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A B S T R A C T

PURPOSE
To investigate the impact of regression methods on resting-state functional magnetic res-
onance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered
effective for reducing the interference of physiological noise on the signal time course.
However, it is unclear whether the regression method benefits rsfMRI analysis.
MATERIALS AND METHODS
Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the
experiments. We used node analysis and functional connectivity mapping to assess the
brain default mode network by using five combinations of regression methods.
RESULTS
The results show that regressing the global mean plays a major role in the preprocessing
steps. When a global regression method is applied, the values of functional connectivity
are significantly lower (P � .01) than those calculated without a global regression. This
step increases inter-subject variation and produces anticorrelated brain areas.
CONCLUSION
rsfMRI data processed using regression should be interpreted carefully. The significance
of the anticorrelated brain areas produced by global signal removal is unclear.

Introduction
Functional magnetic resonance imaging (fMRI) is used to esti-
mate brain function and neuronal activities. The in vivo fMRI
technique1 introduced in 1992 is a critical scientific develop-
ment. Since 1992, fMRI has become an essential tool in neu-
roscience research. Early fMRI research generally focused on
task-based studies. Task-based studies require participants to
perform a specific task (eg, tapping a finger or answering ques-
tions) according to a tailored time sequence or paradigm. Re-
searchers then predict the signal response by using specific
models, such as a hemodynamic response function, and use
statistics to identify brain areas related to the performed task.

Research has suggested that intrinsic activity affects overall
brain function.2 This intrinsic activity may represent sponta-
neous cognition, which task-based fMRI is unlikely to measure.
In 1995, Biswal measured function connectivity in the motor
cortex of a resting human brain by using fMRI.3 Resting-state
fMRI (rsfMRI) is now used to investigate brain functional con-
nectivity. rsfMRI studies have demonstrated that the sponta-
neous neuronal activity of human brains exhibits low-frequency
fluctuations in signal time courses in magnetic resonance im-
ages. The coherence of low-frequency fluctuations is called
functional connectivity (FC). Regions with high FC between

each other constitute a resting-state network (RSN). rsfMRI
can be used to investigate brain functional network structure
and psychiatric disorders.4 Compared with task-based fMRI,
resting-state experiments are relatively relaxing because they
require neither task design nor stimulated states. Subjects are
requested to rest in the MRI scanner and not think of anything
in particular. rsfMRI is used for neurological diseases including
Alzheimer’s disease,5 autism,6 and attention-deficit hyperactiv-
ity disorder.7 Of all observed RSNs, the default mode network
(DMN) is a highly reproducible network. Research has sug-
gested that the DMN is associated with integrating cognitive
functions, emotional processing, and daydreaming.8

The fMRI signal fluctuation of resting-state activities occurs
mainly in a low-frequency range (approximately less than .15
Hz),9,10 which is close to the frequency of human physiological
motions such as respiration and cardiac pulsation. Physiological
motions can induce signal modulations in fMRI time series.11

Overlapping frequency ranges between physiological motion
and resting-state activities reduce the reliability of rsfMRI. Gen-
erally, rsfMRI studies manage this issue by using regression
analysis. Regression removes nuisance variances caused by fac-
tors such as physiological motion, head movements, and base-
line drifts.
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However, it is unclear whether regression analysis should be
performed, especially for the nuisance variance estimated using
a global mean.12 For example, research has indicated that global
mean regression affects FC results9 and has suggested that using
regression is a valid and useful processing method.12 However,
studies have supported that global signal regression does not
yield a correction that reveals underlying neuronally induced
fluctuations.13,14 In addition, the existence of an anticorrelated
network in global regression is controversial.12–16

This study explores the effects of regression analysis when
using different combinations of nuisance variances on in vivo
rsfMRI data sets. The purpose of this study was to identify
an appropriate analysis procedure for future rsfMRI studies
by comparing FC results obtained using different regression
methods.

Materials and Methods
Participants and In Vivo Experiment

We performed all imaging experiments by using a 3.0 Tesla
whole-body MRI system (Siemens, Skyra, Erlangen, Germany)
equipped with a 32-channel head coil. Twenty volunteers (10
men and 10 women; aged 23.4 ± 1.5 years) participated in the
experiments after providing institutionally approved consent.
We first obtained scout localizers and selected 33 transver-
sal slices of the whole brain. The rsfMRI protocol contains a
gradient-echo echo-planar-imaging (EPI) sequence. The follow-
ing EPI imaging parameters were applied: TR/TE of 2000/30
milliseconds, 220-mm FOV, 5-mm slice thickness, 4 dummy
scans, 204 measurements, and a matrix size of 64×64. The to-
tal scan time was approximately 7 minutes. Anatomical images
were acquired using a 3D MP-RAGE sequence to co-register
all participants. The following imaging parameters for the 3D
MP-RAGE were applied: TR/TE of 2530/1.64 milliseconds,
256-mm FOV, 7° flip angle, 176 sagittal slices, a matrix size of
256×256, a voxel size of 1×1×1 mm, and a nonselective inver-
sion preparation with an inversion time of 1,100 milliseconds.

Image Preprocessing Procedure

Each participant’s data were transferred offline to a per-
sonal computer and processed using Matlab R© (Math-
works, Natick, MA, USA), a statistical parametric map-
ping (SPM) system, and data processing assistant for
resting-state fMRI (DPARSF). SPM and DPARSF are
available online (SPM:http://www.fil.ion.ucl.ac.uk/spm;
DPARSF:http://www.restfmri.net). The first four dummy-scan
volumes were discarded during the image preprocessing
procedure. The remaining 200 measurements underwent
slice timing to correct timing inconsistencies in each volume
and image realignment to correct temporal image shifts
caused by head movements. Subsequently, image volumes
were normalized to Montreal Neurological Institute (MNI)
coordinates and the voxel size was resampled to 3×3×3 mm.
The matrix size of the obtained volume was 61×73×61. Each
volume was smoothed using a Gaussian filter set to full width
half maximum (FWHM) at 4×4×4 mm. Spatial smoothing
suppressed noise and individual differences in gyral and sulcal

anatomy. A temporal bandpass filter (.01-.08 Hz) was applied
to the volumes to reduce physiological noise.

Regression of Nuisance Variances

Three types of nuisance variance are typically estimated in
rsfMRI research: (1) six motion parameters obtained after a
motion correction procedure; (2) time-intensity courses aver-
aged across cerebrospinal fluid (CSF) voxels and white matter
(WM) (referred to as the CSF curve and WM curve); and (3) a
signal time course averaged across voxels for the entire brain
(referred to as the global curve). The resting-state experiment
generally lasts longer than 5 minutes, during which the par-
ticipant could move his or her head. Motion parameters can
be regressed to reduce motion-related noise. Research has sug-
gested that regressions of the CSF curve, WM curve, and global
curve can reduce physiological noise or baseline drift.17

We compared the FC results of the DMN by using differ-
ent combinations of nuisance variances, including six motion
parameters and the WM curve, CSF curve, and global curve.
The regression analyses corresponding to these variances are
expressed as motion-reg, WM-reg, CSF-reg, and global-reg, re-
spectively. We obtained the six motion parameters after re-
aligning EPI volumes. We produced the WM curve and CSF
curve by using the built-in CSF and WM masks of DPARSF in
the MNI152 space. We obtained the global curve by averaging
the signal of all brain voxels in each EPI volume and conducted
regressions of nuisance variances by using R=(I−X(XTX)−1XT )
where y is a vector containing a time series of preprocessed EPI
volumes, X is a matrix consisting of predictor signal variance,
and R represents the regression analysis results. R was a time
series with the nuisance variances removed.

This study investigated the effects of five combinations of
four nuisance variances (motion, CSF curve, WM curve, global
curve). Regressing the four nuisance variances was suggested
in the literature.18 The five following combinations were used:
method 1 (M1): no regression; M2: motion-reg; M3: motion-
reg; CSF-reg and WM-reg; M4: motion-reg and global-reg; and
M5: motion-reg, CSF-reg, WM-reg, and global-reg.

Analysis of the Functional Connectivity of the DMN

We derived FC results after data preprocessing by using two
methods, node analysis and FC mapping. Node analysis was
performed to calculate Pearson’s correlation coefficients (r) be-
tween signal time courses obtained from each DMN node,19

including the posterior cingulate cortex (PCC), ventral medial
prefrontal cortex (VMPFC), inferior parietal lobule (IPL), lat-
eral temporal cortex (LTC), dorsal medial prefrontal cortex
(DMPFC), and parahippocampal gyri. Table 1 shows the MNI
coordinates of the 13 nodes. Node analysis produced a 13×13
FC matrix based on each data set (M1 to M5) from each par-
ticipant.

For FC mapping, a seed-based correlation method was used
to produce whole-brain FC maps in which the seed point was
located in the PCC (MNI coordinate: −5, −49, 40). The FC-
mapping procedure was conducted to create FC maps by us-
ing a voxel-by-voxel calculation of r-values between the signal
time courses obtained from each voxel and those in the PCC.
The time course of each node (or seed point) was obtained by

2 Journal of Neuroimaging Vol 00 No 0 XXX 2014



Table 1. The MNI Coordinates

Coordinates(x, y, z) Seed Region

Node 1 −4, 50, −11 Medial prefrontal cortex (ventral)
Node 2 −1, 55,−17 Medial prefrontal cortex (anterior)
Node 3 −5,−49, 40 Posterior cingulate cortex
Node 4 −43,−60, 30 Left lateral parietal cortex
Node 5 45, −60, 29 Right lateral parietal cortex
Node 6 −7, 44, 48 Left superior frontal cortex
Node 7 20, 46, 49 Right superior frontal cortex
Node 8 −57, −17, −16 Left inferior temporal cortex
Node 9 54, −6, −16 Right inferior temporal cortex
Node 10 −22,−32, −8 Left parahippocamal gyrus
Node 11 17, −26, −8 Right parahippocamal gyrus
Node 12 12, 52, 31 Cerebellar tonsils
Node 13 5,−52, 9 Retrosplenial

The MNI coordinates of the 13 nodes in the default mode network.

averaging the signal time course of the seven voxels surround-
ing the node. The sampling distribution of r was not normally
distributed. Therefore, for subsequent data analysis, the r-values
obtained in both analyses were transformed to Fisher’s z-values
by using Fisher’s r-to-z transformation. Fisher’s z-value is the
inverse hyperbolic tangent of r, given by Z = tanh–1r where z
refers to Fisher’s z. 3D FC maps were generated using the data
sets (M1 to M5) from each participant and five mean 3D FC
maps for all participants.

Statistical Analysis

We generated 100 FC matrices (20 participants, 5 data sets)
to assess the FC differences between the different regression
methods. We used a Student’s t-test to analyze these differences
and considered differences statistically significant when P <

.01. We calculated the means, standard deviations (SDs), and
coefficients of variations (COVs) of the FC matrices across all
participants.

Results
Figure 1 displays the means, SDs, and COVs of the 13×13 FC
matrices calculated using data sets M1 to M5. A paired Student’s
t-test revealed that the five mean FC matrices were significantly
different from each other (P < .01). The FC matrices were sepa-
rated into two groups based on appearance (Group 1: M1, M2,
and M3; Group 2: M4 and M5). In Group 1 (G1), the mean FC
values gradually decreased from M1 to M3. The mean FC for
each node-to-node connection in Group 2 (G2) was significantly
lower than those in G1. Most elements in the COV matrices of
G2 were higher than those of G1. The main difference between
G1 and G2 was global-reg. We performed paired t-tests on FC
matrices obtained using different regression methods (M1 to
M5). Figure 2 displays the P-value matrices of all comparisons.
Figure 3 shows the FC values between the PCC and the other
12 nodes. It displays the FC means, SDs, and COVs obtained
by conducting node analysis. The values were extracted from
the third row of each FC matrix shown in Figure 1.

Figure 4 displays the average FC maps calculated using all
data sets (M1 to M5). Figure 4a shows color-coded FC maps.

Figure 4b shows FC maps in which the Fisher’s z thresholds
(z > .2 or z < .2) are superimposed onto T1-weighted images.
The anticorrelated areas, indicated in purple in M3 to M5,
were absent in M1 and M2. Anticorrelated voxels from the M3
data set were mainly distributed inside brain ventricles. This
is most likely false connectivity. The observation of anticorre-
lated areas in M4 and M5 is consistent with previously reported
results.12,18,20 In M4 and M5, the FC values in the left and right
parahippocampal gyri are mostly less than .2, and, thus, are not
seen in Fig. 4b.

Discussion and Conclusion
This study investigated whether regression analysis is required
in rsfMRI preprocessing and whether anticorrelations observed
in rsfMRI are artificially introduced by global-curve regres-
sions. We compared the FC results obtained when using five
combinations of regression methods (M1 to M5) and two data
analysis schemes (node analysis and FC mapping).

Node analysis demonstrated the FC between each of the 13
nodes. The mean Fisher’s z-values were lower in G2 than in
G1. COVs were prominently higher in G2 than in G1. The
FC matrices, showing correlations between time courses of the
13 DMN nodes, demonstrated the same mean, SD, and COV
trends. The major difference between G1 and G2 was the in-
troduction of global-reg. Therefore, the results of node analy-
sis indicate that global-reg increases inter-subject FC variation.
The result of node analysis seems suggesting that global-reg de-
grades rsfMRI analysis. Although this result is consistent with
the findings of Murphy et al.,13 Chang et al.21 suggested that un-
modeled noises, such as nonlinear interactions between phys-
iological effects, may contribute to the global signal. Global
regression may thus be useful for identifying anticorrelated re-
gions in correlation analysis.

Although Fisher’s z-values of the whole brain decreased dra-
matically after applying global-reg, we were still able to identify
most DMN nodes based on Fisher’s z-values based on the 3D
FC volumes by using the z threshold of .2. Global-reg gener-
ated brain areas anticorrelated with the PCC. The anticorre-
lated areas were not observed in G1, which did not undergo
global-reg. The anticorrelated brain areas were the same ar-
eas identified in previous studies.9,12 The DMN is generally
called the task-negative network (TNN) because it deactivates
when a participant performs a range of tasks. By contrast, the
network anticorrelated to the DMN is called the task-positive
network (TPN). Abnormal TPNs have been linked to variabil-
ity in patient groups. Therefore, FC mapping results support
using global-reg for rsfMRI analysis, especially when the focus
is anticorrelated networks.

Applying the two analysis methods to the same data sets
leads to two opposing conclusions regarding global-reg. Global-
reg significantly reduces Fisher’s z-values and increases inter-
subject COVs. When using global-reg, the FC of several nodes
is lower than the preset threshold (.2). However, global-reg
generates anticorrelated networks that are relevant, accord-
ing to several MRI studies12,15,20,22 and an electrophysiological
study.23

The purpose of this study was to optimize the analysis
procedure and provide a direction for future data-processing
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Fig 1. FC Fisher’s z matrices (mean, SD, and COV) obtained using the five regression methods. N 2 to N 12 represent nodes 2 to 12.

Fig 2. The results of t-tests performed between FC matrices obtained using different combinations of regression methods (P-values of paired
t-test, n = 20). The numbers of FC matrix elements with significant differences are noted beneath each image.

procedures for rsfMRI. According to the results, M3 is not sug-
gested because we identified false connectivity in WM in the
data sets processed using M3. This study does not show signif-
icant improvement when applying motion-reg. However, pre-
vious studies, such as the study of Lund et al.,24 have shown the

effectiveness of motion-reg in fMRI analysis. If motion correc-
tion is desired and M3 is discarded, the remaining methods are
M2, M4, M5. According to node analysis (Fig 2), the differences
in the results obtained using M4 and M5 are mostly nonsignifi-
cant. Because M5 has been widely used in previous studies,18,19
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Fig 3. The mean (a), SD (b), and COV (c) for Fisher’s z-values obtained between the PCC and 12 DMN nodes using the five regression
methods.
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Fig 4. FC maps of the DMN obtained using different regression methods. (a) Fisher’s z maps without thresholds; (b) Fisher’s z maps with
thresholds (z > .2 or z < .2).
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M5 is more favorable than M4 to compare the rsfMRI re-
sults with those of previous studies. The overall comparison
supported applying both M2 and M5 to generate two data sets
and performing group statistics by using both data sets. rsfMRI
data must be interpreted carefully if the data sets processed
using the two regression methods lead to different conclusions.

In this study, we chose correlation analysis as our research
target. In the rsfMRI literature, both independent-component
analysis (ICA) and correlation analysis have been widely used.
ICA, which separates signals into independent components, is
used to identify rsfMRI networks and to remove high- and low-
frequency noise. The ability to remove noise renders compari-
son of the regression method complex. For example, the global
signal may be extracted as an independent component in ICA
analysis, producing an effect similar to global signal regression.
The impact of signal regression on ICA analysis warrants future
research. In this study, we did not record physiological signals
such as cardiac pulsation and respiratory motion. Therefore,
we did not perform data regression using physiological signals.
This is a limitation of the present study. Cardiac pulsation and
respiration motion are both influential factors in rsfMRI anal-
ysis. For example, Chang et al.21 showed that physiological
correction increased the extent of negative correlations and re-
duced the extent of positive correlations. In addition, they also
demonstrated that anticorrelated networks could be observed
when using physiological noise correction. The effect of physi-
ological repressors combined with the four widely used regres-
sors (motion-reg, WM-reg, CSF-reg, global-reg) merits future
research. In conclusion, data regression plays a major role in
rsfMRI studies. Data sets processed using regression methods
should be interpreted carefully.
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