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ABSTRACT

This article is to provide the analytical valuation formulae of quanto interest rate

derivatives based on a cross-currency LIBOR market model. The dynamics of forward

LIBOR rates is a multi-factor model which incorporates the domestic and foreign in-

terest rates and the exchange rate processes in a cross-currency environment. Under

the framework, the pricing formulae of quanto interest rate derivatives are easy to

implement in practice and model parameters can be acquired easily from the market

quantities. The empirical results are shown to be sufficiently accurate and robust as

compared to Monte Carlo simulation.
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1. Introduction

In this paper we consider the valuation of cross-currency interest rate derivatives

based on a cross-currency LIBOR market model (CLMM, hereafter) introduced by Wu

and Chen (2007). The settings of the CLMM are in a cross-currency environment where

the domestic and foreign interest rates and the exchange rate processes are incorporated

in the model.
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Cross-currency derivatives have been growing in increasing trade volume and be-

come prevalent during the past decade. The major impetus to the growth of this

market is due to a close relation between global interest rates and increasing volatility

in financial markets. The growth of these derivatives provides investors to participate

in foreign equity, money or bond markets for the purpose of speculation or hedging.

The main rationale for entering into such contracts is to take benefits from interest rate

differentials between countries, while avoiding direct exposure in currency risk.

A quanto swap (QS, hereafter), also known as a differential swap, is a variation of an

interest rate swap which differs in that one payment of two swap legs is associated with

a foreign interest rate. An investor who enters into a swap contract makes payments

denominated in a domestic LIBOR rate in domestic currency. In return he receives

payments based on the foreign LIBOR rate denominated in domestic currency. Both

payments and receipts of a QS are made on a floating rate basis with reset in-advance

and paid in-arrears features.

A quanto cap (QC, hereafter) is an interest rate option or a series of options whose

payoffs are based upon a foreign LIBOR rate in excess of an absolute strike rate (cap

rate). The payoffs are also denominated in domestic currency with a paid-in-arrears

feature. A QC, like an ordinary cap, can be used to limit the up-side interest rate risk.

Analogously, a quanto floor (QF, hereafter) is an insurance against a decline in interest

rate.

An exotic quanto swap (EQS, hereafter) is a variant of a QS with a feature that the

foreign payoff can be designed for customization in over-the-counter markets. In this

paper, we shall introduce a prevalent case and demonstrate the separable structure of

the product. In addition, the pricing formula and the hedging strategy of an EQS will

be derived via other quanto derivatives in this paper.

Though there are some earlier researches on the issue of QSs, but the valuation

of QCs, QFs and EQSs is relatively few in the literature, especially in the framework

of the CLMM. Litzenberger (1992) firstly discussed a QS. Jamshidian (1993) used

a replication method to derive the valuation formula of a QS, but it is difficult for

further analysis. Turnbull (1993) introduced the dynamics of domestic and foreign

forward interest rates under the Amin and Jarrow (1991, AJ) framework and priced
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QSs with principals denominated in domestic and foreign currency. Wei (1994) derived

the pricing formula of a QS based on a mean-reverting Ornstein-Uhlenbeck process for

domestic and the foreign spot interest rates and a lognormal process for the exchange

rate. Brace and Musiela (1997, BM) calculated the prices of at-the-money European

options in the domestic and cross-currency economy in the Heath, Jarrow, and Morton

(1992, HJM) framework. Chang, Chung, and Yu (2002, CCY) followed the framework

adopted by Wei and established the formulae of a QS with principal denominated in a

domestic, foreign or third-country currency. Brigo and Mercurio (2006, BM) provided

the pricing formulae of a QC as well as a QF through lognormal martingales under the

domestic forward martingale measure.

The pricing framework in this article is based under the CLMM which is extended

from Brace, Gatarek and Musiela (1997, BGM). The BGM model, also known as the

LIBOR market model (LMM, hereafter), is a continuous-time model of simple forward

LIBOR rates which are market observable quantities. They are suitable for pricing

interest rate derivatives with an feature that is reset in-advance and paid in-arrears.

In comparision with the aforementioned studies, the valuation formulae of QSs,

QCs/QFs, and EQSs derived in this article have several advantages. First, previous

pricing formulae have the difficulty of transforming traded quantities into model pa-

rameters, and hence not easy to implement in practice. Unlike the instantaneous short

rate models, the forward LIBOR rates are market observable, thereby circumventing

the problem transforming market data into model parameters. In Section 4, we will use

market data from the U.S. and U.K. to calibrate model parameters and demonstrate

numerical results accurate enough for practitioners. Second, the pricing formulae are

shown to be analytically tractable, thereby leading to pricing efficiency with precision

for practical implementation. In contrast, the model developed in this paper has an

advantage to avoid complicated settings inherited in other abstract interest rate models

and time-consuming Monte Carlo simulation and other numerical analysis, which leads

to preventing the products’ issuers and dealers from using them for application. Third,

by avoiding the explosion problem in the HJM framework, forward LIBOR rates have

a lognormal volatility structure which avoids the forward rates from becoming negative

with positive probability.
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This article is organized as follows. In Section 2, we will demonstrate an arbitrage-

free CLMM and model settings. Section 3 develops the valuation formulae of quanto

interest rate derivatives and identifies the relationship among them. Section 4 provides

a calibration procedure for practical implementation and numerical examples to show

how the models actually work. The conclusion is made in the last section.

2. The Model

In this section we briefly introduce the arbitrage-free CLMM and list the notations

used in our model. Assume that trading takes place continuously in time over an interval

[0,T], 0 < T < ∞. The uncertainty is described by the filtered probability space
(

Ω, F,Q,Ft∈[0,T ]

)

, where the filtration is generated by independent standard Brownian

motions W (t) = (W1(t),W2(t), . . . ,Wn(t)). Q represents the domestic spot martingale

probability measure. There are some domestic and foreign assets in this economy.

Hereafter, the subscript k ∈ {d, f} represents the kth country’s asset with ‘d’ for

domestic and ‘f ’ for foreign.

fk(t, T ) = the kth country’s forward interest rate contracted at time t for
instantaneous borrowing and lending at time T with 0 ≤ t ≤
T ≤ T.

Lk(t, T ) = the kth country’s forward LIBOR rate contracted at time t and
effective at time T for a simple compounded period [T, T + δ]
with 0 ≤ t ≤ T ≤ T.

Pk(t, T ) = the time t price of the kth country’s zero-coupon bond paying
one currency unit at maturity T .

rk(t, T ) = the kth country’s risk-free short rate at time t.

βk(t) = the kth country’s money market account at time t with βk(t) =

exp
[

∫ t
0 rk(s)ds

]

and initial value βk(0) = 1.

X(t) = the spot exchange rate at t ∈ [0,T] for one unit of foreign
currency expressed in terms of units of domestic currency.

The CLMM is developed from the AJ model which incoporated the dynamics of

the domestic and foreign assets in the economy under the domestic martingale mea-

sure Q. The risk-neutral probability measure Q is induced by the domestic money

market account βd(t) and the domestic and foreign forward interest rate fk(t, T ) and

the exchange rates X(t) are denominated in units of βd(t) in the model. The drift
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and volatility terms of the dynamics of assets are determined by the arbitrage-free

relationship. The following proposition briefly describes the pricing framework.

Proposition 1. The forward interest rates, zero-coupon bonds and exchange rate

dynamics under the measure Q

For any time T ∈ [0,T], the dynamics of the forward interest rates fk(t, T ), the zero-

coupon bond Pk(t, T ) and the exchange rate X(t) in the CLMM under the domestic

martingale measure Q are given as follows.

dfd(t, T ) = ηd(t, T ) · σd(t, T )d(t) + ηd(t, T ) · dW (t),

dff (t, T ) = ηf (t, T ) · (σf (t, T ) − σX(t))d(t) + ηf (t, T ) · dW (t),

dPd(t, T )

Pd(t, T )
= rd(t)d(t) − σd(t, T ) · dW (t),

dPf (t, T )

Pf (t, T )
= (rf (t) + σX(t) · σf (t, T ))d(t) − σf (t, T ) · dW (t),

dX(t)

X(t)
= (rd(t) − rf (t))d(t) + σX(t) · dW (t),

where t ∈ [0, T ]. ηk(t, T ) and σk(t, T ) denote, respectively, the volatility processes of the

kth country’s forward interest rate fk(t, T ) and the zero-coupon bond Pk(t, T ). σX(t)

stands for the volatility process of the spot exchange rate X(t).

The dynamics of the forward LIBOR rates Lk(t, T ) in the CLMM under the do-

mestic martingale measure Q are not yet specified. However, the forward LIBOR rate

Lk(t, T ) is related to the zero-coupon bond Pk(t, T ) and forward interest rate fk(t, T ).

By fixing some accrual periods δ, the forward LIBOR rate is defined by

1 + δLk(t, T ) =
Pk(t, T )

Pk(t, T + δ)
= exp

(
∫ T+δ

T
fk(t, u)du

)

. (1)

where δ is the length of a compounding period [T, T + δ].

We assume that Lk(t, T ) has a lognormal volatility structure and its dynamic process

is given by

dLk(t, T ) = µk(t, T )d(t) + Lk(t, T )γk(t, T ) · dW (t), (2)

where γk(t, T ) represents the volatility processes of the kth country’s forward LIBOR

rate Lk(t, T ) and µk(t, T ) is some drift function.
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To determine the drift terms of the forward LIBOR rates under the CLMM, we

will use the arbitrage-free relationship between the drift and the volatility terms in

Proposition 1. The derivation is shown as follows.

Let us define that Z(t) =
∫ T+δ
T ff (t, u)du and Lf (t, T ) = (1/δ)(exp(Z(t)) − 1).

After some calculations, the dynamics of Lf (t, T ) and Z(t) are shown below.

dLf (t, T ) =
1

δ
exp

(
∫ T+δ

T
ff(t, u)du

) (

dZ(t) +
1

2
dZ(t)dZ(t)

)

(3)

and

dZ(t) =

(

1

2
‖σf (t, T + δ)‖2 −

1

2
‖σf (t, T )‖2 − σX(t) · (σf (t, T + δ) − σf (t, T ))

)

d(t)

+ (σf (t, T + δ) − σf (t, T )) dW (t). (4)

Substituting equations (1) and (4) into (3), the foreign forward LIBOR rate dynamic

becomes

dLf (t, T ) =
1

δ
(1 + δLf (t, T )) (σf (t, T + δ) − σf (t, T )) · (σf (t, T + δ) − σX(t)) d(t)

+
1

δ
(1 + δLf (t, T )) (σf (t, T + δ) − σf (t, T )) · dW (t). (5)

With the assumption that the foreign forward LIBOR rate’s volatility structure

is lognormal, we can compare the the volatility term in (2) and (5) and obtain the

following relationship.

1

δ
(1 + δLf (t, T )) (σf (t, T + δ) − σf (t, T )) = Lf (t, T )γf (t, T ). (6)

Finally, by substituting (6) into the drift term in (5), the foreign forward LIBOR

rate dynamics in the CLMM under the domestic martingale measure Q can be expressed

as follows.

dLf (t, T )

Lf (t, T )
= γf (t, T ) · (σf (t, T + δ) − σX(t)) d(t) + γf (t, T ) · dW (t). (7)

In the same way, the domestic forward LIBOR rate process can be derived as follows.

dLd(t, T )

Ld(t, T )
= γd(t, T ) · σd(t, T + δ)d(t) + γd(t, T ) · dW (t). (8)

There are two main terms to be determined in the forward LIBOR rate dynam-

ics. First, the zero-coupon bond volatility process {σk(t, T )} is stochastic rather than
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deterministic, which makes the dynamics (7) and (8) difficult to solve for the forward

rate Lk(t, T ). Instead, according to the recurrence relation between σk(t, T + δ) and

γk(t, T ), σk(t, T ) can be approximated by στ
k(t, T ) with a fixed initial time τ , which is

defined by

στ
k(t, T ) =

[δ−1(T−t)]
∑

i=1

δLk(τ, T − iδ, δ)

1 + δLk(τ, T − iδ, δ)
γk(t, T − iδ), (9)

where t ∈ [τ, T − δ], and T − δ > 0. It means that the calendar time of the process

{Lk(t, T − iδ, δ)}t∈[τ,T−iδ] is frozen at its initial time τ . By substituting (4) into the

drift and volatility terms in (1) and (2), the resulting equations become solvable and

the distribution of the forward LIBOR rate is approximated lognormally distributed.

Second, the payments and receipts of quanto interest rate derivatives are made on

a floating rate basis with reset in-advance and paid in-arrears features. It is relatively

easier to price under the domestic forward martingale measure QT+δ than under the

domestic martingale measure Q. The forward martingale measure QT+δ is induced by

the domestic zero-coupon bond Pd(t, T + δ) as the numeraire. By using the changing-

numeraire mechanism, the drift and volatility terms of the assets dynamics under the

forward martingale measure QT+δ can be specified. The result is shown in Proposition

2.

Proposition 2. The forward LIBOR rates dynamics under the measure QT+δ

For any time T ∈ [0,T], the dynamics of the forward LIBOR rates Lk(t, T ) in the

CLMM under the forward martingale measure QT+δ are given as follows.

dLd(t, T )

Ld(t, T )
= γd(t, T ) · dW (t),

dLf (t, T )

Lf (t, T )
= γf (t, T ) ·

(

στ
f (t, T + δ) − στ

d(t, T + δ) − σX(t)
)

d(t) + γf (t, T ) · dW (t),

where t ∈ [0, T ] and στ
k(t, T ) is defined in (9).

In Proposition 2, the drift term of the forward LIBOR rate Lk(t, T ) is specified by

the approximated zero-coupon bond volatility στ
k(t, T ) in (9). The volatility term re-

main unchanged under the forward martingale measure QT+δ. By avoiding the stochas-

tic characteristic, the distribution of the forward LIBOR rate Lk(t, T ) is lognormally

distributed.
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The CLMM has the following merits. Unlike the abstract rates modeled in the short

rate and forward rate models, the LIBOR rates in the CLMM are market-observable.

Moreover, the cap pricing formula is consistent with the market formula, namely the

Black formula. Therefore, the volatility of the forward LIBOR rates γk(t, T ) and the

approximated bond volatility στ
k(t, T ) are easy to be calibrated under the CLMM.

Specifically, they can be extracted via the pricing model from quoted prices in financial

markets, such as caps and floors. Once the parameters are calibrated, the pricing for-

mulae under the CLMM are analytically tractable for practical application. In addition,

Rogers (1996) indicated that the Gaussian models, such as Hull and White (1990) and

Gaussian HJM, may distort the pricing of derivatives under certain circumstances due

to possible negative interest rates. However, the forward LIBOR rate in the CLMM are

log-normally distributed, thereby making the LIBOR rates to be positive and prevent-

ing the negative rate problem arising from using the Gaussian interest rate models. As

a result, the CLMM is very general and useful for pricing many cross-currency interest

rate derivatives, such as QSs, QCs/QFs, and EQSs. In the next section, variants of the

cross-currency interest rate derivatives are priced as examples.

3. Valuation of Quanto Interest Rate Derivatives

In this section, we employ the CLMM derived in the previous section to price

the interest rate-based derivatives in the cross-currency economy. We firstly derive the

formula of a QS under this framework. A QC and a QF can be derived in a similar way.

Finally, we demonstrate the relationship among an EQS and other quanto derivatives

and derive related pricing formulae.

Tj = the reset date, j = 0, 1, · · · , n − 1.

Tj+1 = the payment date, j = 0, 1, · · · , n − 1.

τ = the current time and the cash flow time is defined by 0 ≤ τ ≤ T0 < T1 <
· · · < Tn ≤ T.

TR = the set of reset dates Tj and j = 0, 1, · · · , n − 1.

TP = the set of payment dates Tj+1 and j = 0, 1, · · · , n − 1.

δ = the year fraction between time interval [Tj−1, Tj ], j = 1, 2, · · · , n.

Nd = notional principal denominated in domestic currency.

Φ(·) = the standard normal distribution.
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3.1 Quanto swaps

A QS is similar to an interest rate swap in a single currency. It is a contract

in which two counterparties agree to exchange domestic floating-rate payments for

foreign floating-rate payments. Both notional principals are denominated in domestic

currency. The impetus for investors to enter such a contract is to take advantage of

interest differentials between two countries. We define a QS as follows.

Definition 1. Quanto Swaps

A QS is a contract swapping the payments at future times TP with reset dates TR in

notional principal Nd. From the perspective of a counterparty who pays the domestic

floating rate and receives the foreign floating rate payment, the cash flow stream at time

Tj is given as follow:

NdLf (Tj−1, Tj−1)δ − Nd (Ld(Tj−1, Tj−1) + R) δ, (10)

where Lf (Tj−1, Tj−1) and Ld(Tj−1, Tj−1) denotes, respectively, the foreign and domestic

LIBOR rates for the period [Tj−1, Tj ], observed at time Tj−1. R is a spread in basis

points and may be positive or negative.

Based on the CLMM framework, we can derive the pricing formula of a QS as

defined in Definition 1. The result is presented in the following theorem.

Theorem 1. The Pricing Formula of a Quanto Swap

Under the CLMM, the no-arbitrage value of a QS with a spread R at current time τ is

given by

QS(τ,K) = Ndδ
n

∑

j=1

Pd(τ, Tj) { Lf (τ, Tj−1)ρ(τ, Tj−1) − Ld(τ, Tj−1) − R} , (11)

where

ρ(τ, Tj−1) = exp

(∫ Tj−1

τ
µf (t, Tj−1)d(t)

)

,

µf (t, Tj−1) = γf (t, Tj−1) · (στ
f (t, Tj) − στ

d(t, Tj) − σX(t)).

Proof. See Appendix A.
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In Theorem 1, there are four main points to emphasize. First, when pricing cross-

currency linked derivatives, we have to adjust the drift of the foreign asset by a co-

variance term under the domestic martingale measure Q. The covariance term denotes

the correlation between the exchange rate and the foreign asset price. In comparison

with the drift terms in Proposition 2, the dynamic of the foreign forward LIBOR rate

Lf (t, T ) is adjusted by a covariance term γf (t, T ) · σX(t). The intuition of the ad-

justment is when we price foreign assets in units of domestic currency, we are using a

fixed exchange rate for conversion. The covariance term captures future exchange rate

fluctuations. After taking exponent and integrating with time interval [τ, Tj−1], the

covariance term becomes

qa(τ, Tj−1) = exp

(
∫ Tj−1

τ
(γf (t, Tj−1) · σX(t))d(t)

)

.

It is so called quanto adjustment. From the domestic investors’ perspective under

the domestic martingale measure, the floating payment with the foreign interest rate

Lf (τ, Tj−1) is adjusted by qa(τ, Tj−1).

Second, the spread R is specified to compensate for the differentials between do-

mestic and the foreign interest rates. The fair quanto swap rate at contract initiation

is the rate to make the contract a zero-sum game. In other words, R is the solution to

the zero-price of the QS at start. We easily obtain

R =

n
∑

j=1
Pd(τ, Tj) {Lf (τ, Tj−1)ρ(τ, Tj−1) − Ld(τ, Tj−1)}

n
∑

j=1
Pd(τ, Tj)

. (12)

Thirdly, the hedging strategy could be constructed by rewriting (10) in an alter-

native expression. Using the relationship between the forward LIBOR rate and the

zero-coupon bonds as shown in (1), the no-arbitrage price in (11) can be expressed as

follows.

QS(τ,K) = Nd

n
∑

j=1

{DF (τ, Tj) (Pf (τ, Tj−1) − Pf (τ, Tj)) − Pd(τ, Tj−1) + (1 − δR)Pd(τ, Tj)} ,

where

DF (τ, Tj) = ρ(τ, Tj)
Pd(τ, Tj)

Pf (τ, Tj)
. (13)
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DF (τ, Tj) denotes the discount factor to reveal the expected cash flow of the foreign

leg under the domestic martingale measure. Specifically, the reciprocal of the foreign

bond, 1
Pf (τ,Tj)

, represents the expected terminal payoff of the foreign leg at time Tj for

one unit of foreign currency invested at τ . This expected foreign cash flow is discounted

by the domestic bond Pd(τ, Tj) and adjusted by ρ(τ, Tj) which is effected by quanto

adjustment qa(τ, Tj−1).

Hedging a QS is relatively simple due to the linearity of the cash flow of two legs.

Via equation (13), we can construct a hedging portfolio, H, with the domestic and the

foreign zero-coupon bonds Pk(t, T ) as given below.

H = Nd

n
∑

j=1

{∆1jPf (τ, Tj−1) + ∆2jPf (τ, Tj) + ∆3jPd(τ, Tj−1) + ∆4jPd(τ, Tj)} .

The hedging ratios are

∆1j = DF (τ, Tj), ∆2j = −DF (τ, Tj), ∆3j = −1, ∆4j = 1 − δR.

The hedging strategy H shows the proper units of the zero-coupon bonds that must

be held to replicate a QS synthetically. Specifically, it contains holding long ∆1j units

of the foreign bond with maturity at Tj−1 and ∆4j units of the domestic bond with

maturity at Tj , meanwhile selling short ∆2j units of the foreign bond with maturity at

Tj and ∆3j units of the domestic bond with maturity at Tj−1.

Fourthly, we compare our CLMM pricing formula with related literature as follows.

Turnbull (1993) described the dynamics of domestic and foreign forward interest rates

under the HJM framework. Wei (1994) and CCY (2002) derived the pricing formulas

under the mean-reverting Ornstein-Uhlenbeck process of the short rate. In contrast,

our pricing formula in the CLMM framework is clear and full of economic intuition.

The CLMM is obviously term-structure consistent, and the model parameters can be

easily calibrated from market quantities. In addition, it avoids the problem of negative

interest rates inherited in the previous models. Therefore, our pricing formula should

be more accurate, feasible and tractable in practice.

3.2 Quanto caps/floors

A QC/QF is similar to a cap/floor in a single currency. The major difference is that
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the forward LIBOR rate is denominated in foreign currency rather than in domestic

currency. The payoff is in arrears as the case of a normal cap, but is denominated

in domestic currency. A QC/QF can be decomposed additively. Indeed, its discount

payoff is a sum of quanto caplets/floorlets. We define a QC/QF as follows.

Definition 2. Quanto Caps/Floors

A QC/QF is a series of options with maturities at future times TP with reset dates

TR in notional principal Nd. The owner of a QC/QF has a right whether to exercise

the options. The cash flow stream at time Tj is given as follows.

Nd (φLf (Tj−1, Tj−1) − φK)+ δ,

where Lf (Tj−1, Tj−1) denotes the foreign LIBOR rate for the period [Tj−1, Tj ] observed

at time Tj−1. K is a strike level of interest rate in basis points. φ = 1 denotes a QC

and φ = −1 for a QF.

According to the Definition 2, the pricing formula of a QC in the following theorem

are presented in Theorem 2.

Theorem 2. The Pricing Formula of a Quanto Cap

Under the CLMM, the no-arbitrage value of a QC with strike level of interest rate K

at current time τ is given by

QC(τ,K) = Ndδ

n
∑

j=1

Pd(τ, Tj) { Lf (τ, Tj−1)ρ(τ, Tj−1)Φ (d1(τ, Tj−1)) − KΦ (d2(τ, Tj−1))} ,

(14)

where ρ(τ, Tj−1) are defined in Theorem 1, and

νf (τ, Tj−1) =

∫ Tj−1

τ
‖γf (t, Tj−1)‖2d(t),

d1(τ, Tj−1) =
ln(Lf (τ, Tj−1)ρ(τ, Tj−1)/K) + 1

2νf (τ, Tj−1)
√

νf (τ, Tj−1)
,

d2(τ, Tj−1) = d1(τ, Tj−1) −
√

νf (τ, Tj−1).

Proof. See Appendix B.



VALUATION OF QUANTO INTEREST RATE DERIVATIVES 13

Several interesting points in Theorem 2 are worth noting as follows. Like a QS,

the covariance term ρ(τ, Tj−1) of domestic and foreign interest rates and the exchange

rate also has an impact on the pricing result. The derived pricing formula of a QC

under the CLMM is a Black type model, which is an analytical solution and easy to

be implemented in practice. In addition, the volatility of the forward LIBOR rates

γk(t, T ) and the approximated bond volatility στ
k(t, T ) are easy to be calibrated via the

pricing model. That is, they can be extracted via the model from quoted prices of caps

in financial market.

Second, a hedging strategy is as in the case of a QS. The pricing formula is rewritten

as an alternative expression in terms of domestic and foreign zero-coupon bonds, and

a quanto adjustment term. This is shown below.

QC(τ,K)

= Nd

n
∑

j=1

{DF (τ, Tj) (Pf (τ, Tj−1) − Pf (τ, Tj)) Φ (d1(τ, Tj−1)) − δKPd(τ, Tj)Φ (d2(τ, Tj−1))},

where DF (τ, Tj) is defined in (13).

Equation (14) provides a way to construct a hedging strategy. In contrast to a QS,

hedging a QC is not straightforward due to the nonlinearity of its cash flows. However,

we can construct a delta-neutral hedging portfolio, H, in terms of the domestic and

the foreign bonds Pk(t, T ). This is given below.

H = Nd

n
∑

j=1

{∆1jPf (τ, Tj−1) + ∆2jPf (τ, Tj) + ∆3jPd(τ, Tj)} .

The hedging ratios are

∆1j = DF (τ, Tj)Φ (d1(τ, Tj−1)) ,

∆2j = −DF (τ, Tj)Φ (d2(τ, Tj−1)) ,

∆3j = −δKΦ (d2(τ, Tj−1)) .

This hedging strategy shows the proper units of the zero-coupon bonds that must be

held in a replicated portfolio of a QC similar to the case of a QS presented in equation

(13).
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Thirdly, the derived pricing formulae are suffieiently accurate and robust and easy

to implement in comparision with other models. BM (1997) derived the price of an

exotic cap on a basket of LIBOR rate in a cross-currency economy within the Gaus-

sian HJM framework. However, it is well-known that the instantaneous forward rates

are not observable in the market and the parameters in the HJM model are difficult

to calibrate. In addition, the Gaussian HJM forward rates could result negative with

a positive probability. BM (2006) derived the pricing formula of a QC through log-

normal martingales under the domestic forward martingale measure. The drift and

volatility structure of the dynamics are determined by the forward LIBOR rate and

the forward exchange rate. Comparatively, we employ the approximation techniques

to obtain lognormal volatilities and access the compact formula without loss of the

accuracy. The numerical analyses are demonstrated in the following section. These ap-

proximation techniques are first presented by BGM (1997) and then adopted by Brace

and Womersley (2000).

Analogously, a quanto floor is an insurance against declining interest rate. The

pricing process of a QF is similar to a QC. We present it in Theorem 3.

Theorem 3. The Pricing Formula of a Quanto Floor

Under the CLMM, the no-arbitrage value of a QF with strike level of interest rate K

at current time τ is given by

QF (τ) = Ndδ

n
∑

j=1

Pd(τ, Tj) {KΦ (−d2(τ, Tj−1)) −  Lf (τ, Tj−1)ρ(τ, Tj−1)Φ (−d1(τ, Tj−1))} .

3.3 Exotic quanto swaps

The CLMM can be used to price more complicated products in the interest rate

markets. By structuring the components of QSs, QCs and QFs, we show that various

customized products could be designed for the special purpose. An EQS is a variant

of a QS with an additional feature in that instead of the foreign payoff being directly

based on the foreign LIBOR rate, the payment in the foreign leg has a different payoff

structure in different ranges of the foreign LIBOR rate. We define an EQS as follows.
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Definition 3. Exotic Quanto Swaps

An EQS is a contract swapping the payment at future times TP with reset dates TR in

notional principal Nd. From the perspective of a counterparty who pays the domestic

floating rate and receives the foreign floating payment, the cash flow stream at time Tj

is given as follows:

NdL
∗
f (Tj−1, Tj−1)δ − Nd (Ld(Tj−1, Tj−1) + R) δ, (15)

where

L∗
f (Tj−1, Tj−1) =























Lf (Tj−1, Tj−1) Lf (Tj−1, Tj−1) ≤ Rd,

Rd Rd ≤ Lf (Tj−1, Tj−1) ≤ Rm,

Ru − Lf (Tj−1, Tj−1) Rm ≤ Lf (Tj−1, Tj−1) ≤ Ru,

0 otherwise.

L∗
f (Tj−1, Tj−1) denotes a reference rate determined by the foreign LIBOR rate. R is a

spread in basis points and may be positive or negative. Rd, Rm and Ru denote three

different levels of interest rate, where Ru = Rd + Rm.

As given in Definition 3, the payment of the foreign leg in a common case is in-

creasing in the low level of the interest rate, fixed in the medium range, and declining

as the interest rate getting higher. It makes a trapezoid figure between the payoff and

the foreign LIBOR rate. An EQS are usually adopted to exploit the differential in the

global interest rate market. For example, corporate borrowers with debt referred to

the domestic LIBOR rate may take advantage of the inverse floating-rate debt based

on the foreign LIBOR rate when the level of interest rates is rising higher gradually.

Bond managers can exploit the spread to enhance a portfolio’s yield by receiving the

foreign payment in a low-level environment fo the foreign rate.

In a similar way, we can derive the pricing formula of an EQS based on the CLMM.

The result is presented directly without proof in the following theorem.1

Theorem 4. The Pricing Formula of Exotic Quanto Swaps

Under the CLMM, the no-arbitrage value of an EQS with spread of interest rate R at

1We omit derivation for the snake of parsimony and available upon request.
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current time τ is given by

EQS(τ,R) = Ndδ

n
∑

j=1

Pd(τ, Tj){Lf (τ, Tj−1)ρ(τ, Tj−1)Φ (−d1(τ, Tj−1, Rd))

+ Rd[Φ (d2(τ, Tj−1, Rd)) − Φ (d2(τ, Tj−1, Rm))]

+ Ru[Φ (d2(τ, Tj−1, Rm)) − Φ (d2(τ, Tj−1, Ru))]

− Lf (τ, Tj−1)ρ(τ, Tj−1)[Φ(d1(τ, Tj−1, Rm)) − Φ(d1(τ, Tj−1, Ru))]

− Ld(τ, Tj−1) − R}, (16)

where

d1(τ, Tj−1, ∗) =
ln(Lf (τ, Tj−1)ρ(τ, Tj−1)/∗) + 1

2νf (τ, Tj−1)
√

νf (τ, Tj−1)
,

d2(τ, Tj−1, ∗) = d1(τ, Tj−1, ∗) −
√

νf (τ, Tj−1),

and ρ(τ, Tj−1) and νf (τ, Tj−1) are defined in Theorem 2.

The intuition and model parameters of the pricing formula of an EQS in (16) can

be explained accordingly in a similar way as those given in Theorem 1–2. We next

focus on a replicating and hedging strategy of an EQS.

Analogously, we can construct a delta-neutral hedging portfolio for an EQS in terms

of the domestic and foreign bonds Pk(t, T ). Hedging ratios can be identified after

some rearrangement from the relationship between the forward LIBOR rates and the

domestic and foreign zero-coupon bonds. It is shown as follows.

H = Nd

n
∑

j=1

{∆1jPf (τ, Tj−1) + ∆2jPf (τ, Tj) + ∆3jPd(τ, Tj−1) + ∆4jPd(τ, Tj)} (17)

where the hedging ratios are given by

∆1j = DF (τ, Tj) {Φ (−d1(τ, Tj−1, Rd)) − Φ (d1(τ, Tj−1, Rm)) − Φ (d1(τ, Tj−1, Ru))} ,

∆2j = −DF (τ, Tj) {Φ (−d1(τ, Tj−1, Rd)) − Φ (d1(τ, Tj−1, Rm)) − Φ (d1(τ, Tj−1, Ru))} ,

∆3j = −1,

∆4j = δRd{Φ(d2(τ, Tj−1, Rd)) − Φ(d2(τ, Tj−1, Rm))}

+ δRu{Φ(d2(τ, Tj−1, Rm)) − Φ(d2(τ, Tj−1, Ru))} + (1 − δR).
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The hedging strategy as shown in (17) can be explained in a similar way as given

in the previous sections. This portfolio contains four zero-coupon bonds with the

corresponding hedging ratios.

In addition, an EQS can be synthetically replicated by prevailing market quantities

QSs, QCs and QFs according to the cash flow stream in Definition 3. The no-arbitrage

condition tells us that the price of an EQS is the linear combination of such quanto

interest rate derivatives. The relationship of these quanto products is presented in the

following theorem.

Theorem 5. The Relationship of Quanto Derivatives

An EQS can be synthetically replicated by a linear combination of QSs, QCs and QFs.

Under the CLMM, the no-arbitrage value at time τ of an EQS is given by

EQS(τ,R) = QS(τ,R) − QC(τ,Rd) − QC(τ,Rm) + QC(τ,Ru)

= −(Ld(τ, Tj−1) + R)Pd(τ, Tj)δ − QF (τ,Rd) − QF (τ,Rm) + QF (τ,Ru).
(18)

Proof. See Appendix C.

The pricing formula of an EQS in (18) implies that hedging an EQS is straightfor-

ward due to the linearity of cash flow components that are composed of basic quanto

derivatives QSs, QCs and QFs. If this relation among the component derivatives is in

disequilibrium, an arbitrage opportunity arises for taking a profit.

4. Calibration and Numerical Analysis

This section provides a calibration procedure and numerical examples for practical

implementation.

4.1 Calibration procedure

The calibration of an interest rate model is one of the significant parts of its imple-

mentation. Given observable forward LIBOR rates and market-quoted volatilities of

caplets, the pricing parameters in the pricing framework are virtually obtainable and
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immediate. The calibration methodology presented by Rebonato (1999) is employed

in our paper. We perform a simultaneous calibration of the CLMM to the instanta-

neous total volatilities and correlation surface of the underlying forward LIBOR rates

and the exchange rate. To illustrate the procedure, we assume there are n assets in a

cross-currency economy. The assets include (n− 1)/2 forward LIBOR rates of the k-th

country and the exchange rate. The number of random shocks of the term structure

of the forward rates, denoted by m, is determined based on a compromise between the

simplicity and the accuracy in practical application. Here, we employ three stylized

factors (m = 3), such as level, slope and curvature of the term structure of interest

rates.

The steps of calibration are given as follows. First, the instantaneous volatility

of the forward LIBOR rate γk(t, T ) is chosen such that the caplet price is correctly

recovered. In other words, the market-quoted caplet volatility for T years from current

time τ , denoted by σimp(T ), is given by

∫ T+δ

τ
‖γk(t, T + δ)‖2d(t) = σ2

imp(T )T.

Next, we assume that the current market term structure is recovered by a piecewise-

constant instantaneous total volatility depending only on the duration of the underlying

rates. The time-dependent volatility of each period for each rate can be determined by

the stripping method presented in Rebonato (1999). To describe the volatility structure

engaged in the CLMM, the element Si is defined by

S(i) =

∫ T i

T i−1
‖γk(t, Ti)‖

2d(t),

where the subscript i labels the ith forward LIBOR rate. The instantaneous volatility is

converted into a time-dependent volatility structure and S(i) is solved by the recurrence

relation as shown below

i
∑

k=1

S(i) = σ2
imp(T )T.
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The volatility structure is reported below.

S ≡



















S1

S2 S1

S3 S2 S1

...
...

...
. . .

Sn Sn−1 Sn−2 . . . S1



















.

Besides, the instantaneous volatility of the exchange rate can be extracted from the

on-the-run currency options prices in practice or calculated directly from historical data

of the underlying exchange rate. For simplicity, we assume that the term structure of

volatility is flat.

Second, the correlation structure of the underlying rates in Proposition 2 is given

by

dW (t)dW (t) = Σd(t),

where Σ is a correlation matrix which represents the market correlation of the underly-

ing rates. Σ is an n-rank, positive-definite, and symmetric matrix and can be written

as

Σ = AA′ = PΛP,

where P is a real orthogonal matrix and Λ is a diagonal matrix. A is defined by

A ≡ PΛ1/2. Next, the full-rank correlation matrix Σ is approximated by selecting a

suitable correlation matrix ΣB which can be decomposed by a m-rank matrix B.

BdZ(t)(BdZ(t))′ = BB′d(t) = ΣBd(t).

The appropriate choice of the matrix B can be obtained by using by Rebonato (1999)

and shown as follows

bi,k =



















cos θi,k

k−1
∏

j=1
sin θi,j , if k = 1, 2, ...,m − 1,

k−1
∏

j=1
sin θi,j , if k = m.
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Then a suitable matrix B̂ is obtained by finding the solution θ̂ of the following opti-

mization problem

min
θ

n
∑

i,j=1

|ΓB
i,j − Γi,j|

2.

Hence, the approximated correlation matrix ΣB = B̂B̂′ mimics the correlation of the

market Σ.

4.2 Numerical analysis

In this subsection, we provide numerical examples to illustrate the application of

pricing formulae of QSs, QCs and EQSs. In comparision with previous researches, the

model parameters in our model are calibrated from the market observable quantities

to examine the model efficiency and accuracy.

The accuracy of the pricing formulae will be compared to Monte Carlo simulation to

examine the robustness of the pricing formulae. We consider short and long maturities

for these quanto interest rate derivatives with different levels of spread of interest rate

R and strike rate K to examine the robustness of the pricing models. In addition, three

calendar dates are set to the current time τ to include the different shapes and levels

of the term structures of forward LIBOR rates for two countries.

The market data associated with the forward LIBOR rates, the exchange rate and

the cap volatilities are obtained between 2008/01/01 and 2010/12/31 from a domestic

country (U.S.) and foreign country (U.K.). 2 To consider different market situations,

the current time τ is set at three various dates including 2008/01/01, 2009/01/01, and

2010/01/01. The term structures of the forward LIBOR rates of the two countries are

shown in Table 5 of Appendix E and the volatilities structures implied in cap markets

are shown in Table 4.

In Table 1–3, the pricing results of QSs, QCs and EQSs are separately demonstrated.

The current time τ is date T0 (τ = T0). The maturity of these quanto interest rate

derivatives are considered respectively for one, three, and five years. (Tn−1 = 1, 3, 5)

2In fact, we have examined more data from 2005/01/03 to 2007/12/31. The pricing results are
shown robust and precision in comparision with Monte Carlo simulation. The output is available upon
request.
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The year fraction δ of the time interval [Tj−1, Tj ] is half a year (δ = 1/2). Three

different spreads R are examined for sensitivity analysis of QSs and EQSs while three

different strike rates K are examined for QCs. The pricing results are reported based

on three calendar dates.

The pricing results of Theorem 1–4 given in Table 1–3 are listed with the results

of Monte Carlo simulation and standard errors. The results show that the derived

formulae are sufficiently accurate in comparision with Monte Carlo simulation for the

short and long maturities. At different levels of spread or strike, the pricing models

perform robustly in the empirical study. In addition, the pricing results also exhibit

satisfactorily in different scenarios of the term structures of interest rates. The overall

results show that the derived pricing formulae for quanto interest rate derivatives are

good substitutes for simulation and exhibit a time-efficiency characteristic, thereby

avoiding the problem of excessive time-consuming simulation.

5. Conclusion

We have derived the analytical valuation formulae for quanto interest rate deriva-

tives that are frequently traded in financial markets. The pricing model is a multi-factor

framework that includes the dynamics of domestic and foreign LIBOR rates and the

foreign exchange rate. The valuation formulae are easy for practical implementation

and the model parameters can be easily acquired from market quantities. In addition,

the derived formulae are robust, analytically tractable and sufficiently accurate and

thereby suitable for pricing QSs, QCs and EQSs in practice.
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Table 1 The value of QSs

R 1-year 3-year 5-year

2008/01/01

AF 0.04832 AF 0.09350 AF 0.12049

−2.00% MC 0.04836 MC 0.09348 MC 0.12073

SE 3.14 × 10−5 SE 9.19 × 10−5 SE 1.40 × 10−4

AF 0.01928 AF 0.02834 AF 0.02200

0.00% MC 0.01929 MC 0.02833 MC 0.02219

SE 3.15 × 10−5 SE 9.19 × 10−5 SE 1.40 × 10−4

AF −0.00976 AF −0.03681 AF −0.07650

2.00% MC −0.00977 MC −0.03676 MC −0.07658

SE 3.14 × 10−5 SE 9.18 × 10−5 SE 1.41 × 10−4

(1.320%) (0.870%) (0.440%)

2009/01/01

AF 0.03963 AF 0.06927 AF 0.08066

−2.00% MC 0.03965 MC 0.06898 MC 0.08080

SE 5.67 × 10−5 SE 2.01 × 10−4 SE 3.45 × 10−4

AF 0.00995 AF 0.00136 AF −0.02359

0.00% MC 0.00991 MC 0.00160 MC −0.02378

SE 5.73 × 10−5 SE 2.07 × 10−4 SE 3.49 × 10−4

AF −0.01973 AF −0.06655 AF −0.12784

2.00% MC −0.01981 MC −0.06700 MC −0.12794

SE 5.65 × 10−5 SE 1.98 × 10−4 SE 3.48 × 10−4

(0.670%) (0.040%) (−0.450%)

2010/01/01

AF 0.03590 AF 0.06640 AF 0.07200

−2.00% MC 0.03596 MC 0.06612 MC 0.07222

SE 8.07 × 10−5 SE 4.15 × 10−4 SE 7.68 × 10−4

AF 0.00612 AF −0.00135 AF −0.03087

0.00% MC 0.00617 MC −0.00106 MC −0.03065

SE 8.23 × 10−5 SE 4.05 × 10−4 SE 7.86 × 10−4

AF −0.02366 AF −0.06909 AF −0.13374

2.00% MC −0.02367 MC −0.06978 MC −0.13365

SE 8.15 × 10−5 SE 4.48 × 10−4 SE 7.64 × 10−4

(0.410%) (−0.040%) (−0.600%)

a The current time τ is set at three dates including 2008/01/01, 2009/01/01, and
2010/01/01. The maturities of QSs are examined for one, three, and five years.
(Tn−1 = 1, 3, 5) The year fraction δ is half a year (δ = 1/2).

b R denotes the level of spread in basis points and may be positive and negative by
Definition 1. We examined three different levels of spread (R = −2.00%, 0.00%,
2.00%). AF stands for the pricing result using analytic formula in equation (11) of
Theorem 1. MC and SE represent, respectively, the numerical result using Monte
Carlo simulation with 50,000 random paths and standard errors.

c The number in the parenthesis denotes the level of swap rates in equation (12). The
swap rate makes the contract a zero-sum game at the beginning.
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Table 2 The value of QCs

K 1-year 3-year 5-year

2008/01/01

AF 0.06144 AF 0.11956 AF 0.16517

1.00% MC 0.06140 MC 0.11965 MC 0.16508

SE 2.06 × 10−5 SE 5.09 × 10−5 SE 7.03 × 10−5

AF 0.03240 AF 0.05533 AF 0.07059

3.00% MC 0.03240 MC 0.05530 MC 0.07064

SE 2.04 × 10−5 SE 4.83 × 10−5 SE 6.43 × 10−5

AF 0.00734 AF 0.01088 AF 0.01353

5.00% MC 0.00734 MC 0.01087 MC 0.01353

SE 1.05 × 10−5 SE 2.41 × 10−5 SE 3.15 × 10−5

2009/01/01

AF 0.01665 AF 0.03573 AF 0.04844

1.00% MC 0.01662 MC 0.03573 MC 0.04840

SE 4.02 × 10−5 SE 1.19 × 10−4 SE 1.56 × 10−4

AF 0.00166 AF 0.01059 AF 0.01681

3.00% MC 0.00167 MC 0.01066 MC 0.01671

SE 2.74 × 10−5 SE 9.80 × 10−5 SE 1.30 × 10−4

AF 0.00059 AF 0.00574 AF 0.00957

5.00% MC 0.00060 MC 0.00584 MC 0.00949

SE 1.91 × 10−5 SE 8.37 × 10−5 SE 1.11 × 10−4

2010/01/01

AF 0.00812 AF 0.04414 AF 0.07442

1.00% MC 0.00809 MC 0.04436 MC 0.07429

SE 3.83 × 10−5 SE 1.51 × 10−4 SE 2.15 × 10−4

AF 0.00177 AF 0.02002 AF 0.03723

3.00% MC 0.00173 MC 0.02005 MC 0.03706

SE 2.42 × 10−5 SE 1.27 × 10−4 SE 1.94 × 10−4

AF 0.00057 AF 0.01120 AF 0.02248

5.00% MC 0.00056 MC 0.01116 MC 0.02231

SE 1.60 × 10−5 SE 1.10 × 10−4 SE 1.69 × 10−4

a The current time τ is set at three dates including 2008/01/01, 2009/01/01, and
2010/01/01. The maturities of QCs are examined for one, three, and five years.
(Tn−1 = 1, 3, 5) The year fraction δ is half a year (δ = 1/2).

b K denotes the strike level of interest rate in basis points by Definition 2. We
examined three different levels of strike (K = 1.00%, 3.00%, 5.00%). AF stands
for the pricing result using analytic formula in equation (14) of Theorem 2. MC
and SE represent, respectively, the numerical result using Monte Carlo simulation
with 50,000 random paths and standard errors.
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Table 3 The value of EQSs

R 1-year 3-year 5-year

2008/01/01

AF −0.01621 AF −0.02014 AF −0.02802

−2.00% MC −0.01619 MC −0.02006 MC −0.02825

SE 2.93 × 10−5 SE 8.35 × 10−5 SE 1.28 × 10−4

AF −0.04525 AF −0.08529 AF −0.12652

0.00% MC −0.04519 MC −0.08520 MC −0.12669

SE 2.92 × 10−5 SE 8.40 × 10−5 SE 1.28 × 10−4

AF −0.07430 AF −0.15045 AF −0.22501

2.00% MC −0.07429 MC −0.15054 MC −0.22497

SE 2.93 × 10−5 SE 8.34 × 10−5 SE 1.27 × 10−4

2009/01/01

AF 0.03099 AF 0.04549 AF 0.04671

−2.00% MC 0.03094 MC 0.04533 MC 0.04640

SE 3.99 × 10−5 SE 1.75 × 10−4 SE 3.18 × 10−4

AF 0.00131 AF −0.02242 AF −0.05754

0.00% MC 0.00134 MC −0.02241 MC −0.05736

SE 4.08 × 10−5 SE 1.79 × 10−4 SE 3.18 × 10−4

AF −0.02837 AF −0.09033 AF −0.16179

2.00% MC −0.02837 MC −0.09037 MC −0.16135

SE 4.03 × 10−5 SE 1.62 × 10−4 SE 2.97 × 10−4

2010/01/01

AF 0.03171 AF 0.03180 AF 0.01078

−2.00% MC 0.03184 MC 0.03149 MC 0.01048

SE 7.35 × 10−5 SE 3.95 × 10−4 SE 7.48 × 10−4

AF 0.00193 AF −0.03595 AF −0.09209

0.00% MC 0.00193 MC −0.03598 MC −0.09168

SE 7.21 × 10−5 SE 3.86 × 10−4 SE 7.03 × 10−4

AF −0.02786 AF −0.10369 AF −0.19495

2.00% MC −0.02787 MC −0.10315 MC −0.19450

SE 7.56 × 10−5 SE 3.92 × 10−4 SE 6.96 × 10−4

a The current time is set at three dates including 2008/01/01, 2009/01/01, and
2010/01/01. The maturities of EQSs are examined for one, three, and five years
(Tn−1 = 1, 3, 5). The year fraction is half a year (δ = 1/2). Three different levels of
interest rates are set at Rd = 2.00%, Rm = 4.00%, Ru = 6.00%.

b R denotes the level of spread in basis points and may be positive and negative by
Definition 3. We examined three different levels of spread (R = −2.00%, 0.00%,
2.00%). AF stands for the pricing result using analytic formula in equation (16) of
Theorem 4. MC and SE represent, respectively, the numerical result using Monte
Carlo simulation with 50,000 random paths and standard errors.
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Appendix

A. Proof of Theorem 1

Denote the forward martingale measure as QTj with respect to the numeraire by

the domestic zero-coupon bond Pd(t, Tj). According to Proposition 2, the dynamics

of the forward LIBOR rates Lk(t, Tj−1) under the domestic martingale measure Q are

given as follows.

dLd(t, Tj−1)

Ld(t, Tj−1)
= γd(t, Tj−1) · dW (t), (A.1)

dLf (t, Tj−1)

Lf (t, Tj−1)
= γf (t, Tj−1) ·

(

στ
f (t, Tj) − στ

d(t, Tj) − σX(t)
)

d(t) + γf (t, Tj−1) · dW (t),

(A.2)

where Ld(t, Tj−1) is a martingale under QTj .

The no-arbitrage price of a QS with a change of measure from the measure QT to

the forward martingale measure QTj is given by

QS(τ,R) = EQ







n
∑

j=1

βd(τ)

βd(Tj)
Nd (Lf (Tj−1, Tj−1)δ − (Ld(Tj−1, Tj−1) + R)δ) |Fτ







= Ndδ

n
∑

j=1

Pd(τ, Tj)E
QTj

{Lf (Tj−1, Tj−1) − Ld(Tj−1, Tj−1) − R|Fτ} . (A.3)

The stochastic integral form of the foreign LIBOR rate Lk(t, Tj−1) over time interval

[τ, Tj−1] under the measure QTj can be evaluated directly from (A.1) and (A.2) and

shown as follows.

Ld(Tj−1, Tj−1) = Ld(τ, Tj−1) exp{−
1

2
νd(τ, Tj−1) + Zd(τ, Tj−1)}, (A.4)

Lf (Tj−1, Tj−1) = Lf (τ, Tj−1)ρ(τ, Tj−1) exp{−
1

2
νf (τ, Tj−1) + Zf (τ, Tj−1)}, (A.5)

where

νk(τ, Tj−1) =

∫ Tj−1

τ
‖γk(t, Tj−1)‖2d(t),

ρ(τ, Tj−1) = exp

(∫ Tj−1

τ
µf (t, Tj−1)d(t)

)

,

µf (t, Tj−1) = γf (t, Tj−1) · (στ
f (t, Tj) − στ

d(t, Tj) − σX(t)),
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and

Zk(τ, Tj−1) =

∫ Tj−1

τ
γk(t, Tj−1) · dW (t)

is a normal variate with variance νk(τ, T ) , k ∈ {d, f}.

Hence, the pricing formula of a QS can be derived by substituting (A.4) and (A.5)

into (A.3) and given as follows.

QS(τ,R) = Ndδ

n
∑

j=1

Pd(τ, Tj) { Lf (τ, Tj−1)ρ(τ, Tj−1) − Ld(τ, Tj−1) − R} .

B. Proof of Theorem 2

The no-arbitrage price of a QC is derived via a change of measure from the domestic

martingale measure Q into the forward martingale measure QTj and given as follows.

QC(τ,K) = EQ







n
∑

j=1

βd(τ)

βd(Tj)
Nd(Lf (Tj−1, Tj−1) − K)+δ

∣

∣

∣

∣

∣

∣

Fτ







= Ndδ
n

∑

j=1

Pd(τ, Tj)EQTj {

(Lf (Tj−1, Tj−1) − K)+
∣

∣ Fτ

}

= Ndδ

n
∑

j=1

Pd(τ, Tj)
{

EQTj (

Lf (Tj−1, Tj−1)I{A}|Fτ

)

− EQTj
(I{A}|Fτ )

}

,

(B.1)

where A = {Lf (Tj−1, Tj−1) ≥ K}. I{·} denotes an indicator function.

The second expectation in (B.1) can be derived in a similar way as given in Appendix

A. The first expectation is somewhat complicated to compute under the measure QTj .

However, the pricing result can be derived by using the changing-numeraire mechanism

to obtain a new martingale measure. The new martingale measure, denoted by QRj , is

defined by the Radon-Nikodym derivative ζt via Girsanov’s theorem. That is

ζt :=
dQTj

dQRj
= {−

1

2
νf (τ, Tj−1) + Zf (τ, Tj−1)},

where νf (τ, Tj−1) and Zf (τ, Tj−1) are defined in Appendix A. The first expectation

in (B.1) is then evaluated under the new probability measure QRj and rearranged as
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follows.

QC(τ,K) = Ndδ
n

∑

j=1

Pd(τ, Tj)
{

Lf (τ, Tj−1)ρ(τ, Tj−1)EQRj
(IE |Fτ ) − EQTj

(IE |Fτ )
}

.

(B.2)

where ρ(τ, Tj−1) is defined in Appendix A. Again, the stochastic integral form of the

foreign LIBOR rate Lf (t, Tj−1) over time interval [τ, Tj−1] under the measure QRj is

given by

Lf (Tj−1, Tj−1) = Lf (τ, Tj−1)ρ(τ, Tj−1) exp

{

1

2
νf (τ, Tj−1) + Zf (τ, Tj−1)

}

. (B.3)

Substituting (B.3) into (B.2), the pricing formula of a QC is therefore derived as

follows.

QC(τ,K) = Ndδ

n
∑

j=1

Pd(τ, Tj){ Lf (τ, Tj−1)ρ(τ, Tj−1)Φ(d1(τ, Tj−1)) − KΦ(d2(τ, Tj−1))},

where

d1(τ, Tj−1) =
ln(Lf (τ, Tj−1)ρ(τ, Tj−1)/K) + 1

2νf (τ, Tj−1)
√

νf (τ, Tj−1)
,

d2(τ, Tj−1) = d1(τ, Tj−1) −
√

νf (τ, Tj−1).

C. Proof of Theorem 5

Using simple set calucation, we can rewrite the reference rate as follows.

L∗
f (Tj−1, Tj−1) = Lf (Tj−1, Tj−1)I{A0d} + RdI{Adm} + (Ru − Lf (Tj−1, Tj−1))I{Amu}

= Lf (Tj−1, Tj−1) − (Lf (Tj−1, Tj−1) − Rd)I{Ad}

− (Lf (Tj−1, Tj−1) − Rm)I{Am} + (Lf (Tj−1, Tj−1) − Ru)I{Au},

(C.1)

where

Ad = {Rd ≤ Lf (Tj−1, Tj−1)},

Am = {Rm ≤ Lf (Tj−1, Tj−1)},

Au = {Ru ≤ Lf (Tj−1, Tj−1)}
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are the subsets in probability space Ω and I{·} denotes an indicator function.

By substituting (C.1) into (15), we can find out the relation among EQSs, QSs, and

QCs as follows.

NdLf (Tj−1, Tj−1)δ − Nd (Lf (Tj−1, Tj−1) − Rd)+ δ − Nd (Lf (Tj−1, Tj−1) − Rm)+ δ

+Nd (Lf (Tj−1, Tj−1) − Ru)+ δ − Nd (Lf (Tj−1, Tj−1) + R) δ.

Thus, the payoff can be decomposed into a QS and three QCs with different strikes.

The no-arbitrage price at time τ of an EQS is therefore given by

EQS(τ,R) = QS(τ,R) − QC(τ,Rd) − QC(τ,Rm) + QC(τ,Ru)

= −(Ld(τ, Tj−1) + R)Pd(τ, Tj)δ − QF (τ,Rd) − QF (τ,Rm) + QF (τ,Ru).
(C.2)

The second equality in (C.2) can be derived directly from put-call parity of quanto

interest rate derivatives.

QC(τ,R) = QF (τ,R) + Lf (τ, Tj−1) − R · Pd(τ, Tj).

D. The Market Data

The Market data are drawn from the DataStream database. We list the cap volatil-

ities and the initial forward LIBOR rates from U.S. and U.K. in the following tables.

The data is used to compute the QSs, QCs/QFs, and EQSs in Section 4.2.

Table 4 Cap Volatilities Quoted in the U.S. and U.K. Market

U.S. U.K.

year 2008/1/1 2009/1/1 2010/1/1 2008/1/1 2009/1/1 2010/1/1

1 27.26 79.02 105.80 17.33 81.42 68.39

2 31.07 69.62 76.74 18.35 59.03 59.03

3 29.55 59.68 59.95 17.71 45.67 48.41

4 27.75 52.63 49.90 16.76 38.36 41.44

5 26.24 47.93 43.35 15.95 33.32 36.26

* The quoted volatilities of the caps in the U.S. and U.K. market over the
past three years are shown in this table.
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Table 5 Initial Forward LIBOR Rates

U.S. U.K.

year 2008/1/1 2009/1/1 2010/1/1 2008/1/1 2009/1/1 2010/1/1

0 4.561 1.260 0.328 6.121 2.982 0.841

0.5 3.575 1.252 0.974 5.054 1.883 1.461

1.0 3.540 1.486 1.790 4.641 2.099 2.435

1.5 3.218 1.729 2.521 4.489 3.327 3.203

2.0 3.815 2.072 3.038 4.598 3.352 3.706

2.5 3.868 2.382 3.481 4.408 3.031 4.026

3.0 3.991 2.510 3.728 4.424 3.200 4.121

3.5 4.075 2.617 4.052 4.299 3.380 4.201

4.0 4.092 2.664 4.184 4.199 3.328 4.174

4.5 4.176 2.686 4.279 4.089 3.275 4.202

5.0 4.127 2.677 4.311 4.015 3.261 4.138

* The forward LIBOR rates in the U.S. and U.K. market over the past two
years are shown in this table. The rates are obtained from the associated
bond prices derived from the zero curves.
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