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A MARKOV REGIME-SWITCHING

ARMA APPROACH FOR

HEDGING STOCK INDICES

CHAO-CHUN CHEN
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This study considers the hedging effectiveness of applying the N-state Markov
regime-switching autoregressive moving-average (MRS-ARMA) model to the
S&P-500 and FTSE-100 markets. The distinguishing feature of this study is to
incorporate the observations of serially correlated stock returns into the hedging
analysis. To resolve the problem of NT possible routes induced by the presence of
MA parameters associated with the algorithm of Hamilton JD (1989) and a sam-
ple of size T, we propose an algorithm by combining the ideas of Hamilton JD
(1989) and Gray SF (1996). We find that the hedging performances of the three
proposed MRS-MA(1) strategies herein are superior to their corresponding MRS
counterparts considered in Alizadeh A and Nomikos N (2004) over the out-of-
sample periods, even when we realistically track the transaction costs generated
from rebalancing the hedged portfolios. © 2010 Wiley Periodicals, Inc. Jrl Fut
Mark 31:165–191, 2011
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INTRODUCTION

Futures markets allow portfolio managers to hedge their risk exposures by
shorting stock index futures contracts. The critical problem for hedging centers
on the determination of the hedge ratio, i.e., the number of futures contracts to
sell for each unit of the underlying asset on which the short hedger bears the
price risk. Based on the results in Ederington (1979) and Figlewski (1984), 
the minimum-variance hedge ratio, b, is equivalent to the ratio of the uncondi-
tional covariance between spot and futures price changes over the variance of
futures price changes:

where �St and �Ft denote the time t price changes in spot and futures prices,
respectively. In other words, a constant hedge ratio can be estimated with the
following regression:

(1)

based on the historical spot returns and futures returns.
Because �St and �Ft are well-known to follow time-varying distributions,

Cecchetti, Cumby, and Figlewski (1988) and Kroner and Sultan (1993) suggest
that the hedge ratio should be time-varying as well. This point of view has
induced many scholars to employ multivariate generalized autoregressive con-
ditional heteroscedasticity (GARCH) models to compute time-varying hedge
ratios, including Park and Switzer (1995), Gagnon and Lypny (1995), and
Kavussanos and Nomikos (2000). Another way of estimating time-varying
hedge ratios is via Markov regime-switching (MRS) models where the relation-
ship between �St and �Ft is regime-dependent. Sarno and Valente (2000) doc-
ument the rationale behind the use of the MRS model for hedging analysis,
where a regime-switching relationship between spot and futures returns is
found in both FTSE-100 and S&P-500 stock index futures contracts. Alizadeh
and Nomikos (2004) provide additional evidence that the MRS model is useful
in improving hedging performance for both FTSE-100 and S&P-500 stock
index futures contracts. Alizadeh, Nomikos, and Pouliasis (2008) document
that the regime-dependent hedge ratios can result in significant risk reduction
in energy commodities by using an MRS vector error-correction model with
GARCH errors.

The common feature among the aforementioned hedging studies is that
significant autocorrelations beyond lag 0 inherent in the stock index returns are
not taken into account at all. Essentially, Cohen, Hawawini, Maier, Schwartz,

¢St � m � b¢Ft � ut

b �
Cov(¢St, ¢Ft)

Var(¢Ft)
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and Whitcomb (1980) document that the observations for stock index returns
containing significant serial correlations are well established in the literature.
Scholes and Williams (1977), Cohen et al. (1980), Atchison, Butler, and
Simonds (1987), and Lo and Mackinlay (1990) further address the causes of
serial correlations. On the other hand, LeBaron (1992) considers the relation-
ship between serial correlations and volatility in stock returns, while Morse
(1980) and Campbell, Grossman, and Wang (1993) investigate the interaction
between trading volume and serial correlations in stock returns as well.
Particularly, to capture the presence of autocorrelations in financial asset
returns, the usual moving-average (MA) model of order 1, MA(1), is often added
for empirical applications, for example, Hamao, Masulis, and Ng (1990),
Bollerslev (1987), and French, Schwert, and Stambaugh (1987), to name a few.

Howard and D’Antonio (1991) first discuss the optimal multiperiod hedge
ratio when spot returns are autocorrelated and possess a form of MA process,
but they do not address the important empirical hedging performance. Since
autocorrelations and regime-switching behaviors are found in �St and �Ft, an
MRS autoregressive-moving average (MRS-ARMA) model is a natural candi-
date to improve hedging effectiveness. However, the presence of MA parameters
in the N-state MRS framework makes the possible routes of states running from
time 1 to time T expand exponentially to be NT under Hamilton’s (1989)
approach. The first contribution of this study is to provide an easily used algori-
thm to estimate the N-state MRS-ARMA(p, q) models by modifying the algorithm
of Hamilton (1989). The simulations show that the bias of the estimation by
the EHG algorithm is very close to zero and the associated RMSE decreases
with the increasing values of the sample size, revealing that the likelihood-
based estimator based on our algorithm possesses a well-defined asymptotic
behavior. The second contribution of this study presents that the out-of-sample
hedging performances of the three proposed MRS-MA(1) models are superior
to their corresponding MRS counterparts in both S&P-500 and FTSE-100
markets even when we track the transaction costs arising from the opening,
rebalancing, and closing of futures contracts.

The remaining parts of this study are arranged as follows. The following
section introduces the MRS-ARMA hedging model and develops an algorithm
for a general class of N-state MRS-ARMA models. The later section investi-
gates the finite sample performance of the proposed algorithm. Empirical
Hedging analysis section demonstrates that the hedging effectiveness of the
MRS-MA models is better than that of their MRS counterparts considered in
Alizadeh and Nomikos (2004). The penultimate section shows that the per-
formance of the MRS3-MA(1) model is promising even when we take the trans-
action cost associated with the opening, rebalancing, and closing the futures
contracts into account. The final section provides the conclusion.
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THE MRS-ARMA MODEL AND THE EHG
ALGORITHM

The MRS-ARMA hedging model considered in this study is mainly based on
the findings in Alizadeh and Nomikos (2004), where they employ two-state
MRS models to address the following hedging problem:

(2)

where the error term is normally, independently and identically distributed 
(nid) across different regimes, or , st � 1, 2 displays the unob-
served market regime at time t, and the parameters and are regime-
dependent. Specifically, the relationship between index returns and futures
returns in (2) is different under different regimes. The associated transition
probability matrix is:

(3)

where pij � P(st � j �st�1 � i) and for all i. This is the first MRS

(hereafter, MRS1) model studied by Alizadeh and Nomikos (2004). The
notable characteristic is that the transition probabilities, p11, p12, p21, and p22,
and the regime-dependent variances, and , are time-invariant.

The second model of Alizadeh and Nomikos (2004), MRS2, relaxes the time-
invariant assumption on transition probabilities. To ensure that the estimated
transition probabilities are always within 0 and 1, Alizadeh and Nomikos (2004)
employ a logistic function to model these time-varying probability measures:

(4)

where ABt � ( 3
i�0 Basict�i)�4 denotes the average basis over the last four

weeks. Accordingly, the transition probability matrix becomes:

Note that the variances, and , remain time-invariant in the second
model.
The third and the most flexible MRS model of Alizadeh and Nomikos (2004)
further modifies the time-varying information set into the original and as
follows:

(5)

This model is named as the MRS3 model.

s2
st,t

� exp(l0,st
� l1,st

ABt�1).

s2
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The major contribution of this study is to incorporate the widely observed
autocorrelations within stock index returns into the MRS hedging analysis. We
model the relationship between �St and �Ft with the following MRS-ARMA
model:

(6)

where , and L is the usual lag operator. The state variable st can
assume only an integer value of 1, 2, . . . , N, and its transition probability
matrix is:

(7)

where pij � P(st � j � st�1 � i) and for all i. We also impose sta-
tionarity and invertibility constraints on the AR and MA polynomials within
each regime, respectively:

(8)

These conditions are summarized in the following Assumption 1.

Assumption 1. For each st � 1, . . . , N, (i) the roots of the polynomial
and those of in (8) are all outside the unit root circle; (ii) and

share no common roots; (iii) ; (iv) vt is independent of st for all t
and t; and (v) .

The MRS-ARMA(p, q) model is a natural extension to the Markov regime-
switching autoregressive (MRS-AR) model proposed in the seminal study of
Hamilton (1989). The MRS-AR model itself has been widely used in the finan-
cial data. Particularly, Engel and Hamilton (1990), Engel (1994), and Bollen,
Gray, and Whaley (2000) find Markov-switching behavior in foreign exchange
data. Pagan and Schwert (1990) adopt MRS models for stock returns. The
above-mentioned studies are all based on the algorithm of Hamilton (1989).
This implies that they cannot consider the potential presence of MA parame-
ters in the data-generating process (DGP) if Hamilton’s (1989) approach is
employed, because the possible routes of states running from time 1 to T expand
exponentially to be NT when we want to filter out the sequence {�1, �2, . . . , �T}
for conducting the associated maximum likelihood estimation (MLE).
Consequently, before discussing the empirical usefulness of applying the MRS-
ARMA model to the hedging analysis, we need to resolve this estimation issue.
An algorithm is thus developed by combining the ideas of Hamilton (1989) and

et � nid(0,s2
st
)

sst
� 0™st

(L)
£st

(L)™st
(L)

£st
(L)

£st
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Gray (1996), and we name it as the extended Hamilton-Gray (EHG) algorithm
in the following.

Before illustrating the details of the EHG algorithm, let us define the nota-
tion used throughout this study. Denote Wt � (w1, w2, . . . , wt)

T as a column
vector containing the observations in (6) from time 1 to time t. The column vec-
tor ñ � (m1, . . . , mN, s1, . . . , sN, f1,1, . . . , fp,1, f1,2, . . . , fp,2, . . . , f1,N, . . . ,
fp,N, f2,1, . . . , fp,N, u1,1, . . . , uq,1, u1,2, . . . , uq,2, . . . , u1,N, . . . , uq,N)T and the
transition probabilities pij consist of the parameters characterizing the condi-
tional density function (cdf) of wt. The parameters ñ and the transition proba-
bilities pij are stacked into one column vector z.

Let l � Max(p, q) and define a state variable to characterize the regime
path from time t � 1 to t as follows:

(9)

The (Nl�1 � Nl�1) transition probability matrix of , is composed of the
transition probabilities pij in (7):

(10)

where . In other words, we do not trace the whole past

history of st to extract �t in order to conduct the MLE. Instead, we only trace up
to l lagged observations of wt to compute the conditional expectation of the
associated lagged errors. The choice of l � Max(p, q) ensures that we have
enough observations to compute these q conditional expectations.

The accuracy of our approximation method can be improved with a larger
value of l. For example, l � Max(p, q) � 4 is chosen for an MRS-ARMA(4, 2)
model, but we may use l � 5 or other larger values to implement the estimation
procedure. The method of choosing l allows us to deal with the Nl�1 possible
regime paths based on the recursive algorithm of Hamilton (1989). See
Hamilton (1994b, p. 3067) for the illustrations of s* and P* under the set-up,
where N � p � 2 and q � 0.

As mentioned previously, we cannot exactly extract �t to conduct the MLE
given that we only trace up to l lagged observations of wt. One strategy is to follow
the idea of Gray (1996) by replacing {�t, . . . , �t�q�1} with their corresponding

p*ij � P(s*t � j ƒ s*t�1 � i)

P* � ≥
p*11 p*21

p p*Nl � 11

p*12 p*22
p p*Nl � 12

o o ∞ o
p*1Nl � 1 p*2Nl � 1 p p*Nl � 1Nl � 1

¥

s*t , P*

s*t � 1 if st � 1, st�1 � 1, p  and st�l � 1
s*t � 2 if st � 2, st�1 � 1, p  and st�l � 1

o o
s*t � Nl�1 if st � N, st�1 � N, p  and st�l � N.

s*t
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conditional expectations. In this study, to accommodate the presence of MA
parameters, we modify the idea of Gray (1996) by replacing the sequence of
{�t, . . . , �t�q�1} with their path-dependent conditional expectation. The infor-
mation set employed in our algorithm is:

(11)

where the matrix contains the conditional expectation of the sequence 
{�t, . . . , �t�q�1} based on the path consistent with regime ( j � 1, 2, . . . ,
Nl�1) and the information set . Each column in represents these condi-
tional expectations under a specific value of . The information set in (11)
implies that the conditional expectation of the sequence {�t, . . . , �t�q�1} is
updated whenever a new observation arrives.

For the calculation of in (11), we first note that the value of in (9)
represents a sequence of states {st, st�1, . . . , st�l}. We then define as
the value of st�k when the regime is j. Following the idea in page 35 of Gray
(1996), the value of in (11) can be calculated recursively as:

(12)

where

(13)

such that
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The term in (13) denotes the inference about the probabil-
ity that based on the information set . Specifically, the conditional
expectation of lagged error terms, , in (13) is calculated by integrating
over all the corresponding values of possible paths based on the Nl�1-state
Markov chain with the transition matrix defined in (10). Furthermore, all the
elements in can be recursively calculated by (12) and (13) provided that
we have and . The Value of across i
is collected into one vector, :

(15)

Moreover, can be found by iterating on (22.4.5) and (22.4.6) in Hamilton
(1994a, p. 692) as follows:

(16)

(17)

where 1 represents an (Nl�1 � 1) vector of ones, the symbol denotes an element-
by-element multiplication, and ht is the conditional density of wt given and

:

(18)

such that

(19)

The starting value can be set to be the vector of unconditional probabilities
described in (22.2.26) of Hamilton (1994a, p. 684).

It follows that the parameters z can be estimated by maximizing the fol-
lowing log-likelihood function with respect to these unknown parameters:

L(z) � a
T
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ĵ1 ƒ0

5j � 1, 2, . . . , Nl�1.

f(wt ƒ s*t � j, �†
t�1) �

1

22psst(s*t� j)

 exp e�(êt ƒs*t �j,�†
t�1

)2

2s2
st(s*t �j)

f

ht � ≥
f(wt ƒ s*t � 1, �†

t�1)
f(wt ƒ s*t � 2, �†

t�1)
o

f(wt ƒ s*t � Nl�1, �†
t�1)

¥

�†
t�1

s*t

�
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where

See (22.4.7) and (22.4.8) of Hamilton (1994a, p. 692) for the details.
With , we have a simple formula to compute in (13) as

follows:

(20)

where denotes the jth row of P* in (10), and ek indicates the k-th row of the
(q � q) identity matrix Iq. Therefore, the computational cost of our algorithm is
almost identical to that of Hamilton’s (1989) algorithm, whereby the condi-
tional expectation of the lagged error terms is succinctly calculated with the
formula in (20).

MONTE CARLO EXPERIMENT

This section illustrates the finite sample performance of the EHG algorithm for
the MRS-ARMA model. Adopting the experimental design of Psaradakis and
Sola (1998, p. 377) in evaluating the finite sample performance of Hamilton’s
(1989) algorithm when the DGP are MRS-AR(1) processes, we focus on the
following 2-state MRS-ARMA(1, 1) model:

(21)

The parameters employed are as follows:

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

The parameters in (22), except for the ones in (22f), are employed in
Psaradakis and Sola (1998, p. 377).

All the computations are performed with GAUSS. Two hundred replications
are conducted for each specification. For each sample size T, 200 additional 

u � 50.56.
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f � 50.6, 0.96

(m1, m2) � (1, 5)

(s2
1, s

2
2) � (1, 1.5)

wt � mst
� f(wt�1 � mst�1

) � et � uet�1,  et � i.i.d.N(0, s2
st
).

P*j

k � 1, 2, . . . , q

êt�k ƒs*t� j,�†
t�1

�
ek	†

t�1 � (P*j
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values are generated in order to obtain random starting values. The true param-
eters are used as the initial values for the Constrained Maximum Likelihood
(CML) GAUSS program. The maximum number of iterations for each replica-
tion is 100. We confine the search of the parameters m1 and m2 within the range
of (�20, 20) to ensure that the resulting estimates of these parameters are not
completely unreasonable. The simulation results remain intact when this range
becomes (�50, 50).

Define bias as the average estimated value minus the corresponding true
parameter. Table I demonstrates that the bias is very close to zero (especially
when the sample size is larger) for all specifications considered in the table.
The associated root-mean-squared error (RMSE) contained in Table II also
decreases with the increasing values of sample size. These observations togeth-
er reveal the potential of our algorithm in estimating the MRS-ARMA models.

EMPIRICAL HEDGING ANALYSIS

This section applies the MRS-ARMA hedging model to both S&P-500 
and FTSE-100 stock index futures contracts. The data comprise weekly spot and

TABLE I

The Finite Sample Performance of the EHG Algorithm: Bias

DGP MLE

p11 P22 f T m1 m2 f u s1 s2 p11 P22

u � 0.5
0.95 0.95 0.6 100 �0.074 0.035 �0.048 0.018 �0.057 �0.028 �0.020 �0.017

200 �0.009 0.001 �0.021 0.003 �0.022 �0.006 �0.007 �0.005
400 0.004 0.013 �0.007 �0.003 �0.007 �0.002 �0.003 �0.003
800 �0.004 0.005 �0.002 �0.006 �0.002 0.003 0.000 �0.002

0.9 100 �0.151 �0.048 �0.042 0.013 �0.054 �0.005 �0.023 �0.028
200 �0.036 0.024 �0.021 0.001 �0.023 �0.004 �0.008 �0.011
400 �0.045 �0.005 �0.010 �0.005 �0.011 0.003 �0.005 �0.002
800 �0.045 �0.032 �0.004 �0.007 �0.003 0.006 �0.001 �0.002

0.5 0.5 0.6 100 �0.003 0.000 �0.048 0.024 �0.006 �0.034 0.002 �0.016
200 0.003 �0.002 �0.020 0.009 0.000 �0.012 0.002 �0.009
400 0.005 0.003 �0.009 �0.001 0.009 �0.003 0.000 �0.011
800 0.005 �0.001 �0.005 �0.004 0.012 0.002 0.002 �0.007

0.9 100 �0.097 �0.096 �0.036 0.007 �0.013 �0.029 0.001 �0.014
200 �0.036 �0.041 �0.019 0.004 �0.005 �0.012 0.002 �0.008
400 �0.014 �0.016 �0.010 0.001 0.003 �0.005 �0.001 �0.012
800 �0.008 �0.013 �0.005 �0.004 0.007 0.000 0.001 �0.006

Notes. Simulations are based on 200 replications. The DGP is the MRS-ARMA(1,1) model defined in (21) with u � 0.5. Other
parameters are set as m1 � 1, m2 � 5, , and as shown in (22). Bias is defined by the mean of estimated values minus
the corresponding true parameter.

s2
2 � 1.5s2

1 � 1
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futures prices. The spot and futures price data are Wednesday’s closing prices,
ranging from May 9, 1984 to July 29, 2009 and listed in the Datastream
Database. When a holiday occurs on Wednesday, Tuesday’s closing price is
taken instead. We follow the method of Alizadeh and Nomikos (2004) to start
the in-sample estimation on May 9, 1984 and reserve one year for an out-of-
sample comparison. In other words, the data used for the in-sample estimation
range from May 9, 1984 to July 30, 2008 (1,264 observations), while the data
for the out-of-sample hedging comparison start on August 6, 2008 and end on
July 29, 2009 (52 observations). Moreover, �St and �Ft are calculated as the
differences in the logarithms of prices multiplied by 100.

Extending the idea behind the aforementioned MRS1, MRS2, and MRS3
models, we propose the following MRS-MA(1) hedging model:

(23)

Following the MRS models studied by Alizadeh and Nomikos (2004), the tran-
sitional probabilities and variances of the corresponding three MRS-MA(1)
models are set as follows:

¢St � mst
� bst

¢Ft � ut,st
� ust

ut�1,st�1
.

TABLE II

The Finite Sample Performance of the EHG Algorithm: RMSE

DGP MLE

p11 P22 f T m1 m2 f u s1 s2 p11 P22

u � 0.5
0.95 0.95 0.6 100 0.573 0.659 0.135 0.135 0.184 0.191 0.061 0.089 

200 0.392 0.340 0.083 0.099 0.087 0.099 0.027 0.028 
400 0.257 0.259 0.051 0.060 0.060 0.070 0.019 0.020 
800 0.171 0.174 0.039 0.039 0.038 0.051 0.012 0.013 

0.9 100 1.775 1.692 0.074 0.136 0.173 0.445 0.079 0.105 
200 1.199 1.133 0.045 0.089 0.101 0.116 0.032 0.047 
400 0.891 0.890 0.028 0.056 0.064 0.072 0.028 0.021 
800 0.631 0.602 0.017 0.035 0.043 0.053 0.012 0.014 

0.5 0.5 0.6 100 0.438 0.462 0.141 0.164 0.133 0.165 0.083 0.084 
200 0.283 0.310 0.084 0.098 0.078 0.106 0.057 0.063 
400 0.220 0.224 0.053 0.068 0.063 0.064 0.040 0.045 
800 0.144 0.153 0.040 0.045 0.043 0.045 0.026 0.029 

0.9 100 1.723 1.744 0.074 0.110 0.116 0.148 0.075 0.078 
200 1.118 1.140 0.041 0.075 0.070 0.098 0.055 0.059 
400 0.838 0.842 0.027 0.054 0.059 0.061 0.038 0.043 
800 0.574 0.580 0.018 0.034 0.041 0.041 0.026 0.028 

Notes. Simulations are based on 200 replications. The DGP is the MRS-ARMA(1,1) model defined in (21) with u � 0.5. Other
parameters are set as m1 � 1, m2 � 5, , and as shown in (22).s2

2 � 1.5s2
1 � 1
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MRS2-MA(1) module: 

MRS3-MA(1) module: 

The time-varying transitional probabilities, P12,t and P21,t, and variances, ,
are specified in (4) and (5). Note that all these MRS-MA(1) models can be eas-
ily estimated with the EHG algorithm illustrated in the earlier section.

Tables III and IV present parameter estimates from the MRS-MA(1) mod-
els for the S&P-500 and FTSE-100 stock indices, respectively. Clearly, the
parameters of the MA(1) terms, u1 and u2, for all three models are significantly
different from zero in both the S&P-500 and FTSE-100 markets. This explains
the necessity for including an MA(1) term into the empirical hedging model so
as to control the autocorrelations found in the index returns.

We note that hedgers sell a specific number of futures contracts for each
unit of the underlying asset in order to reduce their price risk exposure. This
implies that at any time t, hedgers possess a portfolio with a return of (�St �

bt�t�1�Ft), where bt�t�1 is the time t hedge ratio calculated from the time t � 1
information set. In other words, the hedge ratio, bt�t�1, is chosen ex ante in
practice. The major concern of hedgers is how well they can hedge their posi-
tions in the future. We thus employ out-of-sample hedging performance as the
criterion for model comparison.

Following Alizadeh and Nomikos (2004), Lee and Yoder (2007a,b), and
Alizadeh et al. (2008), we measure the relative performances among various
hedging strategies generated by the OLS, constant OLS, GARCH, MRS, MRS-
MA(1), and unhedged strategies by calculating the variance of the returns for
the portfolios as:

(24)

where denotes the estimate of the time t hedge ratio estimated from
Model i based on the time t � 1 information set. The hedging strategy producing
the smallest variance is the most desirable one which effectively helps hedgers
avoid future price movements. In the following empirical studies, the time t
hedge ratio for the OLS hedging strategy is estimated based on the OLS model in
Equation (1) and the information set at time t, whereas the constant OLS hedg-
ing strategy adopts a fixed hedge ratio estimated based on the information set in
the beginning of the hedging period. In other words, the constant OLS hedging
strategy requires no rebalancing once the hedged portfolio is constructed. 

b̂Modeli
t ƒt�1

Var(¢St � b̂Modeli
t ƒt�1 ¢Ft)

s2
t,st

ut,st
� nid(0, s2

t,st
), Pt � cp11,t p21,t

p12,t p22,t
d .

ut,st
� nid(0, s2

st
), Pt � cp11,t p21,t

p12,t p22,t
d

MRS1-MA(1) model: ut,st
� nid(0, s2

st
), Pt � cp11 p21

p12 p22
d
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The hedge ratio for the GARCH hedging strategy is derived from Equation (12)
of Myers (1991) with a bivariate GARCH framework. Furthermore, is
set to be 0 for the unhedged strategy.

We now discuss how to compute the hedge ratio for the 2-state MRS
framework (without MA(1) term) when the estimates of are at hand, i.e., 

and . Note that the estimates of b1 and b2 under the MRS models are calcu-
lated with Hamilton’s (1989) algorithm. Since the market regime st is unob-
served, we follow the idea of Lee, Yoder, Mittelhammer, and McCluskey (2006)

b̂2

b̂1bst

b̂Unhedged
t ƒt�1

TABLE III

Estimated Parameters of Various Models for S&P-500

MRS1 MRS2 MRS3 MRS1-MA(1) MRS2-MA(1) MRS3-MA(1)

a1 0.0501 0.0504 0.0683 0.0494 0.0647 0.0622
(0.0076) (0.0076) (0.0090) (0.0057) (0.0056) (0.0052)

a2 �0.0854 �0.0771 �0.3905 �0.1734 �0.4134 �0.2719
(0.0335) (0.0297) (0.0574) (0.0565) (0.0400) (0.0244)

b1 0.9893 0.9890 0.9766 0.9843 0.9793 0.9777
(0.0044) (0.0045) (0.0037) (0.0038) (0.0038) (0.0026)

b2 0.9173 0.9251 0.9154 0.9081 0.9050 0.9569
(0.0144) (0.0127) (0.0166) (0.0166) (0.0179) (0.0075)

u1 �0.3130 �0.4338 �0.4715
(0.0328) (0.0305) (0.0362)

u2 �0.7012 �1.5459 �1.3781
(0.1447) (0.1375) (0.1133)

p11 0.8209 0.8383
(0.0249) (0.0255)

p22 0.6331 0.3274
(0.0725) (0.0946)

w0,1 1.2887 �3.8259 1.1181 0.4387
(0.2898) (2.4613) (0.2480) (0.2121)

w1,1 �0.5890 �4.5058 �1.9617 �2.7606
(0.5605) (1.8880) (0.4477) (0.3805)

w0,2 �0.6043 �1.9916 �2.5389 �1.6482
(0.5179) (0.6011) (0.5999) (0.3482)

w1,2 �2.6695 0.6456 �1.5172 �1.5437
(1.0047) (0.3836) (1.0503) (0.8329)

s1 0.1759 0.1721 0.1951 0.2244
(0.0097) (0.0089) (0.0099) (0.0056)

s2 0.5284 0.5196 0.5598 0.4129
(0.0262) (0.0243) (0.0337) (0.0326)

l0,1 �1.6559 �3.7686
(0.4596) (0.0913)

l1,1 �1.8971 �1.0366
(0.1781) (0.1170)

l0,2 �0.8775 �2.8581
(0.1178) (0.2003)

l1,2 �3.4742 �3.3659
(0.0942) (0.4986)

Notes. Figures in parentheses are standard errors. The sample period ranges from May 9, 1984 to July 30, 2008.
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by determining the expected hedge ratio from the weighted average of and
as:

where the weight, P(st � i ��t), denotes the inference about the probability that
st � i based on the information set �t. Note that �t is defined as:

�  b̂1P(st � 1 ƒ �t) � b̂2P(st � 2 ƒ �t)

b̂MRS
t ƒt � E5b̂MRS

st
ƒ �t6

b̂2

b̂1

TABLE IV

Estimated Parameters of Various Models for FTSE-100

MRS1 MRS2 MRS3 MRS1-MA(1) MRS2-MA(1) MRS3-MA(1)

a1 0.0294 0.0264 0.0268 0.0279 0.0309 0.0551
(0.0093) (0.0091) (0.0097) (0.0117) (0.0077) (0.0080)

a2 �0.0223 �0.0196 0.0371 �0.0185 �0.0177 �0.2763
(0.0311) (0.0366) (0.0378) (0.0292) (0.0226) (0.0311)

b1 0.9673 0.9669 0.9685 0.9697 0.9755 0.9589
(0.0048) (0.0045) (0.0046) (0.0048) (0.0047) (0.0052)

b2 0.8628 0.8585 0.8643 0.8806 0.8865 0.9262
(0.0127) (0.0133) (0.0116) (0.0137) (0.0112) (0.0130)

u1 �0.2102 �0.2329 �0.2975
(0.0370) (0.0342) (0.0351)

u2 �0.2271 �0.2293 �0.9443
(0.0539) (0.0519) (0.4677)

p11 0.9321 0.9281
(0.0182) (0.0354)

p22 0.8837 0.8743
(0.0341) (0.0647)

w0,1 3.0922 3.3949 1.9364 1.2434
(0.3438) (0.4228) (0.2921) (0.2240)

w1,1 1.2429 1.3705 �0.6300 �0.7070
(0.3617) (0.4618) (0.4594) (0.2646)

w0,2 1.7003 1.7913 �0.4707 �0.2356
(0.3383) (0.3891) (0.3550) (0.2727)

w1,2 �0.0345 �0.4450 �2.1453 0.5882
(0.1846) (0.3976) (0.5128) (0.3730)

s1 0.2248 0.2263 0.2203 0.2016
(0.0098) (0.0093) (0.0149) (0.0104)

s2 0.6580 0.6662 0.6473 0.6244
(0.0276) (0.0283) (0.0293) (0.0235)

l0,1 �2.8660 �3.4169
(0.1029) (0.1586)

l1,1 0.2481 �0.9426
(0.1663) (0.1106)

l0,2 �0.5878 �1.0412
(0.1305) (0.2064)

l1,2 0.3034 �0.5532
(0.1049) (0.1229)

Notes. Figures in parentheses are standard errors. The sample period ranges from May 9, 1984 to July 30, 2008.
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in which Wt contains the observations from time 1 to time t, and z is a column
vector including all corresponding parameters. However, �t does not include
the lagged innovation sequence which is required for the EHG algorithm.
Given this set-up, the one-step-ahead forecasts of the hedge ratio under the
MRS models are:

(25)

When computing the hedge ratios from the 2-state MRS-MA(1)
models, the state variable characterizing the regime path from time t � 1 to
time t becomes:

It follows that the inference for the probability of st � 1 based on the information
set is the sum of and , and the inference for
the probability of st � 2 is the sum of and .
Accordingly, the one-step-ahead out-of-sample forecast of the MRS-MA(1) strat-
egy is:

(26)

Herein, , i � 1, 2, 3, 4, are elements in and can be found
in (17).

Table V displays the empirical out-of-sample performance of various hedg-
ing strategies. In addition to portfolio variances, this table also presents the
variance reduction of various hedging strategies with respect to the unhedged
portfolio. Based on the one-year out-of-sample hedging performance, the
MRS3-MA(1) hedging strategy produces the smallest portfolio variances on an
ex ante basis and outperforms its competing models in terms of portfolio vari-
ance reduction for both S&P-500 and FTSE-100 markets, although these
improvements are limited. As expected, the MRS1-MA(1) model provides the
poorest variance reduction among the MRS-MA(1) models due to the extra

ĵt�1 ƒtP(s*t�1 � i ƒ �†
t )

� b̂2[P(s*t�1 � 2 ƒ �†
t ) � P(s*t�1 � 4 ƒ �†

t )].

� b̂1[P(s*t�1 � 1 ƒ �†
t ) � P(s*t�1 � 3 ƒ �†

t ]

b̂MRS�MA(1)
t�1 ƒt � E5b̂MRS�MA(1)

st�1
ƒ �†

t 6

P(s*t � 4 ƒ �†
t�1)P(s*t � 2 ƒ �†

t�1)
P(s*t � 3 ƒ �†

t�1)P(s*t � 1 ƒ �†
t�1)�†

t�1

s*t � 4 if st � 2, st�1 � 2.

s*t � 3 if st � 1, st�1 � 2

s*t � 2 if st � 2, st�1 � 1

s*t � 1 if st � 1, st�1 � 1

s*t

b̂MRS�MA(1)
t ƒt�1

� b̂1P(st�1 � 1 ƒ �t) � b̂2P(st�1 � 2 ƒ �t).

b̂MRS
t�1 ƒt � E5b̂MRS

st�1
ƒ �t6

�t � (Wt, z)
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restrictions imposed on the parameter space. This phenomenon is shared with-
in the three MRS models as well.

As shown in Panel A of Table V, the variance of the hedged position is 0.1877
in the S&P-500 market when a constant OLS hedging strategy is adopted. It fol-
lows that the standard deviation is 0.433. For the MRS3-MA(1) model, the vari-
ance of the hedged portfolio is 0.1826, which means that the standard deviation is
0.427. One anonymous referee suggests another way to explain the economic sig-
nificance of our findings. Suppose that the returns for the hedged portfolio follow
a symmetrically normal distribution, and the initial value of the spot position to be
hedged is 1 million. This implies that the 95% confidence interval of the price

TABLE V

One-Year Out-of-Sample Hedging Effectiveness of MRS-MA(1) Models

S&P500 FTSE100

Variance Reduction wrt Variance Reduction wrt
Variancea Unhedged Positionb Variancea Unhedged Positionb

Panel A: One-year out-of-sample hedging effectivenessc

Unhedged 22.7881 – 16.9723 –
OLS 0.1872 99.179% 0.1790 98.945%
Constant OLSd 0.1877 99.176% 0.1849 98.911%
GARCH(1,1) 0.1999 99.123% 0.1385 99.184%
MRS1 0.1998 99.123% 0.1641 99.033%
MRS2 0.1917 99.159% 0.1591 99.063%
MRS3 0.1866 99.181% 0.1531 99.098%
MRS1-MA(1) 0.1861 99.183% 0.1537 99.094%
MRS2-MA(1) 0.1834 99.195% 0.1458 99.141%
MRS3-MA(1) 0.1826 99.199% 0.1365 99.196%

Panel B: Two-year out-of-sample hedging effectivenesse

Unhedged 14.0275 – 12.9667 –
OLS 0.1499 98.931% 0.1755 98.647%
Constant OLSd 0.1508 98.925% 0.1873 98.556%
GARCH(1,1) 0.1540 98.902% 0.1217 99.061%
MRS1 0.1557 98.890% 0.1521 98.827%
MRS2 0.1511 98.923% 0.1494 98.848%
MRS3 0.1489 98.939% 0.1431 98.896%
MRS1-MA(1) 0.1481 98.944% 0.1394 98.925%
MRS2-MA(1) 0.1490 98.938% 0.1379 98.937%
MRS3-MA(1) 0.1458 98.961% 0.1304 98.994%

aVariance stands for the variance of the hedged portfolio calculated based on Equation (24).

bVariance reduction wrt unhedged position is calculated by: [Var(unhedged position)�Var(Modeli)]/Var(unhedged position). It shows
the variance reduction of various strategies relative to the unhedged position.

cThe one-year out-of-sample period is from August 6, 2008 to July 29, 2009 (52 observations).

dThe constant OLS hedging strategy adopts a fixed hedge ratio estimated based on the OLS model in Equation (1). This strategy
requires no rebalancing once it has been put in place.

eThe two-year out-of-sample period is from August 8, 2007 to July 29, 2009 (104 observations).
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change in the hedged portfolio from the MRS3-MA(1) model is about $117.6 nar-
rower than that from the constant OLS strategy at either end per week. For the
FTSE-100 market, the 95% confidence interval of the price change in the hedged
portfolio from the MRS3-MA(1) hedging strategy is $1,195.6 narrower than that
from the constant OLS hedging method at either end per week.

To check whether the results in Panel A of Table V are sensitive to the
choice of a one-year out-of-sample period, we proceed with robust checking by
conducting a two-year out-of-sample hedging comparison in Panel B.
Particularly, the data used in Panel B of Table V for the in-sample estimation
range from May 9, 1984 to August 1, 2007 (1,212 observations), while the data
for the out-of-sample hedging comparison start on August 8, 2007 and end on
July 29, 2009 (104 observations). As we find in Panel A, all the MRS-MA(1)
models outperform their corresponding MRS counterparts in Panel B, respec-
tively. In addition, the MRS3-MA(1) method remains to generate the largest
variance reduction among the three MRS-MA(1) strategies.

For the S&P-500 market, Panel B of Table V reveals that the MRS3-
MA(1) strategy outperforms all its competitors. For the FTSE-100 market,
however, the GARCH(1, 1) strategy performs the best, and the MRS3-MA(1)
method is the second best of all approaches. This finding indicates that the
MRS-MA model performs well even under longer out-of-sample periods. It also
shows that incorporating the serially correlated returns, regime-switching
behaviors, and GARCH properties into one empirical hedging model might be
a fruitful agenda for future study.

MEASURING HEDGING PERFORMANCE BY
TRACKING TRANSACTION COSTS

Earlier section employs portfolio variance reduction to compare the relative
performance among various hedging strategies. Since the transaction cost gen-
erated from rebalancing the hedged portfolio is different under different hedg-
ing strategies, this section realistically compares the relative performance
among different strategies by tracking the transaction costs throughout the
one-year out-of-sample periods. For this reason, we analyze the economic ben-
efits of hedging methods via the mean-variance utility function used in Kroner
and Sultan (1993), Lafuente and Novales (2003), Alizadeh and Nomikos
(2004), and Alizadeh et al. (2008) as follows:

(27)

where k is the degree of risk aversion (k � 0) of the individual and xt�1 repre-
sents the return from the hedged portfolio. Following Alizadeh and Nomikos
(2004) and Alizadeh et al. (2008), we set k to be 4.

EtU(xt�1) � Et(xt�1) � k Vart(xt�1)
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To calculate the real-time return, xt�1 in (27), from the hedged portfolio
across out-of-sample periods, we first calculate the dollar return from the port-
folio based on the trading practice of futures markets and then adjust it for the
transaction costs. The last step converts the after-cost dollar return to the rate
of return. As mentioned above, the weekly data used for the one-year out-of-
sample hedging comparison range from August 6, 2008 to July 29, 2009. Thus,
the out-of-sample hedging strategy involves opening a futures position on July
30, 2008, rebalancing the hedged portfolio in the following 51 weeks, and clos-
ing out all futures contracts on July 29, 2009. For the ease of reference, we
denote July 30, 2008 as time 0, August 6, 2008 as time 1, and the end of out-
of-sample hedging comparison as time 52.

Suppose that at time 0 a hedger has a well-diversified equity portfolio
worth MV0, and he plans to hedge the spot position by using its associated
stock index futures contracts. Given the value of MV0, the time t value of the
equity portfolio is determined by:

(28)

where St is the level value of the equity index at time t. Based on Equation (3.5)
of Hull (2008), the appropriate number of futures contracts to be short for
hedging the equity portfolio is calculated as:

(29)

where Ft is the time t futures price, and M is the contract size or multiplier
specified in the futures contracts. According to the regulations of Chicago
Mercantile Exchange (CME) and London International Financial Futures and
Options Exchange (LIFFE), each S&P-500 futures contract is for delivery of
250 USD (US dollar) times the index, whereas each FTSE-100 futures con-
tract is for delivery of 10 GBP (Great Britain pound) times the index. Thus, the
multipliers for S&P-500 futures contracts and FTSE-100 futures contracts are
250 USD and 10 GBP, respectively. Since the hedger closes out all futures con-
tracts at the end of the hedge, the value of Q52 is set at zero. Note that the 
market participants are not allowed to trade a fractional futures contract in
practice. Therefore, the number of short futures contracts to hedge the equity
portfolio is Qt, which is the nearest integer of Qt. In summary, at time t the
hedger possesses a hedged portfolio with an equity portfolio worth MVt and a
short position in Qt futures contracts.

Once the appropriate number of futures contracts, i.e., Qt, for the short
hedge is decided, the number of futures contracts traded to rebalance the
hedged portfolio, At, is:

Qt �
b̂Model i

t�1 ƒ t � MVt

Ft � M
, 5t � 0, 1, . . . , 51,

MVt � MVt�1 �
St

St�1
, 5t � 1, 2, . . . , 52
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(30)

Assume that the transaction cost of futures contracts is c% of the contract value.
The transaction fee for rebalancing the futures position is then calculated as:

(31)

where �A t � represents the absolute value of At. By taking the transaction cost
into account, the return from the hedged portfolio, xt�1, is derived as:

(32)

At the end of the hedge, there is still a transaction fee arising from the closure
of the futures position. The amount of this transaction cost is denoted as C52,
acting as a reduction of the portfolio return at the end of the hedge, i.e.,

(33)

To conveniently compare the economic benefits of hedging strategies, we
assume that the initial value of the spot position to be hedged is 250 million
USD and 250 million GBP for the S&P-500 and FTSE-100 markets, respec-
tively. The relatively large spot position is designed for the convenience of
observing an integer value of change in futures positions. In fact, the preceding
assumption of the initial spot position, MV0, will be shown not to qualitatively
affect the results of the hedging performance comparison.

Figures 1 and 2 display the time series plot for the number of futures posi-
tions, Qt, in the S&P-500 and FTSE-100 markets, respectively. We observe that
the movement of Qt associated with the GARCH strategy could be very differ-
ent from the other two methods. As shown in Figure 1, the patterns of futures
positions based on the MRS3-MA(1) and GARCH methods move in opposite
directions around time 10 and 40. Similarly, for the FTSE-100 market, Figure 2
presents a very different movement of Qt around time 30.

To further highlight the difference between the MRS3 and MRS3-MA(1)
hedging strategies, we display the associated number of futures positions for
the S&P-500 and FTSE-100 markets in Figures 3 and 4, respectively.
Essentially, the futures position based on the MRS3-MA(1) strategy is less
volatile than that of the MRS3 strategy in both markets. This indicates that the
cost for rebalancing the portfolio is less for the MRS-MA model than that for

when t �51.xt�1�
(MVt�1 �MVt) � Qt � (Ft�1�Ft) � M� Ct � Ct�1

MVt
� 100

5t � 0, 1, . . . , 50.

xt�1 �
(MVt�1 � MVt) � Qt � (Ft�1 � Ft) � M � Ct

MVt
� 100,

Ct � c% � ƒ At ƒ � Ft � M, 5t � 0, 1, . . . , 52

At � e Q0 when  t � 0
Qt � Qt�1 when  t � 1, 2, . . . , 52.
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FIGURE 1
The number of short futures contracts for hedging the S&P-500 spot position based on the OLS,

GARCH, and MRS3-MA(1) methods. The initial value of the spot position to be hedged, i.e., MV0, is
250 million USD.

FIGURE 2
The number of short futures contracts for hedging the FTSE-100 spot position based on the OLS,
GARCH, and MRS3-MA(1) methods. The initial value of the spot position to be hedged, i.e., MV0, 

is 250 million GBP.
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FIGURE 3
The number of short futures contracts for hedging the S&P-500 spot position based on the MRS3 and

MRS3-MA(1) methods. The initial value of the spot position to be hedged, i.e., MV0, is 
250 million USD.

FIGURE 4
The number of short futures contracts for hedging the FTSE-100 spot position based on the OLS,

MRS3, and MRS3-MA(1) methods. The initial value of the spot position to be hedged, i.e., MV0, is 250
million GBP.
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the MRS counterpart. This observation clearly implies that a fair comparison
among various hedging strategies should explicitly take the transaction costs
into account. Moreover, Figures 1 and 2 show that the number of futures 
contracts from the OLS model seems to be usually lower than those of the
MRS3-MA(1) model. This phenomenon stands out very clearly in the FTSE-100
market. On the other hand, by using the MRS3 model as the benchmark, the
OLS hedge ratio is not always lower than the corresponding MRS3 hedge ratio
for the FTSE-100 market. This indicates that the value of the hedge ratio might
change when the autocorrelations within index returns are taken into account.

In the literature, Park and Switzer (1995) and Alizadeh and Nomikos
(2004) suggest that the transaction costs in the S&P-500 and FTSE-100 mar-
kets are typically between 0.010 and 0.015% of the contract value. We thus
assume the transaction cost c% as 0.010, 0.015, 0.050, and 0.200% for the
out-of-sample hedging comparison. The empirical results are contained in
Tables VI and VII.

As expected, the average return of the hedged portfolio, Et(xt�1), is found
to decrease with an increase in transaction cost. This implies that the weekly
utility improvements of the dynamic MRS3-MA(1) hedging strategy with
respect to the OLS counterpart (measured by )
might deteriorate under a higher transaction cost scenario. This conjecture is
clearly borne out in Table VI and VII. In particular, Table VI shows that 
the weekly utility improvement of the MRS3-MA(1) method with respect to the
OLS strategy is 0.0329 in the S&P-500 market if the transaction cost is
0.010%. When the transaction cost increases to be 0.200%, the corresponding
utility improvement changes to be 0.0319. We also observe that the constant
OLS hedging model outperforms the OLS hedging strategy in the S&P-500
market, whereas it is not superior to the OLS hedging strategy in the FTSE-
100 market. Nevertheless, in both Tables VI and VII, the MRS3-MA(1) hedges
bring the best economic benefits among all competing models for both futures
markets, although the transaction cost is as big as 0.200%.

We now investigate the impacts of the initial spot position MV0 on the
weekly utility of hedging strategies and illustrate the results in Table VIII. The val-
ues of MV0 considered are 50, 100, and 200 million, respectively, while the
transaction cost is fixed at 0.050%. Qualitatively, the size of the initial spot
position does not have a strong impact on the hedging performance compari-
son under various configurations considered in Table VIII, mainly because the
MRS3-MA(1) hedging strategy still ranks the best among all hedging strategies.
This is another evidence showing the potential of the MRS3-MA(1) hedge
strategy for both the S&P-500 and FTSE-100 markets.

EtU(xMRS3�MA(1)
t�1 ) � EtU(xOLS

t�1 )
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CONCLUSIONS

This study applies a class of MRS-ARMA models to improve the hedging effec-
tiveness of stock index futures contracts by incorporating the autocorrelations
and regime-switching behaviors into empirical hedging models. To resolve the
NT exploding regime paths problem induced by the presence of MA terms, 
we develop an EHG algorithm based on the method of Hamilton (1989) and
the idea of Gray (1996) in order to estimate the MRS-ARMA hedging models. The
simulations show that the bias of the estimation by the EHG algorithm is very
close to zero and the associated RMSE decreases with the increasing values of
the sample size, revealing that the likelihood-based estimator based on our
algorithm possesses a well-defined asymptotic behavior.

We also apply the EHG algorithm to compute the hedge ratios of three MRS-
MA(1) models in both the S&P-500 and FTSE-100 markets. The results indicate
that the hedging performances of the MRS-MA(1) strategies are superior to those
of their corresponding MRS counterparts considered in Alizadeh and Nomikos
(2004) in terms of out-of-sample variance reduction. When we take the transac-
tion cost associated with opening, rebalancing, and closing the futures contracts
into account, the MRS3-MA(1) model is found to slightly outperform the other
models in a one-year out-of-sample hedging comparison for both markets.

One potential extension of this study is to incorporate the autocorrela-
tions, regime-switching behaviors, and GARCH properties into one empirical
hedging model. The EHG algorithm needs to be modified to accommodate the
presence of GARCH effects. That will be left for our future study.

TABLE VIII

Out-of-Sample Hedging Effectiveness Under Different Initial Spot Positionsa

Weekly Utilityb: S&P-500 Weekly Utilityb: FTSE-100

MV0 (million) 50 100 200 50 100 200

Unhedged �88.1299 �88.1299 �88.1299 �65.9173 �65.9173 �65.9173
OLS �0.7818 �0.7840 �0.7805 �0.7188 �0.7200 �0.7197
Constant OLS �0.7612 �0.7739 �0.7739 �0.7557 �0.7604 �0.7604
GARCH(1,1) �0.8064 �0.8092 �0.8112 �0.5498 �0.5496 �0.5504
MRS1 �0.8233 �0.8218 �0.8266 �0.6482 �0.6479 �0.6473
MRS2 �0.7923 �0.7886 �0.7886 �0.6340 �0.6331 �0.6337
MRS3 �0.7781 �0.7721 �0.7723 �0.6117 �0.6114 �0.6117
MRS1-MA(1) �0.7726 �0.7711 �0.7699 �0.6054 �0.6066 �0.6070
MRS2�MA(1) �0.7589 �0.7612 �0.7578 �0.5800 �0.5792 �0.5789
MRS3-MA(1) �0.7512 �0.7448 �0.7483 �0.5443 �0.5437 �0.5445

aThe out-of-sample period is from August 6, 2008 to July 29, 2009 (52 observations).

bWeekly utility is the average weekly utility calculated by Equation (27) based on assumptions of a coefficient of risk aversion of 4 and
a transaction cost of 0.050%.
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