improve temporal resolution. The benefit 
of skipping data collection in the phase 
encoding direction can also be translated 
to higher bandwidth and less geometrical 
distortion (Bammer et al. 2001; Schmidt 
et al. 2005).

In rectilinear Cartesian coordinates, 
implementing parallel MRI acquisition 
can be easily achieved by increasing the 
step size in the phase-encoding direction. 
The EPI trajectory is therefore similar to 
that of segmented EPI (McKinnon 1993). 
Reconstruction of individual EPI segments 
from all array elements renders itself as 
parallel MRI. When using non-Cartesian 
sampling such as spiral imaging, paral-
lel MRI acquisition can be implemented 
by reducing the number of spiral arms to 
cover the k-space. These 2D  sampling tra-
jectories can be extended to 3D, which has 
two phase-encoding directions in Cartesian 
sampling. Parallel MRI can reduce sam-
pling in both phase-encoding directions 
by using complimentary information from 
array elements to reconstruct images with-
out aliasing artifacts (Weiger et al. 2002a). 
Optimization of data acquisition schemes 
in parallel MRI can also be combined with 
RF modulation to control spatial aliasing 
in accelerated acquisition, and thereby 
improve reconstruction quality (Breuer 
et al. 2005a).

The capability for improving temporal 
resolution makes parallel MRI an appealing 

data acquisition approach. When applied 
to dynamic scans, where imaging planes 
or volumes are repeated, parallel MRI 
data acquisition can be further optimized 
by taking both k-space and time domain 
into consideration. For example, TSENSE 
(Kellman et al. 2001) utilizes interleaved 
segmented EPI acquisition, each segment 
of which can later be reconstructed from 
an aliased image to a full-FOV image. 
This approach can be further combined 
with a time-domain filtering method, such 
as UNFOLD (Madore et al. 1999), to 
further improve the temporal resolution 
of dynamic scanning (Tsao et al. 2003). 
Similar to TSENSE, which uses SENSE as 
the reconstruction kernel, the same time-
interleaved k-space sampling was used in 
the implementation of TGRAPPA, which 
uses GRAPPA as the reconstruction kernel 
(Breuer et al. 2005b).

In parallel MRI, sensitivity maps for all 
channels in the coil array critically deter-
mine the quality of the reconstructed image. 
Traditionally, a separate scan is required 
to estimate coil maps (Pruessmann et al. 
1999). Because coil maps vary smoothly 
over the FOV in most cases, low spatial res-
olution scans usually are adequate to serve 
this purpose. Low spatial resolution in coil 
sensitivity maps inspired the integration 
of data collection for coil map estimation 
into the accelerated parallel MRI acquisi-
tion; accelerated scanning is achieved by 
skipping data with high spatial frequency 
while at the same time maintaining full 
sampling around the center of the k-space 
for coil map estimation. This method 
is called “auto-calibration” because in 
single acquisition such data potentially 
contain both coil map information and 
the image to be reconstructed. And it 
was used in SMASH (Jakob et al. 1998), 
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SENSE (Madore 2004), and GRAPPA 
implementations (Griswold et al. 2002). 
Different from rectilinear Cartesian trajec-
tory sampling, non-Cartesian sampling 
using a spiral trajectory is intrinsically 
self-calibrated. This means that the dense 
sampling around the center of k-space in 
spiral trajectory can be used as the coil 
sensitivity maps required in parallel MRI 
reconstruction. Methods have been pro-
posed to utilize the more densely sampled 
central part of the k-space to extract coil 
maps for improved reconstructions (Yeh 
et al. 2005a; Heberlein and Hu 2006).

 PARALLEL MRI 
RECONSTRUCTIONS

The goal of reconstructing parallel MRI 
data is to remove aliasing artifacts using 
coil sensitivity information and observa-
tions from multiple channels in a coil array. 
Currently, there are two prevailing major 
variants of reconstruction algorithms: the 
k-space-based SMASH/GRAPPA method 
(Sodickson and Manning 1997; Griswold 
et al. 2002) and the image domain SENSE 
method (Pruessmann et al. 1999). In prac-
tice, image reconstruction can be divided 
into three stages: The first stage is prepara-
tion of parallel MRI reconstruction, which 
includes quantification of array coil per-
formance, coil map estimation, and pre-
processing of accelerated data. The second 
stage is reconstruction of the full-FOV 
image from under-sampled k-space data. 
The third stage is combination of recon-
structed images for final presentation.

In the first stage, it is typically desirable to 
quantify the correlation between channels 
in an RF coil array. Correlated information 
between array channels causes redundant 
observations from different channels. And 

it may thus degrade the quality of recon-
structed image, because of insufficient 
independent information to remove alias-
ing. Correlations between channels in an 
array may be due to imperfection of coil 
fabrication, such as common mode signal 
or electromagnetic coupling. Typically, 
we can quantify the correlation among 
channels of an RF coil array by the noise 
covariance matrix, which can be estimated 
experimentally by turning off RF excita-
tion while turning on data acquisition for 
a period of time (Pruessmann et al. 1999). 
The noise covariance matrix can thus 
be calculated using the time series from 
all channels, and its structure indicates 
the correlation between channels. Ideally, 
we expect minimal correlation among 
channels, corresponding to a noise cov-
ariance matrix with minimal off-diagonal 
entries. A large off-diagonal entry implies 
that information between two channels is 
highly correlated, and thus the information 
from these two corresponding channels 
may be redundant. Given a quantitative 
noise covariance matrix, we can “whiten” 
the parallel MRI acquisition to balance the 
independent information between chan-
nels in a coil array.

The other essential part of preparing par-
allel MRI data reconstruction is coil sen-
sitivity map estimation. Using a separate 
sensitivity map scan, we may apply either 
local polynomial fitting (Pruessmann 
et al. 1999) or novel wavelet filtering 
(Lin et al. 2003) to estimate coil maps. 
However, estimation of coil maps can be 
avoided if the in vivo sensitivity method 
is employed (Sodickson 2000). Unlike 
traditional SENSE/SMASH reconstruc-
tions, the in vivo sensitivity method esti-
mates the ratio of the spin density in the 
accelerated scan over that in the full-FOV 
reference scan. Restoration of the final 
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reconstructed image from the estimated 
full-FOV spin density ratio requires a mul-
tiplication operation. The estimated spin 
density ratio must multiply the coil sensi-
tivity maps, which are full-FOV reference 
images themselves, to obtain coil-by-coil 
reconstructed images. The benefit of the 
in vivo sensitivity is that it requires no coil 
sensitivity map estimation; thus making 
it possible to avoid errors associated with 
misspecification of coil maps. However, 
ill conditioning at pixels, where the ratio 
between accelerated and unaccelerated 
scans is not defined, also limits the ability 
of the in vivo sensitivity method. Similarly, 
GRAPPA reconstruction (Griswold et al. 
2002) also does not require explicit coil 
map estimation. In GRAPPA, coil map 
information is embedded in auto-cali-
bration scans (ACS), which are usually 
k-space samples around the center of the 
k-space satisfying the Nyquist sampling 
theorem. The purpose of ACS is to sam-
ple some k-space data, which would be 
avoided in the accelerated scan, in order to 
estimate the parallel MRI reconstruction 
coefficients. This auto-calibration tech-
nique has also been employed in spiral 
trajectory MRI (Yeh et al. 2005b).

The core of parallel MRI employs under-
sampled data from multiple channels in 
an RF coil array and coil map informa-
tion to restore full-FOV images. Usually, 
due to the computational efficiency of 
an analytical solution, such restoration 
is done by linear (weighted) least square 
fitting (Sodickson and Manning 1997; 
Pruessmann et al. 1999). Mathematically, 
the least square fitting solution corre-
sponds to an optimization problem with a 
cost function defined as the L-2 norm of 
the model error, the discrepancy between 
actually observed accelerated data and 
model-predicted data, for all channels in a 

coil array. To further improve the stability 
of parallel MRI reconstructions, Tikhonov 
regularization framework (Tikhonov and 
Arsenin 1977) has recently has shown 
to be effective for incorporating spatial 
prior in the cost function to reduce noise 
amplification arising from the “unfold-
ing” process of aliased matrix (Lin et al. 
2004). Given appropriate regularization 
parameters, prior regularized parallel MRI 
reconstructions show improved stability in 
both structural and functional MRI (Lin 
et al. 2004, 2005).

Typically with Cartesian sampling, 
parallel MRI data reconstruction can be 
separated into many small linear sys-
tems, each of which consists of aliasing 
pixels in the final reconstructed image. 
Such reconstruction is possible because 
the point-spread function derived from 
the k-space sampling pattern separates the 
reconstruction into many decoupled linear 
systems. However, for non-Cartesian sam-
pling methods, such as spiral imaging, we 
cannot separate reconstruction into many 
smaller linear systems. Instead, we must 
directly solve a huge linear equation of 
size n2-by- n2, where n2 is the number of 
voxels in the whole 2D image. An iterative 
solver using a Conjugated-Gradient (CG) 
algorithm has been proposed to address 
this issue (Pruessmann et al. 2001).

Finally, reconstruction of parallel MRI 
may involve strategies to combine the esti-
mated spin distribution from all channels 
in the array. Using SENSE reconstruction, 
this process is implicitly implemented dur-
ing image reconstruction using coil sensi-
tivity as the weighting function to produce 
a final composite image. In SMASH/
GRAPPA imaging, alternatives to com-
bining different channels in the array 
after parallel MRI reconstruction have 
been proposed, including direct  averaging, 
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matched filter combination, and sum-
of-squares combination (McKenzie et al. 
2001; Griswold et al. 2002).

 MATHEMATICAL 
FORMULATION

Formation of aliased images from multiple 
receivers in parallel MRI can be formu-
lated as a linear operation to “fold” the 
full-FOV spin density images (Sodickson 
and McKenzie 2001).

  (20.1)

Here y  is the vector formed from the 
pixel intensities recorded by each receiver 
(folded image) and 


x is the vector formed 

from the full FOV image. The encoding 
matrix A consists of the product of the 
aliasing operation due to k-space data 
sub-sampling and modulation of coil-
specific sensitivity over the image. The 
goal of image reconstruction is to solve 
for x


 given our knowledge of A derived 
from understanding the folding process 
and an estimate of the coil sensitivity 
maps. Whereas Eq. 20.1 is expressed 
in the image domain SENSE approach 
(Pruessmann et al. 1999), similar linear 
relationships are formed in the k-space-
based SMASH (Sodickson and Manning 
1997) method. Furthermore, the same 
basic formulation is used in either the 
in vivo sensitivity method (Sodickson 
2000), or the conventional SENSE/
SMASH methods requiring coil sensitiv-
ity estimation. In general, Eq. 20.1 is an 
over-determined linear system, i.e., the 
number of array coils, which is the row 
dimension of y


, exceeds the number of 

pixels that folds into the measured pixel; 
the row dimension of x


.

To solve for x


 (the full FOV image), the 
over-determined matrix is inverted utiliz-
ing least-square estimation (Pruessmann 
et al. 1999).

  
(20.2)

where the H superscript denotes the trans-
posed complex conjugate and Y is the 
receiver noise covariance (Pruessmann 
et al. 1999). When Y is positive semi-
definite, the eigen decomposition of the 
receiver noise covariance (L and V) leads 
to the unfolding matrix, U, using the whit-
ened aliasing operator A  and the whitened 
observation y . Whitening of the aliasing 
operator will be used in the regularization 
formulation introduced in the next section.

  

(20.3)

Whitening incorporates the receiver noise 
covariance matrix implicitly allowing 
optimal SNR reconstruction within the 
regularization formulation. The noise sen-
sitivity of the parallel imaging reconstruc-
tion is thus quantified by amplification of 
the noise power that results from the array 
geometry. This g-factor is thus written 
(Pruessmann et al. 1999)
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The subscript r indicates the voxels to 
be “unfolded” in the full FOV image, and 
X denotes the covariance of the recon-
struction image vector x


. Here R denotes 

the factor by which the number of samples 
is reduced (the acceleration rate).

Tikhonov regularization (Tikhonov and 
Arsenin 1977) provides a framework to 
stabilize the solution of an ill-conditioned 
linear equation. Using Tikhonov regu-
larization, the solution of Eq. 20.1 can be 
written as

   

(20.5)

Here l2 is the regularization parameter. L 
is a positive semi-definite linear transfor-
mation, 0x


 denotes the prior information 

about the solution x
 , and 2|| • ||  repre-

sents the L-2 norm. The second term in 
Eq. 20.5, defined as the prior error, is the 
deviation of the solution image from the 
prior knowledge. The first term, defined 
as the model error, represents the devia-
tion of the observed aliased image from 
the model observation, which is a folded 
version solution image. The regularization 
parameter determines the relative weights 
with which these two estimates of error 
combine to form a cost function.

Consider the extreme case when l2 is 
zero and we attempt to minimize only the 
first term – a calculation that is equivalent 
to solving the original equation, xy A= 

, 
without conditioning (conventional SENSE 
reconstruction). On the other extreme, 
when l2 is large, the solution will dupli-
cate of the prior information 0x


. Thus, 

the regularization parameter l2 quanti-
fies the trade-off between model error 
and prior error. An appropriate chosen l2 

(regularization) decreases the otherwise 
complete dependency on the whitened model 
( A ) and the whitened observation ( y ), to 
 constrain the solution to within a reason-
able “distance” from the prior knowledge 
( 0x


). Thus regularization increases the 
influence of prior knowledge full FOV 
image information during parallel MRI 
reconstruction.

Given the regularization parameter l2 and 
defining L as an identity matrix, the solu-
tion of Eq. 20.4 is written (Hansen 1998):

  

(20.6)

Here ju


, jυ


, and sjj are the left singular 
vector, right singular vector and singular 
value of A , respectively, generated by sin-
gular value decomposition (SVD); singu-
lar values and vectors are indexed by j. 
This calculation leads to the following 
matrix representations:

  

(20.7)

Using regularization and Eq. 20.4, the 
ratio of the noise levels between the regu-
larized parallel MRI reconstruction and 
the original full FOV image normalized by 
the factor of acceleration yields the local 
geometry factor for noise amplification.
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  (20.8)

Inside the square root of Eq. 20.8, the first 
square bracket term denotes the variance 
of unfolding using regularization from 
Eq. 20.7; the second square bracket term 
denotes the variance of the full FOV refer-
ence image.

 APPLICATION – SENSE HUMAN 
BRAIN FUNCTIONAL 
MAGNETIC RESONANCE 
IMAGING

Applications of parallel MRI acquisi-
tion protocols for fMRI experiments have 
been reported by different groups, which 
used either the PRESTO sequence (Golay 
et al. 2000) or the gradient-echo EPI 
sequence (de Zwart et al. 2002b; Weiger 
et al. 2002b; Preibisch et al. 2003). The 
rationale for using parallel MRI is that 
fMRI data acquisition protocol focuses 
on enhancement of spatiotemporal reso-
lution due to reduced k-space traversing 
time. At high field (³3T) scanners, T2* 
relaxation time of human gray matter may 
be less than 30 ms in areas that exhibit 
pronounced field inhomogeneities (Barth 
et al. 1999). Traditionally such a short T2* 
made single-shot EPI intractable for suf-
ficient spatiotemporal resolution because 
the data acquisition time was insufficient 
to traverse the entire k-space. With parallel 
imaging, the time needed to traverse the 
k-space is reduced by means of mathemat-
ically “unfolding” the aliased images from 
individual receivers in the array. Reduced 
k-space traversing time also benefits the 
reduction of susceptibility artifacts and 

geometrical distortion originating from 
local magnetic field inhomogeneity. This 
is because the shortened readout time for 
data acquisition contributes to reduced 
local spin dephasing within individual vox-
els and produces higher bandwidth in the 
phase-encoding direction. Another signifi-
cance of utilizing SENSE as the fMRI data 
acquisition protocol at high fields includes 
lowered acoustic noise owing to gradient 
switching for complete k-space trajectory 
traversing (de Zwart et al. 2002c).

Echo-planar imaging (EPI) is the most 
popular functional MRI acquisition proto-
col for capturing T2*-weighted image con-
trast derived from intrinsic hemoglobin, 
which can infer local neural activity. Here 
we demonstrate the effect of reduced EPI 
distortion with GRAPPA-reconstructed 
EPI on a 3T scanner (Siemens Medical 
Solution, Erlangen, Germany) equipped 
with an eight-channel head phased array 
coil (Figure 20.1). The imaging parameters 
are: FOV = 200 mm, TR/TE = 2,000/30 ms, 
Flip angle = 90°, slice thickness = 3 mm, 
bandwidth = 1,440 Hz. Note that image 
distortion around the frontal and temporal 
lobes was improved using GRAPPA imag-
ing. Regularization can also suppress noise 
at the center of the reconstructed image, 
compared to unregularized reconstruction 
in the same acceleration rate.

To further demonstrate how EPI with 
reguarlized parallel MRI reconstruction 
can be applied to human brain fMRI 
experiments, we collected a set of blocked-
design visual fMRI data from a 3T scanner 
equipped with an eight-channel phased 
array coil. And subsequently SENSE recon-
structions were performed. We recruited 
one healthy subject for the study after 
receiving approval from the Institutional 
Review Board and obtaining the subject’s 

rr rr rr= Γ2 2[( )] [( )]H Hg V V VS V
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informed consent. A checkerboard visual 
stimulus, designed to display either con-
tinuous flashing checkerboards at 4 Hz 
(the “on” condition), or fixation (the “off” 
condition), was presented to the subject. 
Three “off” conditions and two “on” con-
ditions of seconds each were alternately 
presented, starting with the “off” condi-
tion. We used a 2D EPI sequence with the 
parameters: TR = 2,000 ms, TE = 50 ms, 
flip angle = 90°, slice thickness = 5 mm 
with 0.5 mm gap, 14 slices, FOV = 200 
× 200 mm, image matrix = 128 × 128 for 
image acquisition. We collected three-
segment EPI data (20 volumes in compo-
sition reconstruction, with eight “on” and 
12 “off” conditions; ten dummy scans) 

and four-segment EPI data (15 volumes in 
composition reconstruction with six “on” 
and nine “off” conditions; ten dummy 
scans). Phase encoding was in the anterior-
posterior direction. We used the in vivo 
sensitivity method to reconstruct acceler-
ated images and thus avoid misestimating 
the coil sensitivity maps. We also acquired 
the full FOV spatial prior required for 
regularized reconstruction by temporal 
collapsing EPI segments using inter-
leaved segmented EPI (Lin et al. 2005). 
Figure 20.2a shows the t statistics maps 
of the 3T visual fMRI experiment using 
SENSE EPI both with and without regu-
larization at three- and four-fold accelera-
tions. At three-fold SENSE acceleration, 

Figure 20.1. Compared to non-accelerated reconstruction (R = 1) with 6/8 partial Fourier (PF) sampling, 
GRAPPA EPI reconstructions at 2X (R = 2) and 4X (R = 4) accelerations show decreased distortion 
around the temporal and frontal lobes, where susceptibility and B0 inhomogeneity is strong. At the same 
acceleration rate, regularized (reg.) reconstructions show less noise amplification than unregularized 
(unreg.) reconstructions, particularly around the center of the brain
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regularized reconstructions yielded larger 
activated functional areas than unregular-
ized reconstructions around the occipital 
lobe (regularized: 2,327 mm2; unregular-
ized: 2,139 mm2). A similar increase in 
sensitivity by regularization was also 
observed in the four-fold SENSE accelera-
tion (regularized: 896 mm2; unregularized: 
735 mm2).

Figure 20.2b shows the three regions 
aliased with three-fold acceleration. One 
of the aliased regions shown here is visual 
cortex region, highlighted in yellow. The 
corresponding time courses of all three ali-
ased regions are depicted in Figure 20.2c. 
Note that only the activated visual cor-
tex region exhibited a time course that 
matched to the stimulus paradigm. The 

other two aliased regions showed either 
low BOLD contrasts in all conditions or 
a time course mismatched to the stimulus 
paradigm. We have previously reported 
more detailed Monte Carlo simulations on 
the improvement of the stability of SENSE 
EPI reconstructions (Lin et al. 2005).

Here we demonstrated the benefits of 
parallel MRI to reduce distortion artifact. 
Spatial prior can also be incorporated 
to regularize reconstructions for suppres-
sion of noise levels introduced in paral-
lel MRI reconstructions during dynamic 
fMRI scan. Further improvement of paral-
lel MRI reconstruction can potentially be 
accomplished by using a large-N coil array 
and optimizing the k-space trajectory for 
accelerated scans.

Figure 20.2. (a) The t statistics maps calculated from 3X and 4X SENSE reconstructions. (b) EPI image 
depicting the three aliased regions with 3X acceleration. One of the aliased regions, highlighted in yellow, 
is the visual cortex. (c) The time courses of the three aliased regions. Note that only the time course from 
the visual cortex corresponded well to the stimulus paradigm
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 APPLICATION – SENSE 
PROTON SPECTROSCOPIC 
IMAGING

In vivo magnetic resonance spectroscopy 
(MRS) and magnetic resonance spectro-
scopic imaging (MRSI) have been used for 
almost 3 decades to measure possible prog-
nostic or diagnostic markers in living tissue 
(Gillies and Morse 2005). The former has 
been suggested as a clinical tool for cancer 
in various regions of the body (Beloueche-
Babari et al. 2005) and is a primary focus 
for applications in brain cancer (Preul 
et al. 1996). The major goals of MRS stud-
ies for applications in cancer diagnosis and 
treatment planning are to identify types 
and grades of cerebral neoplasm (Del Sole 
et al. 2001). Because MRS is sensitive to 
alterations in the chemical signals of vari-
ous metabolites including choline (Cho), 
creatine (Cr), lactate, myoinositol, and 
N-acetyl-aspartate (NAA), MRS technol-
ogy can help clinicians evaluate brain 
tumors and neoplasm metabolic states. 
The most frequently observed biomark-
ers of brain tumors include decreases in 
choline and lactate and increases in NAA. 
Magnetic resonance spectroscopic imag-
ing (MRSI) techniques allow metabolic 
“images” to be obtained throughout the 
volume of interest with a single measure-
ment (Brown et al. 1982), but are often 
limited by long echo times to reduce con-
tamination from overwhelming peripheral 
lipids. Short-TE MRSI techniques are fea-
sible and allow additional measurements 
of lipid signals in brain tumors. Measuring 
these signals is significant because their 
levels are indicative of macrophage activ-
ity in necrosis. Although identification of a 
tumor mass and assessment of its size and 
vasculature are best achieved with MRI, 

MRSI can provide additional biochemical 
information that can be crucial for tumor 
classification, differential diagnosis and 
follow-up (Preul et al. 1998). The ability 
to display the metabolite distribution as a 
map is therefore very important and useful 
in clinical settings (Preul et al. 1998).

Magnetic resonance spectroscopic imag-
ing (MRSI) measures spatially encoded 
time-domain signals from free-induction 
decay (FID), stimulated echoes, or spin 
echoes using gradient phase encoding to 
resolve the two- or three-dimensional spa-
tial distribution of spectroscopic infor-
mation that originated from different 
locations within the field-of-view (FOV). 
Data acquisition time grows in propor-
tion to the spatial encoding specified in 
the imaging protocol. For example, in 2D 
proton MRSI with 32 × 32 imaging matrix 
and TR = 2 s, encoding time is >30 min.

Several methods have been proposed to 
speed up conventional MRSI: Reduced 
k-space encoding techniques such as cir-
cular k-space sampling (Maudsley et al. 
1994), variable repetition times for dif-
ferent phase encoding steps (Kuhn et al. 
1996), and individually phase-encoded 
multi-echo techniques (Duyn et al. 1993) 
offer moderate acceleration of conven-
tional phase encoding. Implementation 
of echo-time-encoded high-speed imag-
ing methods is straightforward (Haase 
1990), but achieving high spectral resolu-
tion at large spectral width is still time-
consuming. Furthermore, short echo times 
are not feasible, and sensitivity is usually 
lower than with conventional techniques 
(Pohmann et al. 1997).

Even with above-mentioned efforts to 
accelerate MRSI, three-dimensional spatial 
encoding is still not clinically feasible. Data 
quality during such long data  acquisition 
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times can be seriously degraded by head 
motion and scanner instability. Motion 
artifact is especially problematic with 
respect to tremors associated with neural 
degenerative diseases such as Alzheimer’s, 
and dynamic metabolic imaging, which 
requires repeated measurements to provide 
time-resolved information, is limited to 
rather coarse temporal resolution.

Much faster spatial-spectral encoding 
can be achieved using either echo-planar 
(Posse et al. 1994) or spiral read-out meth-
ods (Adalsteinsson et al. 1998). Using 
echo-planar readout, proton-echo-planar-
spectroscopic-imaging (Pepsi) can accel-
erate encoding times in human brain by 
more than an order of magnitude and has 
been developed for clinical MR scanners to 
measure two-dimensional metabolite dis-
tributions at short TE in just 1 min (mini-
mum acquisition time for a 32 × 32 matrix 
is 64 s with TR = 2 s) (Posse et al. 1995), 
and three-dimensional metabolite distribu-
tions in just a few minutes (Posse et al. 
1994). Proton-echo-planar-spectroscopic-
imaging (PEPSI) has also been employed 
for time-resolved metabolic imaging to 
map dynamically changing lactate con-
centrations during respiratory and meta-
bolic challenges (Posse et al. 1997) and to 
characterize metabolic dysfunction during 
sodium-lactate infusion in patients with 
panic disorder (Dager et al. 1999).

Here we present the combination of 
PEPSI and parallel MRI, specifically 
SENSE reconstruction, to further acceler-
ate data acquisition in high-speed spec-
troscopic imaging. The major motivation 
of this approach is to tradeoff SNR for 
rapid spatial encoding and reduced motion 
sensitivity during long data acquisition 
times. In vivo human subject experiments 
were performed under the supervision of 

the Institutional Review Board, and with 
subjects’ informed consent. PEPSI (Posse 
et al. 1995) was performed on healthy 
volunteers, using a 3T scanner (Trio, 
SIEMENS Medical Solution, Erlangen, 
Germany) equipped with an eight-channel 
surface array coil that covers the whole 
brain circumferentially by eight surface 
coils. This procedure includes water sup-
pression by chemical shift selective satu-
ration (CHESS) sequence (Haase et al. 
1985), complete eight-slice outer volume 
suppression along the perimeter of the 
brain, spin-echo excitation, and fast spa-
tial-spectral encoding of the half-echo 
using an EPI read-out gradient train along 
the x-axis (Posse et al. 1995). Data were 
acquired at 2.5 KHz per data point, using 
online regridding to account for ramp 
sampling (O’Sullivan 1985), and 1,024 
gradient inversions. Reconstructed spec-
tral width after even/odd echo editing 
was 1,080 Hz. Additional phase encoding 
along the Y-axis was applied to obtain 2D 
spatial encoding. SENSE for spatiotem-
poral acceleration, spatial phase encoding 
along the Y-axis was skipped by sampling 
one k-space line in a block of two, three, or 
four consecutive k-space lines in the phase 
encoding direction to achieve 2X, 3X, and 
4X acceleration, respectively. Both non-
water-suppressed (NWS) and water-sup-
pressed (WS) PEPSI data were collected. 
Non-water suppressed data were collected 
without spatial presaturation and used for 
automatic phase and frequency shift cor-
rection. Proton-Echo-Planar-Spectroscopic 
Imaging (PEPSI) data were acquired from 
a para-axial slice at the upper edge of the 
ventricles with TR of 2 s and short TE of 
15 ms using a 32 x 32 spatial matrix with 
FOV of 220 mm; slice thickness was 15 
mm. Such data were collected with eight 
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averages, among which single average 
data were also extracted to test whether 
SNR was sufficient for SENSE accel-
eration. The acquisition times for single-
average and eight-average data were 64 
and 512 s, respectively, without SENSE 
acceleration.

Reconstructed PEPSI data with 
eight averages were reconstructed with 
LCModel fitting. Water-suppressed data 
were acquired with 8.5, 4.25, 2.8 and 2.1 
min acquisition times for fully sampled, 
2X, 3X, and 4X SENSE, respectively. The 
three major metabolite peaks representing 
Cho, Cre, and NAA were also observed 
in unaccelerated scans and 2X, 3X, and 
4X accelerated data with similar width 
and shape (not shown here). The shape of 
the baseline in all reconstructed data was 
mostly similar. The Cho, Cre, and NAA 
metabolite maps are shown in Figure 20.3 
(top panel). The maps of fully sampled and 
2X SENSE accelerated data are very simi-
lar. Signal-to-noise constraints in the 3X 
and 4X SENSE results failed to preserve 
the homogenous metabolite distribution in 
brain parenchyma regions seen in the fully 
sampled data.

A single signal average was extracted 
from the same data set with eight aver-
ages to evaluate the effect of SNR loss 
on SENSE acceleration quality. The Cho, 
Cre, NAA metabolite maps are shown 
in Figure 20.3 (bottom panel). Single-
average, fully sampled data generated 
homogeneous maps. With only slight deg-
radation, using 2X SENSE, which cor-
responds to 32 s data acquisition time, the 
metabolite maps were still comparable 
to the unaccelerated maps. 3X and 4X 
SENSE acceleration with 22 s and 16 s 
data acquisition times generated more 
noisy metabolite maps in brain paren-

chyma, indicating insufficient SNR for 
SENSE acceleration in both cases.

We have demonstrated the feasibility of 
using SENSE reconstruction to acceler-
ate high-speed gradient-encoded MRSI 
data acquisition, which was achieved by 
trading off image SNR for faster data 
acquisition time. The reduced SNR results 
from decimated data samples and recon-
struction-associated noise amplification. 
We have shown that at high field (³3T) 
the combination of PEPSI with SENSE 
can further reduce the intrinsic single-
average 64 s data acquisition time for a 
32 × 32 matrix to 32 s (2X SENSE) with 
little degradation of metabolite informa-
tion. With even higher field strength and 
improved RF coil arrays, we anticipate 
that SENSE-accelerated metabolite map-
ping with scan times on the order of a few 
seconds will become feasible. Another 
appropriate application of single-average 
SENSE PEPSI is the context of transient 
high SNR, such as in hyperpolarized 13C 
experiments (Golman et al. 2003). At 
lower field (£1.5 T), averaging was nec-
essary to maintain SNR, and the chief 
advantage of the SENSE PEPSI imaging 
technique is thus reduced motion sensitiv-
ity associated with shortened acquisition 
time for a single average. Reduced motion 
sensitivity is particularly advantageous 
in clinical studies of patients with move-
ment disorders. The overall SNR can be 
maintained with averaging, provided that 
the g-factor does not deviate too far from 
1.0 using a dedicated array coil design and 
optimal coil placement.

Sensitivity-encoding (SENSE) accelera-
tion is particularly important to reducing 
long scan times in 3D spatial encoding, 
which is currently under development 
in our laboratory. As mentioned above, 
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one-dimensional SENSE acceleration can 
be utilized to accelerate the slow spatial 
phase encoding in a 2D PEPSI experi-
ment. Further acceleration can be achieved 
using two-dimensional SENSE in 3D 
PEPSI experiments, where two orthogo-
nal spatial phase encoding gradients are 
used. The SENSE PEPSI imaging tech-

nique presented can also be generalized to 
other echo-planar-based read-out methods, 
such as echo-shifted EPI (Guimaraes et al. 
1999) or spiral (Adalsteinsson et al. 1998) 
MRSI. In those methods, oscillating read-
out gradients are used to encode 2D spatial 
information in a single shot. In that regard, 
direct application of 2D SENSE would be 

Figure 20.3. NAA, creatine (Cre), and choline (Cho) metabolite maps measured in a para-axial slice at 
the upper edge of the ventricles from full sampled data and 2X, 3X, 4X SENSE acceleration at 3 T with 
eight averages (top panel) and single average (bottom panel) after LCModel quantification. Acquisition 
times for eight-average data were 8.5, 4.25, 2.8 and 2.1 min, respectively; for single-average data, 64, 32, 
21 and 16 s, respectively
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feasible. In fact, the cylindrically sym-
metric layout of the currently available 
head RF array coil encourages use of 2D 
SENSE to minimize the g-factor. As we 
noted earlier, in the future a large-N coil 
array may further increase the acceleration 
rate for high spatiotemporal resolution, 
with acceptable reconstructed spatiospec-
tral MRSI data.

In conclusion, in this chapter, we pre-
sented the principle of parallel MRI with 
a brief review of recent advances in data 
acquisition and image reconstruction strat-
egies. We also presented mathematical 
formulation of image reconstruction. We 
demonstrated examples of parallel MRI 
using SENSE reconstructions in EPI and 
brain fMRI to reduce geometrical distor-
tion. In particular, we showed that with 
good prior knowledge about the image 
to be reconstructed, sensitivity-encoded 
echo-planer imaging (SENSE EPI) can 
be further stabilized to improve sensitiv-
ity and specificity in dynamic scanning. 
For spectroscopic imaging, we showed 
that MRSI experiments at high field (³3T) 
may utilize parallel MRI to reduce imag-
ing acquisition times with tolerable SNR 
reduction using single average PEPSI 
sequence, while low field (£1.5T) may still 
use SENSE to reduce motion sensitivity 
and acquire multiple averages to maintain 
overall SNR. In conclusion, improvement 
of spatiotemporal resolution by parallel 
MRI can benefit static, dynamic, and met-
abolic MR imaging for cancer diagnosis 
and management.
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