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a b s t r a c t

This paper considers the maximum likelihood estimation of a class of structural vector
autoregressive fractionally integrated moving-average (VARFIMA) models. The structural
VARFIMA model includes the fractional cointegration model as one of its special cases. We
show that the conditional likelihood Durbin–Levinson (CLDL) algorithm of Tsay (2010a) is
a fast and reliable approach to estimate the long-run effects as well as the short- and long-
term dynamics of a structural VARFIMA process simultaneously. In particular, the
computational cost of the CLDL algorithm is much lower than that proposed in Sowell
(1989) and Dueker and Startz (1998). We apply the CLDL method to the Congressional
approval data of Durr et al. (1997) and find that the long-run effect of economic expec-
tations on Congressional approval is at least 0.5718, which is over twice the estimate of
0.24 found in Table 2 of Box-Steffensmeier and Tomlinson (2000). This paper also tests the
divided party government hypothesis with the CLDL algorithm.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

This paper considers the maximum likelihood estima-
tion of a class of structural vector autoregressive fraction-
ally integrated moving-average VARFIMA (p,d,q), models.
This model includes the fractional cointegration model as
one of its special cases and has been investigated by Sowell
(1989) and Dueker and Startz (1998). It also encompasses
the stationary and invertible VARFIMA processes of Tsay
(2010a) whereby all the data-generating processes (DGP)
behind the structural VARFIMA models are stationary. The
broad coverage of the structural VARFIMA model identifies
itself as a useful workhorse for many political time series
observations, including Box-Steffensmeier and Tomlinson
(2000) and Clarke and Lebo (2003). In particular, in
946.

and two anonymous
of the research was
the Department of

ould like to thank the
t Program. Research
iated.

. All rights reserved.
Section 4 of this paper we estimate the long-run effect of
economic expectations on Congressional approval based on
a 2-dimensional fractional cointegration model of
Congressional approval data of Durr et al. (1997, DGW
hereafter). The magnitude of the long-run effect should
be the focus of the literature, because it signifies whether
the economic prospects of the public strongly affect their
support of the Congress. The use of the structural VARFIMA
model allows us to simultaneously address the long-run
effects as well as the short- and long-term dynamics
characterized by the AR, MA, and the fractional differencing
parameters.

This paper is strongly motivated by the observations in
Box-Steffensmeier and Tomlinson (2000, p. 71) that the
program of Dueker and Startz (1998) is extremely sensitive
to the starting values and that their computation with
Congressional approval data of DGW (1997) tends to get
stuck in local minima. Another shortcoming of Sowell’s
(1989) algorithm is its heavy computational burden.
Dueker and Startz (1998, p. 423) demonstrate that it takes
35min on a 200-MHz PC for each iteration of themaximum
likelihood estimation of a bivariate VARFIMA process with
121 observations and 18 parameters when implementing
Sowell’s (1989) algorithm.
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This paper explains how the conditional likelihood
Durbin–Levinson (CLDL) algorithm of Tsay (2010a) can be
helpful to estimate the structural VARFIMA model effi-
ciently. First, the CLDL algorithm is a one-step likelihood-
based estimator and can estimate the aforementioned
long-run effects as well as the short- and long-term
dynamics of a structural VARFIMA process simulta-
neously. Because a one-step procedure is usually more
efficient than a two-step or multiple-step procedure and
is a consistent estimator if the model is correctly speci-
fied, the long-run effect estimate from the CLDL algo-
rithm will generally be different from the one generated
from Box-Steffensmeier and Tomlinson (2000) who
employ a two-step procedure. Indeed, when applying the
CLDL algorithm to test the divided party government
hypothesis with the 80 observations of Congressional
approval data of DGW (1997) based on a 3-dimensional
VARFIMA (p,d,q) model in the following Section 5, we
establish the first evidence that the disturbance term of
the fractional cointegration model of Congressional
approval might be a fractionally integrated process. This
indicates that a flexible long memory process is required
to capture the dynamic behavior of the data of
Congressional approval and justifies the use of the
structural VARFIMA model for this important issue of
Political Science.

Second, the CLDL algorithm can evaluate the conditional
likelihood function of the structural VARFIMA models
exactly. This is in sharp contrast with the algorithm of
Sowell (1989) and that of Dueker and Startz (1998), which
are subject to a truncating error when the AR parameters
are present.

The third advantage of the CLDL algorithm is that
its computation is much faster than that proposed in
Sowell (1989) and Dueker and Startz (1998), because it
utilizes an efficient Durin–Levinson algorithm. Due to
the high speed of computation, Tsay (2010a) conducts
a Monte Carlo experiment to show the finite sample
performance of the CLDL algorithm for 3-dimensional
VARFIMA processes under a sample size of up to
400. Therefore, the use of the CLDL algorithm also
resolves the comment of Lebo et al. (2000, p. 38) that
“the only complaints about full maximum likelihood
estimation concern its computationally intensive
algorithm.”

The remaining parts of this paper are arranged as
follows: Section 2 presents the structural VARFIMA (p,d,q)
models. Section 3 explains the implementation of the CLDL
algorithm for the structural VARFIMA process. We apply
the CLDL methodology to the data of DGW (1997) in
Section 4. The major task is to estimate the long-run effect
of economic expectations on Congressional approval
using various 2-dimensional VARFIMA models. Section 5
tests the divided party government hypothesis with
a 3-dimensional structural VARFIMA model. Section 6
provides a conclusion.

2. Structural VARFIMA models

Consider the structural multivariate time series model
with fractionally integrated errors:
�
yt ¼ au

1 Dtþb
uXtþut ;
u

; or
�
yt�au

1 Dt�b
uXt
u

�

Xt ¼ a2Dtþg Xt�1þVt ; Xt�a2Dt�g Xt�1

¼
�
ut

Vt

�
¼Wt ; (1)

where Dt is a vector of deterministic functions, including
a constant or linear trend, a1 is a vector of parameters, and
a2 is a matrix of parameters conformable to Dt. Here, ut is
a univariate fractionally integrated process of order d1, and
Vt is an r � 1 dimensional time series with r � 1 potentially
different orders of fractional integratedness. This model has
been considered by Baillie and Bollerslev (1994), Cheung
and Lai (1993), and Dueker and Startz (1998). When r ¼ 2
and g ¼ 1, we can easily see the well-known fractional
cointegration model belongs to one of its special cases.

The model in eq. (1) is considered in Sowell (1989) and
later employed by Dueker and Startz (1998) to describe the
joint behavior of U.S. and Canadian bond rates. Essentially,
the idea behind the algorithm of Sowell (1989) and Dueker
and Startz (1998) for the model in eq. (1) is to follow the
spirit of the conditional likelihood function in Box and
Jenkins (1976, Chapter 7). In other words, conditional on
the structural parameters fa1;a2; b;gg ¼ J, we can write
down the likelihood ofWt , provided the probability density
function of Wt is known. The associated conditional
likelihood is denoted as LðWt jJÞ. This notation signifies
the likelihood function is computed conditional on the
value of J.

In the literature starting with Sowell (1992), Wt is
usually assumed to be generated as:

FðBÞdiag�Vd
�
Wt ¼ QðBÞZt ; (2)

where t ¼ 1;2;.; T , Wt is an r-dimensional vector of
observations of interest, and FðBÞ and QðBÞ are finite order
matrix polynomials in B (usual lag operator), such that:

FðBÞ ¼ F0 � F1B�.�FpBp; QðBÞ
¼ Q0 þQ1Bþ.þQqBq; F0 ¼ Q0 ¼ Ir; (3)

Ir is an r � r identity matrix, and the diagonal matrix
diagðVdÞ is defined as:

diag
�
Vd

� ¼

2664
Vd1 0 . 0
0 Vd2 . 0
« « 1 «
0 0 . Vdr

3775; (4)

where V ¼ 1� B, and di˛ð�1=2;1=2Þ, for all i ¼ 1;2;.; r.
Here, Zt ¼ ðz1;t ;.; zr;tÞu in eq. (2) is an r-dimensional
independent and identically distributed (i.i.d.) white noise
process with a nonsingular covariance matrix S. The VAR-
FIMA format naturally combines the feature of a univariate
ARFIMA model and that of a VARMA process, thus
providing a flexible modeling framework for empirical
applications. See Sowell (1989) about the structural VAR-
FIMA model.

We theoretically need to evaluate the autocovariance
function of Wt before we can compute the conditional log-
likelihood function exactly. This task is not trivial for the
VARFIMA process. As clearly pointed out in Tsay (2010a),
the presence of the AR parameters greatly complicates the



W.-J. Tsay / Electoral Studies 31 (2012) 852–860854
computation of the autocovariance functions when
Sowell’s (1989) algorithm is employed, because it involves
hypergeometric functions that need to be evaluated with
a truncated infinite sum. A rounding error is inevitable
from using Sowell’s (1989) methodology. The same
problem also applies to the program of Dueker and Startz
(1998), because they completely follow the approach of
Sowell (1989). Of course, the seriousness of the rounding
error problems increases with the dimensionality of the
model in eq. (2). What is worse is that even for the model
with r ¼ 2, Box-Steffensmeier and Tomlinson (2000, p. 71)
observe that the program of Dueker and Startz (1998) is
extremely sensitive to the starting values and their
computation with the Congressional approval data of DGW
(1997) tends to get stuck in local minima. These observa-
tions call for a new way to estimate the model in eq. (1) so
as to enhance the usefulness of this interesting model. In
the next section we discuss the rationale of applying the
CLDL algorithm to the structural VARFIMA model.
3. CLDL algorithm of Tsay (2010a)

This section explains that the task of estimating the
model in eq. (1) is much less daunting if wewant to impose
the following condition in Tsay (2010a).

Assumption A.FðBÞ is diagonal.
Under Assumption A, Wt in eq. (2) can be rewritten as:

FðBÞWt ¼ diag
�
V�d

�
QðBÞZt : (5)

Since the autocovariance function of diagðV�dÞQðBÞZt is
evaluated exactly with the results in eq. (13) of Tsay
(2010a), we immediately can evaluate the likelihood func-
tion of Wt if FðBÞ ¼ Ir . Following Tsay (2010a), we employ
Whittle’s (1963) multivariate Durbin–Levinson algorithm
to speed up the computation, and the exact conditional
likelihood function of Wt given J and FðBÞ ¼ Ir is:

LðWt jJ;FðBÞ ¼ IrÞ ¼ ð2pÞ�rT
2

nYT
j¼1

det
�
Rj�1

�o�1
2

� exp

(
� 1
2

XT
j¼1

�
Wj � cWj

�u

R�1
j�1

�
Wj � cWj

�)
; (6)

where cWj denotes the one-step ahead predictor of Wj with
the observation Wðj� 1Þ ¼ ðWu

1 ;Wu
2 ;.;Wu

j�1Þu as j � 2.
Here, Rj�1 is the corresponding one-step ahead prediction
error matrix. As j ¼ 1, cW 1 ¼ 0, and
R0 ¼ Uð0Þ ¼ EðWtWu

t Þ. For the definition and computa-
tion of cWj and those of Rj�1, see Whittle (1963) or Propo-
sition 11.4.1 of Brockwell and Davis (1991), or Section 2 of
Tsay (2010a) for the details.

If FðBÞ is not an identity matrix, then we apply the idea
of the conditional likelihood function in Box and Jenkins
(1976, Chapter 7) again as the way we deal with the
structural parameters J to obtain Wt . In other words, we
transform Wt into diagðV�dÞQðBÞZt for a given choice of
parameters in FðBÞ and of suitable starting values. Partic-
ularly, if p ¼ 1, then conditional on F1 and W1,
Wt � F1Wt�1, t ¼ 2;3;.; T , is a VARFIMAð0; d; qÞ process,
and we denote its associated conditional likelihood func-
tion as:

LðWt jJ;F1;W1ÞhLðWt � F1Wt�1jJÞ; for p ¼ 1; t

¼ 2;3;.; T : (7)

Applying the multivariate Durbin–Levinson algorithm to
the transformed data, Wt � F1Wt�1, we simultaneously
estimate all the parameters of the structural VARFIMA
model with the numerical optimization method. As
a consequence, no rounding error occurs during the
evaluation of the conditional likelihood function of the
structural VARFIMAmodel, nomatter whetherFðBÞ ¼ Ir or
not.

It is clear that the procedure of estimating the struc-
tural VARFIMA model is to combine Whittle’s (1963)
multivariate Durbin–Levinson algorithm with the autoco-
variance function displayed in eq. (13) of Tsay (2010a). It is
efficient in computation and is not subject to any rounding
error. Furthermore, interested users can follow this
procedure and implement it with standard statistics
packages.

The limitation of the CLDL algorithm is on the restric-
tions imposed in Assumption A. Basically, the algorithm is
unable to deal with the cases where the off-diagonal
elements of the AR matrices are not zero. As mentioned
previously, a rounding error is present if we employ
Sowell’s (1989) algorithm under this circumstance. To the
best of our knowledge, there is no algorithm that can
evaluate the likelihood function of such a general model
exactly. However, Tsay (2010a) argues that the condition
in Assumption A is not stringent at all if we look back to
the development of the VARFIMA literature. It is well
known that the number of parameters of VARFIMA
processes increases at the rate of r2 for an additional value
of p or q. Accordingly, for ease of computation and without
loss of the parsimonious principle of Box and Jenkins
(1976), it is natural to adopt a simplified version of the
VARFIMA model when the dimensionality of the data
series is large. For example, Haslett and Raftery (1989)
assume a homogeneous structure on the fractional dif-
ferencing and ARMA parameters across meteorological
stations to describe the wind speeds recorded at 12
synoptic meteorological stations in Ireland when using
the VARFIMA model for their spatial data. In other words,
not only do they impose Assumption A, but they also
require a much more restrictive MA structure than we do
in Assumption A.

From a deeper theoretical point of view, when
Assumption A is satisfied, the model in eq. (2) can be
further expressed as:

QðBÞ�1diag
�
Vd

�
FðBÞWt ¼ Zt ; (8)

i.e.,Wt in eq. (8) is a form of VAR(N) process that is flexible
enough to capture the major feature of many multivariate
time series. Indeed, we can further rewrite the model in eq.
(8) as:

S�1=2QðBÞ�1diag
�
Vd

�
FðBÞWt ¼ Mt ; (9)
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where Mt is an i.i.d. vector white noise. Consequently, the
model in eq. (9) is really general enough to encompass
many high dimensional time series models.
4. Congressional approval and economic expectations

This section applies the CLDL algorithm to the model in
eqs. (1) and (2) with the data of DGW (1997). First, the
dataset has been adopted by Box-Steffensmeier and
Tomlinson (2000) to check whether Congressional
Approval and Economic Expectations are fractionally
cointegrated. This dataset also has been used by Tsay
(2010b) to study the divided party government hypoth-
esis. This quarterly data span from 1974:1 to 1993:4. Fig. 1
displays the movements of these two time series. The
result of Box-Steffensmeier and Tomlinson (2000) is
treated as the benchmark of our empirical studies. Second,
the length of this data is only 80, which reflects the
observation in Lebo et al. (2000, p. 38) about the small
sample size of most political time series. However, we show
that various bivariate structural VARFIMA models still can
be successfully estimated with such a small sample size by
the CLDL algorithm. Third, this dataset contains the
observations of presidential approval, and thus we can also
test the divided party government hypothesis by adding
the data of presidential approval to the above two series in
the next section. Doing so not only allows us to check the
robustness of the findings generated from the bivariate
VARFIMA models, but also demonstrates the power of the
CLDL algorithm in estimating a higher dimensional time
series model with limited observations.

As mentioned previously, Box-Steffensmeier and
Tomlinson (2000) do not report any one-step maximum
likelihood estimates. They adopt a two-step procedure, i.e.,
they first run a cointegration regression and then estimate
the order of integratedness of the resulting ordinary least
squares (OLS) residuals as 0.4. However, they feel their
testing results are unsatisfactory, because a large standard
error of 0.45 is found. In other words, they obtain a frac-
tional cointegration between Congressional approval and
Fig. 1. Congressional approval and economic expectations. Note: Solid line
denotes congressional approval, while dashed line represents economic
expectations.
economic expectations, but this cointegration relationship
is also consistent with the usual cointegration model with
a short memory error term if we take the large standard
error into account. Box-Steffensmeier and Tomlinson
(2000, p. 72) explain this large standard error as being
expected since there are only 80 observations. On the
contrary, the CLDL algorithm is a one-step procedure, and
all the short-run and long-run dynamic parameters are
estimated simultaneously. Since we do not need to follow
the two-step procedure of Box-Steffensmeier and
Tomlinson (2000) to estimate the fractional differencing
parameter of the residuals from the first-step OLS estima-
tion, the potential small sample bias from the first step
estimation can be completely avoided with the use of the
CLDL algorithm.

Before presenting our estimation results, we summarize
some important findings in Table 1 about the long-run
effect of economic expectations on Congressional
approval generated from different models, including the
autoregressive distributed lag (ADL), the fractional cointe-
gration, the stochastic linear difference equation (SLDE),
and the well-known VAR models. The magnitude of the
long-run effect should be the focus of the studies as it is
related to whether the economic prospects of the public
profoundly affect their support of the Congress. The
maximum magnitude found in the 9 estimates of Table 1 is
0.49, and most of them lie between 0.24 and 0.36.

Defining Congressional approval and economic expec-
tations at time t as ConApplt and EconExpt , respectively, we
adopt the following specification for the empirical
applications:�
Vd1 0
0 Vd2

��
1�F11;1B 0

0 1� F22;1B

�
�
�

ConApplt � b1EconExpt � a1

EconExpt � g1EconExpt�1 � a2

�
¼ ~Wt ; (10)

where
Table 1
Summary results for the long-run effects of economic expectations on
congressional approval.

Authors Data Model Long-run effects

Box-Steffensmeier
and Tomlinson
(2000)

Quarterly:
1974–1993

ARFIMA 0.24

De Boef and Keele
(2008)

Quarterly:
1974–1993

ADL and
and ECM

0.34 from ADL
0.36 from ECM

Chanley et al.
(2000)

Quarterly:
1980–1997

VAR 0.25

DGW (1997) Quarterly:
1974–1993

SLDE 0.35

Lebo (2008) Monthly:
1995–2005

ARFIMA 0.307 from
Clinton presidency

Ramirez (2009) Quaterly:
1974–2000

SLDE and
ECM

0.125 from
SLDE 0.36 from ECM

Rudolph (2002) Quaterly:
1974–1998

ADL and
ECM

0.49 (biggest
estimate)

Notes: ADL means the autoregressive distributed lag model, SLDE repre-
sents the stochastic linear difference equation, and ECM denotes the
error-correction model.
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~Wt ¼
�
1þQ11;1B 0

��
ut
�
; Var

�
ut
�
¼ S
0 1þQ22;1B vt vt

¼
�
S11 S12

S12 S22

�
: (11)

The optimization algorithm used to implement the CLDL
algorithm is the quasi-Newton algorithm of Broyden,
Fletcher, Goldfarb, and Shanno (BFGS) contained in the
GAUSS MAXLIK library. Furthermore, choosing the starting
values for the CLDL algorithm to estimate the following 4
VARFIMA models is pretty easy. Indeed, the corresponding
estimation results are not sensitive to the starting values as
found by Box-Steffensmeier and Tomlinson (2000) when
using the code of Dueker and Startz (1998). The GAUSS
program will be posted on the website: http://idv.sinica.
edu.tw/wjtsay/htm/jen02.htm

We are particularly interested in two scenarios
depending on whether g1 in eq. (10) is equal to 1 or not.
This distinction is important, because EconExpt is nonsta-
tionary when g1 ¼ 1, and the associated relationship
Approvalt � b1x EconExpt � a1 corresponds to the well-
known fractional cointegration model. On the other hand,
when g1s1 and g1 < 1, EconExpt is a stationary fraction-
ally integrated process and its order of integratedness is
d2 < 1=2.

When g1 ¼ 1 is imposed, we have:
�
V�0:1056ð1� 0:8660BÞðConApplt � 0:5718 EconExpt � 18:8473Þ

V0:0229ð1þ 0:3290BÞðEconExpt � EconExpt�1 þ 0:1575Þ
�
¼ ~W

g1¼1
t ; (12)
where

~W
g1¼1
t ¼

�
1þ 0:2982B 0

0 1þ 0:5001B

�"
ug1¼1
t

v
g1¼1
t

#
;

Var

"
ug1¼1
t

v
g1¼1
t

#
¼

�
20:0087 �15:5807
�15:5807 26:2968

�
: ð13Þ

This implies the differencing parameter of EconExpt is
1.0229 and is consistent with the results in Table 1 of Box-
Steffensmeier and Tomlinson (2000) where EconExpt is
likely to be a nonstationary process.

To check the robustness of the above findings, we re-
estimate the model in eq. (10), but g1 is no longer equal
to 1. The CLDL algorithm produces:
�
V0:0145ð1� 0:7836BÞðConApplt � 1:0642 EconExpt þ 18:3666Þ
V0:1017ð1þ 0:2829BÞðEconExpt � 0:8745 EconExpt�1 � 9:4381Þ

�

where

~W
g1s1
t ¼

�
1þ 0:2768B 0

0 1þ 0:4571B

�"
ug1s1
t

v
g1s1
t

#
;

Var

"
ug1s1
t

v
g1s1
t

#
¼

�
40:7109 �27:3292
�27:3292 24:8139

�
: ð15Þ

The inference results for eqs.(12)–(15) are presented in
Table 2.

Before discussing the details of the estimation findings,
we first illustrate the computing cost of the CLDL algo-
rithms for these two models. It takes 188 iterations for the
model in eqs. (12) and (13) to achieve normal convergence,
while the number is 172 for the model in eqs. (14) and (15).
Nevertheless, the computing time for both models is less
than 100 s, even though we estimate 13 parameters for the
model in eqs. (14) and (15). As compared to Dueker and
Startz (1998) who demonstrate that it takes 35 min for
each iteration of their bivariate VARFIMA process with 121
observations and 18 parameters when implementing
Sowell’s (1989) algorithm, the CLDL algorithm surely shows
its superiority in computational efficiency.

The estimation results in Table 2 are essentially quali-
tatively similar to those in Box-Steffensmeier and
Tomlinson (2000) even though EconExpt is imposed as
being stationary. In particular, eq. (14) presents the esti-
mate of g1 as 0.8745, which is close to the margin of a unit
root specification. When comparing the estimated covari-
ance matrix in eq. (13) with that in eq. (15), we find the
nonstationary economic expectations specification seems
to be promising in explaining the time series behaviors of
the data, because the variation left in ðut ; vtÞ is relatively
smaller. Given the above estimation results and the find-
ings in Table 1 of Box-Steffensmeier and Tomlinson (2000),
we tentatively pay greater attention to the results gener-
ated from the fractional cointegration model in eqs. (12)
and (13). Nevertheless, we clarify here that, in the litera-
ture there exists no well-accepted theorem to address the
selection of model specification of the structural VARFIMA
models, and further efforts need to be devoted to this line
of research. The issue of model specification surely is
crucial to the empirical outcomes of this paper, but we feel
¼ ~W
g1s1
t ; (14
)

http://idv.sinica.edu.tw/wjtsay/htm/jen02.htm
http://idv.sinica.edu.tw/wjtsay/htm/jen02.htm


Table 2
Estimates of parameters from the structural VARIMA model under stationary or nonstationary economic expectations.

Parameter Stationary economic expectations Nonstationary economic expectations

Estimate S.E. jt � Ratioj Estimate S.E. jt � Ratioj
d1 0.0145 0.1391 0.1042 �0.1056 0.1106 0.9547
d2 0.1017 0.1325 0.7675 0.0229 0.1261 0.1816
F11;1 0.7836 0.0852 9.1971 0.8660 0.0634 13.6593
F22;1 �0.2829 0.2135 1.3250 �0.3290 0.2935 1.1209
Q11;1 0.2768 0.1169 2.3678 0.2982 0.1082 2.7560
Q22;1 0.4571 0.2200 2.0777 0.5001 0.2644 1.8914
S11 40.7109 38.0619 1.0696 20.0087 9.2378 2.1660
S22 24.8139 3.9823 6.2310 26.2968 4.1960 6.2671
S12 �27.3292 17.8605 1.5301 �15.5807 8.0597 1.9331
a1 �18.3666 49.9033 0.3680 18.8473 21.8003 0.8645
a2 9.4381 5.1003 1.8504 �0.1575 0.7209 0.2184
g1 0.8745 0.0678 12.8982 1.000 – –

b1 1.0642 0.6785 1.5684 0.5718 0.2897 1.9737

Notes: The results are based on the models in eqs. (10) and (11) under two different specifications on the value of g1. S.E. denotes standard errors. The t-ratio
is computed from using the information matrix based on the numerical Hessian matrix.
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this problem should not downsize the contribution of this
paper toomuch, as the objective of this paper is to show the
computing advantages of the CLDL algorithm, rather than
to argue what kind of structural model best fits the data of
DGW (1997).

Table 2 also reveals that the estimates of d1 and d2 are
close to 0, when g1 ¼ 1 is imposed. The value of
d2 ¼ 0:0229 indicates that the differencing parameter of
the economic expectations is 1.0229, which is close to the
value of 0.86 found in Table 1 of Box-Steffensmeier and
Tomlinson (2000). Moreover, the one-step estimate of d1 ¼
�0:1056 is not significant at the 5% level of significance and
is qualitatively identical to the finding in Table 2 of Box-
Steffensmeier and Tomlinson (2000) where the differ-
encing parameter of the residuals from the first-step OLS
estimate is 0.40, but is not significantly different from zero,
either. Overall, the evidence of fractional cointegration is
not strongwith the data of DGW (1997), no matter whether
we use the one-step CLDL algorithm, or the two-step
procedure of Box-Steffensmeier and Tomlinson (2000).
Consequently, the observation of this paper is similar to
that in Box-Steffensmeier and Tomlinson (2000), i.e., the
relationship between economic expectations and
Congressional approval is more consistent with the usual
cointegration model with a short memory disturbance
term, if we employ a bivariate structural VARFIMA model.

Table 2 also displays that the standard error from esti-
mating d1 is 0.1106, which is far less than 0.45 found in
Table 2 of Box-Steffensmeier and Tomlinson (2000). As
compared to the two-step procedure used in Box-
Steffensmeier and Tomlinson (2000), the CLDL algorithm
provides a narrower confidence interval for testing the
parameters of interest. A smaller confidence interval is
certainly welcome for empirical users, because it helps us
pin down a closer location of the true parameter value.
Although we realize further works should be done to
address the important model specification issue of VAR-
FIMA models, from the standard knowledge of the time
series analysis, the abovementioned smaller confidence
interval is expected, because a one-step procedure is
usually more efficient than a two-step procedure and is
a consistent estimator if the model is correctly specified. As
a consequence, the inference results confirm the potential
of using the structural VARFIMA model in analyzing
the interrelation between Congressional approval and
economic expectations.

A notable competitor for estimating the bivariate VAR-
FIMA model is the semiparametric QMLE of Lobato (1999)
who develops a two-step estimator based on an exten-
sion of the objective function considered in Robinson
(1995). However, Lebo et al. (2000, p. 38) point out that
the semiparametric methods have undesirable small
sample properties, this is unfortunate given the small size
of most political time series. For example, the data used in
this paper is only 80. Another comment made in footnote
19 of Lebo et al. (2000) is that both Robinson’s and Lobato’s
procedures do not allow for the estimation of short- and
long-term dynamics simultaneously. Indeed, the intention
of this paper is to introduce a fast and reliable algorithm to
estimate the short- and long-term dynamics of a structural
VARFIMA process simultaneously. Since Tsay (2010a, p.742)
shows that the performance of the CLDL algorithm is much
better than that of the semiparametric QMLE of Lobato
(1999) given that the model is correctly specified, the
introduction of the CLDL algorithm for the structural
VARFIMA model helps resolve the concern of Lebo et al.
(2000, p. 38) that “the only complaints about full
maximum likelihood estimation concern its computation-
ally intensive algorithm”.

Another notable competitor for testing the parameters
of the structural VARFIMA model is bootstrapping.
Andersson and Gredenhoff (1998) consider the issue of
testing the parameter of a univariate ARFIMA type model.
Nevertheless, one may need to put forth more efforts to
extend their paper to the multivariate ARFIMA process,
because it still requires a huge computational cost to test
a specific value of a fractional differencing parameter of
a univariate ARFIMA model with the bootstrap method.
Particularly, under the VARFIMA framework, if you want to
test the value of the first differencing parameter, d1, we
need to estimate the other r � 1 differencing parameters in
order to obtain the residuals for later resampling purposes.
For example, Andersson and Gredenhoff (1998) adopt the
well-known GPHmethod to implement their test. From the



Table 3
Estimates of parameters under nonstationary economic expectations and
VARFIMA(2, d, 1) specification.

Nonstationary economic expectations

Parameter Estimate S.E. jt � Ratioj
d1 �0.4997 0.5802 0.8613
d2 �0.3632 0.5676 0.6399
F11;1 1.5433 0.3695 4.1767
F11;2 �0.5879 0.3243 1.8128
F22;1 0.3705 0.5432 0.6821
F22;2 0.1381 0.2017 0.6847
Q11;1 �0.0069 0.3319 0.0208
Q22;1 0.1545 0.4368 0.3537
S11 17.7293 8.1401 2.1780
S22 25.6861 4.4268 5.8024
S12 �13.3838 8.2393 1.6244
a1 22.0893 23.4969 0.9401
a2 0.1390 0.5027 0.2765
g1 1.000 – –

b1 0.5231 0.2962 1.7660

Notes: The results are based on the models in eqs. (16) and (17) where the
value of g1 is imposed to be 1. S.E. denotes standard errors. The t-ratio is
computed from using the information matrix based on the numerical
Hessian matrix.
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argument of Lebo et al. (2000, p. 38) that the semi-
parametric methods have undesirable small sample prop-
erties, we know this issue is serious given the small size of
most political time series. Nevertheless, this small sample
bias problem is even more serious when we have to esti-
mate a large number of differencing parameters (for
example r � 1) simultaneously, if we adopt the procedure
of Lobato (1999) under this circumstance. The other
drawback of the method of Lobato (1999) is that it cannot
estimate the short-term dynamics characterized by the AR
and MA parameters. Hence, we need a second estimation
procedure to apply to the residuals generated from the
fractionally differenced series using the fractional differ-
encing parameters (r � 1 as mentioned previously) esti-
mated from the first step estimation. In short, we need two
estimation steps before we can get the residuals to start the
bootstrap operation. Therefore, the small sample bias
might be more serious for the bootstrap procedure under
the VARFIMA framework, let alone the computational
burden of the bootstrap certainly increases with the
number of replications to construct the bootstrapped
confidence interval. To the best of our knowledge, we find
no method to address the bootstrap testing for the struc-
tural VARFIMA models at all. On the other hand, the one-
step CLDL algorithm can produce the t-ratio based on the
Hessian matrix calculation of the information matrix as we
have done in this paper. It is easy to conduct hypothesis
testing with the CLDL algorithm.

To further check the robustness of the findings in eqs.
(12) and (13), we re-estimate this model, but p ¼ 2 is used
instead. The CLDL algorithm produces:
�
V�0:4997�1� 1:5433Bþ 0:5879B2

�ðConApplt � 0:5231 EconExpt � 22:0893Þ
V�0:3632�1� 0:3705B� 0:1381B2

�ðEconExpt � EconExpt�1 � 0:1390Þ
�
¼ ~W

g1¼1
t ; (16)
where

~W
g1¼1
t ¼

�
1� 0:0069B 0

0 1þ 0:1545B

�"
ug1¼1
t

v
g1¼1
t

#
;"

ug1¼1
t

v
g1¼1
t

#
¼

�
17:7293 �13:3838
�13:3838 25:6861

�
: ð17Þ

Table 3 displays the corresponding inference results.
Table3 shows that theestimatesofd1 andd2 arebothclose

to 0 and not significant at the 5% level of significance. This
indicates that the evidence of fractional cointegration is not
strongwith the data of DGW (1997) again, and the findings in
Table 2 of Box-Steffensmeier and Tomlinson (2000) and those
in Table 2 of this paper remain robust with a more general
model specification. We also find that the long-run effect of
Congressional approval on economic expectations in eq. (16)
is 0.5231, which is very close to the value of 0.5718 found in
eq. (12). Accordingly, the use of the VARFIMAð2; d;1Þ model
provides an additional robust checkingon the results fromthe
VARFIMAð1; d;1Þ counterpart.
5. Congressional and Presidential approval

This section tests the divided party government
hypothesis based on a 3-dimensional structural VARFIMA
model using ConApplt , EconExpt , and the data of Presi-
dential Approval (PreApplt , hereafter) from DGW (1997).
Themain objective is to demonstrate the power of the CLDL
algorithm in estimating a higher dimensional time series
model with a small sample size. In the literature, PreApplt
has been included as one of the regressors in explaining
macropartisanship by Maestas (1998) using the ARFIMA
model.

In the political science literature, Lebo (2008) employs
a multivariate ARFIMA and establishes a strong and posi-
tive relationship between Congressional approval and
lagged presidential approval with the monthly data
ranging from 1995 to 2005. Nevertheless, the analysis of
Lebo (2008) is a two-step procedure, because the original
data used in Lebo (2008) need to be differenced using
estimated fractional differencing parameters. Thus, the
results of Lebo (2008) might be subject to bias induced
from the first-stage differencing parameter estimation. On
the other hand, our paper adopts a one-step CLDL algo-
rithm that can test the long-run influence of PreApplt on
ConApplt in one step.

The major feature of this section is to treat PreApplt ,
ConApplt , and EconExpt as endogenous, and we use the
structural VARFIMA model to embrace this idea. The
theoretical justification is not new. First, as pointed out in
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Tsay (2010b, p. 138), by the divided party government
hypothesis, competing parties adopt strategies to coun-
termeasure the action of the opposite party if this
24V�0:2209ð1� 0:9165BÞðConApplt � 0:6010 EconExpt � 0:1575 PreApplt � 17:3393Þ
V�0:0454ð1þ 0:2880BÞðEconExpt � EconExpt�1 þ 0:1899Þ
V�0:4135ð1� 0:2800BÞðPreApplt � PreApplt�1 þ 0:0527Þ

35 ¼ ~Wt ; (21)
hypothesis is truly in the mind of political actors. Presi-
dential approval and Congressional approval by nature
are the functions of political action. Thus, ConApplt and
PreApplt are endogenous with each other. This implies
these two approvals should not have a clear causal rela-
tionship as specified in DGW (1997) and De Boef and
Keele (2008).

Second, Tsay (2010b) cite the arguments of DGW (1997,
p. 186) that “because citizens hold the president account-
able for the state of the economy, economic evaluations will
affect the president’s standing among the public. We
believe the same holds for Congress.” This is why DGW
(1997) use EconExpt to explain Congressional approval.
Moreover, De Boef and Kellstedt (2004, p. 648) argue that
consumer confidence should not solely be treated as
a right-hand side (RHS) variable in analyzing the political
economy. Politics also affects economics.

The above statements jointly indicate thatwe should treat
PreApplt , ConApplt , and EconExpt as endogenous. Moreover,
by the arguments in Lebo (2008, p. 8) that the Presidential
approval series is nearly a unit-root and clearly has long
memory, we thus extend the models in eqs. (10) and (11) as:

FðBÞdiag�Vd
�264ConApplt � b1EconExpt � b2PreApplt � a1

EconExpt � EconExpt�1 � a2

PreApplt � PreApplt�1 � a3

375
¼ ~Wt ; ð18Þ

where
FðBÞdiag�Vd
� ¼

24Vd1 ð1�F11;1BÞ 0 0
0 Vd2 ð1� F22;1BÞ 0
0 0 Vd3 ð1� F33;1BÞ

35; (19)
and

~Wt ¼

2641þQ11;1B 0 0
0 1þQ22;1B 0
0 0 1þQ33;1B

375
264 ut

v1t

v2t

375;
Var

264 ut

v1t

v2t

375 ¼

264S11 S12 S13

S12 S22 S23

S13 S23 S33

375: ð20Þ
With the 80 observations fromDGW (1997) and the CLDL
algorithm, we estimate a 3-dimensional model of 20
parameters. The results are displayed as follows:
where

~Wt ¼
241þ 0:3187B 0 0

0 1þ 0:5326B 0
0 0 1þ 0:0516B

3524 ut

v1t
v2t

35;
(22)

and

Var

24 ut

v1t
v2t

35 ¼
24 25:4521 �16:8906 �17:9220
�16:8906 26:3388 3:3821
�17:9220 3:3821 44:3772

35: (23)

Table 4 illustrates the corresponding inference results.
There are several interesting findings in Table 4.

Conditional that the presidential approval and economic
expectations are both nonstationary, we find the long-run
effect of presidential approval on Congressional approval
is 0.1575, which is larger than the value, 0.08, found in De
Boef and Keele (2008), but less than that of 0.26 in Tsay
(2010b) based on a long memory ADL model. Second, this
model at the same time shows that the long-run effect of
economic expectations on Congressional approval is
0.6010, which is very close to the aforementioned esti-
mates, 0.5231 and 0.5718, obtained from the 2-dimensional
VARFIMAð2;d;1Þ and VARFIMAð1; d;1Þ models, respec-
tively. Thus, the robustness of the estimation results from
the 2-dimensional VARFIMA models is confirmed with
a higher dimensional VARFIMA model.
Third, as compared to the results in Table 2 where the
estimate of d1 is�0.1056, the corresponding estimate inTable
4 is smaller, �0.2209. Nevertheless, the standard error from
estimating d1 in Table 4 is 0.1032, which is very close to the
value of 0.1106 in Table 2. This is the reason that d1 is signif-
icantly different from 0 for the 3-dimensional VARFIMA
model. However, we cannot find such a significant testing
result from Table 2 of this paper and from Table 2 of Box-
Steffensmeier and Tomlinson (2000). Consequently, this
section establishes thefirst evidence that the error termof the
fractional cointegrationmodel of Congressional approval data
of DGW (1997) might be a fractionally integrated process.



Table 4
Estimates of parameters based on 3-dimensional VARFIMA (1, d, 1)
specification.

Parameter Estimate S.E. jt � Ratioj
d1 �0.2209 0.1032 2.1405
d2 �0.0454 0.1248 0.3638
d3 �0.4135 0.2392 1.7287
F11;1 0.9165 0.0551 16.6334
F22;1 �0.2880 0.2694 1.0690
F33;1 0.2800 0.3452 0.8111
Q11;1 0.3187 0.1016 3.1368
Q22;1 0.5326 0.2032 2.6211
Q33;1 0.0516 0.2343 0.2202
S11 25.4521 24.4524 1.0409
S22 26.3388 4.2147 6.2493
S33 44.3772 7.3377 6.0478
S12 �16.8906 10.4266 1.6200
S13 �17.9220 24.8277 0.7219
S23 3.3821 4.4018 0.7683
a1 17.3393 26.0263 0.6662
a2 �0.1899 0.5969 0.3181
a3 �0.0527 0.2578 0.2044
b1 0.6010 0.3526 1.7045
b2 0.1575 0.5338 0.2951

Notes: The results are based on the models in eqs.(18)–(20), where the
values of g1 and g2 are both imposed to be 1. S.E. denotes standard errors.
The t-ratio is computed from using the information matrix based on the
numerical Hessian matrix.
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6. Conclusion

This paper demonstrates that the maximum likelihood
estimation of the structural VARFIMA model can be easily
estimated with the CLDL algorithm of Tsay (2010a). We
apply the CLDL method to the Congressional approval data
of DGW (1997) and find a much larger long-run effect of
economic expectations on Congressional approval. This
indicates that the influence of the economic prospects of
the public on their support for Congress might be more
important than we thought. In addition, this paper docu-
ments that the standard error from estimating the frac-
tional differencing parameter of the error term is less than
one third of the value found in Table 2 of Box-Steffensmeier
and Tomlinson (2000). This feature is important in empir-
ical studies, because it indicates that the CLDL algorithm
might provide a narrower confidence interval to deliver
a more precise inference for the parameters of interest.

We further test the divided party government hypoth-
esis by treating economic expectations, presidential
approval, and Congressional approval as endoengous vari-
ables in order to demonstrate the computing power of the
CLDL algorithm for the high dimensional VARFIMA model.
The resulting findings support the argument of Patterson
and Caldeira (1990) and Tsay (2010b) that presidential
approval does play an important role in affecting
Congressional approval. Most importantly, the inference
from the 3-dimensional VARFIMA model reveals that the
error term of the fractional cointegration model of
Congressional approval data of DGW (1997) is highly likely
a fractionally integrated process. This result is in sharp
contrast with that of Table 2 of Box-Steffensmeier and
Tomlinson (2000) and also justifies the use of the VAR-
FIMA model to capture the long memory features of the
Congressional approval data.
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