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Application of Model-Free Analysis in the MR
Assessment of Pulmonary Perfusion Dynamics

Kai-Hsiang Chuang,’? Ming-Ting Wu,"®" Yi-Ru Lin,"? Kai-Sheng Hsieh,**
Ming-Long Wu,? Shang-Yueh Tsai,? Cheng-Wen Ko, and Hsiao-Wen Chung?

Dynamic contrast-enhanced (DCE) MRI has been used to quan-
titatively evaluate pulmonary perfusion based on the assump-
tion of a gamma-variate function and an arterial input function
(AIF) for deconvolution. However, these assumptions may be
too simplistic and may not be valid in pathological conditions,
especially in patients with complex inflow patterns (such as in
congenital heart disease). Exploratory data analysis methods
make minimal assumptions on the data and could overcome
these pitfalls. In this work, two temporal clustering methods—
Kohonen clustering network (KCN) and Fuzzy C-Means (FCM)—
were concatenated to identify pixel time-course patterns. The
results from seven normal volunteers show that this technique
is superior for discriminating vessels and compartments in the
pulmonary circulation. Patient studies with five cases of ac-
quired or congenital pulmonary perfusion disorders demon-
strate that pathologies can be highlighted in a concise map that
combines information of the mean transit time (MTT) and pul-
monary blood volume (PBV). The method was found to provide
greater insight into the perfusion dynamics that might be over-
looked by current model-based analyses, and may serve as a
basis for optimal hemodynamic quantitative modeling of the
interrogated perfusion compartments. Magn Reson Med 54:
299-308, 2005. © 2005 Wiley-Liss, Inc.
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Proper regulation of pulmonary perfusion and ventilation
is required for efficient gas exchange. Therefore, it is es-
sential to accurately estimate pulmonary perfusion to as-
sess the pathophysiology of the lung. In current clinical
practice, pulmonary perfusion is evaluated with the use of
nucleotide scintigraphic methods. However, these tech-
niques are limited by poor spatial resolution and artifacts
introduced by long imaging times (1). Magnetic resonance
imaging (MRI) has been demonstrated to be a promising
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tool for evaluating brain perfusion with a spatial resolu-
tion of less than 1.5 mm and temporal resolution of about
1 s using Gd-DTPA as a contrast agent (2). When the same
strategy is extended to image pulmonary perfusion, the
poor magnetic field homogeneity caused by the complex
air-tissue interfaces in the lung reduces the T7 of the lung
tissue to only a few milliseconds. The resulting low signal-
to-noise ratio (SNR) limits the application of MRI in the
lungs. Recent developments in short-TE imaging se-
quences have overcome the T% decay and made it feasible
to assess pulmonary perfusion by dynamic contrast-en-
hanced (DCE) MRI, as used in brain perfusion studies
(1,3-7).

Assuming that the contrast agent is a nondiffusible, in-
travascular tracer, quantitative indices, such as the relative
pulmonary blood volume (PBV), relative mean transit time
(MTT), and relative pulmonary blood flow (PBF), can be
derived from the time courses of signal intensity (SI) in
DCE-MRI (1,8,9). To eliminate the SI change from recircu-
lation of the tracer, the time course is fitted to an assumed
bolus-shaped function (typically a gamma-variate func-
tion) before the calculation is performed. Summary param-
eters, such as time-to-peak and gamma-fitting parameters,
can be obtained as well (10). Furthermore, to achieve the
absolute quantification of PBV, PBF, and MTT, a suitable
arterial input function (AIF) is required to deconvolve the
delayed and dispersed agent concentrations if the tracer
transit function is linear.

However, in contrast to the brain, which has the blood—
brain barrier, the contrast agent can diffuse to the sur-
rounding tissues in the lungs, thus violating the assump-
tion of an intravascular tracer. Complicated tracer kinetics
in pulmonary parenchyma also invalidate the assumptions
of a gamma-variate function and linear system in three
situations: 1) when the lung parenchyma has altered per-
meability, such as in interstitial pneumonitis or pulmo-
nary edema; 2) when the pulmonary artery has altered
intrapulmonary circulation, such as in pulmonary artery
hypertension or thromboembolism; and 3) when the pul-
monary artery has an altered inflow pattern from the heart
or an altered outflow pattern back to the heart, as in con-
genital heart disease. All of these situations could greatly
alter the inflow/outflow patterns of pulmonary circulation
and render the derived quantification inaccurate, thus hin-
dering the assessment of pathology.

Since quantitation of PBF and PBYV is challenging due to
the use of extravascular tracers, and changes in permeabil-
ity and flow during disease states, an alternative method
that can provide objective and concise differentiation of
the hemodynamics in the pulmonary circulation is in great
demand. Exploratory data analysis methods such as tem-
poral clustering (11,12) and independent component anal-
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FIG. 1. Flowchart of the KCN-FCM analysis.

ysis (13) make only minimal assumptions regarding the
signal dynamics, and hence could eliminate the errors
from inaccurate modeling. Recently these methods were
applied to extract the AIF (14) and reduce large-vessel
effects in the perfusion map (15). In this paper we propose
to combine two temporal clustering methods—Kohonen
clustering network (KCN) and Fuzzy C-Means (FCM)
(12)—to identify components with different tracer dynam-
ics in the heart and lungs (i.e., the perfusion dynamic
component (PDC) map). Since the interrogated compo-
nents include the beating heart and central vasculature, we
adopted an ECG-gated, interleaving, notched saturation
fast gradient-echo sequence that was recently developed
for cardiac perfusion imaging (16) to minimize physiolog-
ical motion and enhance contrast while maintaining suf-
ficient slice coverage. A comparison of the current results
and the model-based PBV and MTT findings shows that
this analysis method can provide more insights into the
precise tracer kinetics in normal and pathological condi-
tions, and may serve as a basis for optimal perfusion quan-
tification.

MATERIAL AND METHODS
Theory

Temporal clustering methods are used to group pixels
with similar SI variations into a cluster, and thus provide
a way to distinguish regions with analogous perfusion
dynamics. Here we introduce a two-stage method that
concatenates two different temporal clustering methods:
KCN and FCM. The idea is to perform overclustering of the
perfusion time series data by a fast clustering method
(KCN) and then merge redundant clusters by FCM. Figure
1 shows the processing flowchart of the KCN-FCM analy-
sis.

Chuang et al.

KCN is an unsupervised neural network that is based on
Kohonen’s self-organizing map (SOM) model (17). By re-
garding a pixel time-course as a vector, SOM classifies M
input vectors into N (N < M) cluster features according to
their Euclidean distance. Since the original SOM algo-
rithm is a non-optimization process, it is sensitive to ini-
tial conditions, noise, and so forth. We thus adopted the
modification proposed by Pal et al. (18) to minimize a
weighted sum of square error:
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where I, is the kth input vector, V; is the ith cluster feature,
and n,, is the best matching cluster of I,.
The basic procedures of KCN are summarized below:

1. Randomly initialize N feature vectors.

2. Compare each input vector with the N features to find
the most similar feature, i.e., the winner. Then assign this
input to be a member of the winning cluster.

3. Modify the winner feature to make it resemble the
input vector. In other words, the winner learns the char-
acteristics of the input vector. In addition, the modifica-
tion is applied to other cluster features—not just the win-
ner—to stabilize the algorithm.

4. Tterate steps 2 and 3 until the changes are less than a
specified threshold for all cluster features. These cluster
features will then converge to the most representative fea-
tures of all input vectors.

Because of its simple structure, KCN is very efficient in
terms of processing speed and memory usage. However,
KCN has to designate each input to only one cluster, even
when this input is similar to more than two clusters, and
this “hard” partitioning property makes it difficult to clas-
sify ambiguous features. To overcome this limitation but
retain the advantages of KCN, the data are first overclassi-
fied by KCN and then the identified cluster features are
merged by the second clustering method, FCM. Unlike
KCN, FCM does not determine to which cluster one input
vector belongs (19). On the contrary, it calculates a mem-
bership function that describes the probability that one
input vector belongs to each output cluster. If one input
vector matches one of the C cluster features perfectly, the
probability of belonging to that cluster should be one, and
the probability of belonging to other clusters should be
zero. If there is no perfectly matching cluster, the member-
ship p,,, between the mth input and the nth cluster is
determined by the following equation:
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where I, is the mth input vector, V,, is the nth cluster
feature, and p (>1) is the fuzzy factor. The basic proce-
dures of FCM are summarized below:

1. Randomly initialize N feature vectors.

2. Compare each input vector with the N features and
calculate its membership.

3. Modify all cluster features by the membership-
weighted sum of the input vectors to make them learn
the characteristics of the input vectors.

4. Iterate steps 2 and 3 until the membership function
converges. Then use a membership threshold to de-
termine to which cluster an input belongs.

MRI Experiment

Data Acquisitions

Two groups of subjects were enrolled in the present study.
In the first group (seven healthy male volunteers, 20-27
old) we developed the methodology and evaluated normal
pulmonary perfusion physiology. In the second group,
which consisted of five patients, we examined our method
under pathophysiological circumstances. The second
group included three adult patients (one with lung cancer,
one with Swyer-James syndrome, and one with single lung
transplantation with postoperative pulmonary artery ste-
nosis) and two pediatric patients (one (2 years 4 months
old) with Tetralogy of Fallot, and one (8 months old) with
complex congenital heart disease with major aortopulmo-
nary collateral circulation). Informed consent was ob-
tained from the subjects or their parents before scanning
was performed. The experiment protocol was approved by
the Institutional Review Board of Kaohsiung Veterans
General Hospital.

Images were acquired by a GE Signa CVi 1.5T imager (GE
Healthcare, Milwaukee, WI, USA). An ECG-gated, magne-
tization-prepared, 2D segmented gradient-echo echo-pla-
nar sequence with interleaved notched saturation pulses
was used (16). To minimize susceptibility effects, short
echo times (TEs) and echo train lengths were achieved by
acquiring four echoes per segment. The interleaved
notched saturation scheme utilized a band-stop RF profile
at the beginning of the slice acquisition to presaturate the
magnetization in the next slice to be acquired. This tech-
nique effectively provided a longer recovery time for stron-
ger T, weighting than ordinary magnetization-prepared
fast gradient-echo methods, while it also allowed more
slices to be acquired within one trigger interval. The pa-
rameters were dependent on heart rates. Typically, TR/TE/
TI = 6.6/1.1/181 ms, and flip angle (FA) = 20° were used.
After three baseline frames, paramagnetic contrast me-
dium (Gd-DTPA, Magnavist, Schering; dosage = 0.05 mM/
kg) was rapidly injected with a saline flush. In the adults,
the injection was performed by a power injector at a rate of
3.0 mL/s. Hand injection was performed as fast as possible
(about 1-1.5 mL/s) in the children. There were two scan-
ning protocols: 1) TR = 1 R-R interval, 2-3 slices, slice
thickness = 6 mm to center on the pulmonary hila; and 2)
TR = 2 R-R intervals, 6—8 slices, slice thickness = 15 mm
to cover the entire lung parenchyma. Thirty to 60 frames
were acquired in each protocol. The adult subjects were
asked to hold their breath during the perfusion scan, and
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the children breathed freely under sedation. Four healthy
subjects underwent both protocols at an interval of 2 hr.
The FOV was 480 mm and the data matrix of 128 X 128
was interpolated to 256 X 256 by zero padding. 3D MRA
was also performed on the patients for a detailed morpho-
logical evaluation of the pulmonary vasculature.

Data Processing

Perfusion dynamic component (PDC) map obtained by the
KCN-FCM method. KCN and FCM analyses were per-
formed with custom-written software (Functional MRI
Analysis and Clustering Tools (FACT); free download at
http://mr.ee.ntu.edu.tw/~khchuang/fact.html), running
under Linux (Red Hat, NC, USA). Before clustering was
performed, uninteresting pixels were discarded and the
SIs were normalized. To remove the pixels we used two
thresholds: one was a background threshold to remove
pixels outside the body, and the other was a signal varia-
tion threshold, which was the average of the standard
deviation (SD) divided by the mean in the background, to
remove pixels that did not possess significant enhance-
ment, such as in muscle and fat. The SI normalization was
done by dividing the time-course signal by its median.
After preprocessing was performed, the data were first
clustered into 50 features by KCN and then grouped into
10-18 patterns by FCM. KCN was initialized by randomly
selecting input vectors, and FCM was initialized by ran-
domly generating unit vectors. In addition, the identified
KCN features were normalized as unit vectors before pro-
cessing by FCM was performed. The similarity measure
used in FCM was the Euclidian distance. The fuzzy factor
was 1.3, and the membership threshold was 0.8. The pro-
cessing time for one slice, which consisted of 20000 to
25000 input pixels, was about 30—40 s on a PC with a
Pentium 4 1.8G Hz CPU (Intel, CA, USA). Cluster wave-
forms showing perfusion-related signal changes were se-
lected and displayed in colors according to the time-to-
peak. Then pixels belonging to the selected clusters were
mapped by the corresponding colors to create a PDC map.

MTT and PBV maps obtained by the gamma-fitting
method. Quantitative perfusion analysis, using the model
proposed by Hatabu et al. (8), was performed indepen-
dently by an observer blinded to the results of KCN-FCM.
The program was developed locally with Matlab 6.5
(MathWorks, Natick, MA, USA). The images were first
smoothed spatially by averaging the signal intensities
within a 3 X 3 window. The signal time course was then
fitted by a gamma-variate function to calculate the relative
MTT and normalized by an AIF to derive the relative PBV
(9). The beginning point of the gamma fitting was chosen
as the point before 10% of the maximum enhancement
was exceeded. The ending point of the fitting was chosen
to be the sixth time point after the maximum enhance-
ment. To avoid fitting pixels outside the lung, we used two
thresholds: one to discard pixels without prominent signal
changes, and one to remove pixels with too strong of an
enhancement, as in the liver, by discarding any pixel en-
hanced more than 150% from baseline. Finally, MTT and
PBV maps were generated with pseudo-color to maximize
the contrast in the lung.

RESULTS
Healthy Subjects

The ECG-gated interleaved notched segmented echo-pla-
nar imaging (EPI) successfully eliminated cardiac motion
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FIG. 2. a: PDC maps of two adjacent slices from a
healthy subject. The perfusion components are
pseudo-colorized from red to blue according to the
perfusion consequence as follows: superior vena
cava (orange), right ventricle (red), pulmonary ar-
teries (yellow), lung parenchyma (green, olive
green, and cyan), pulmonary vein and left atrium
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The relative PBV map of the first slice in part a with
the unit normalized to an AIF. This confirms that in
PDC maps the component in the central lung pa-
renchyma (steel blue) corresponds to higher blood
volume, and the component in the peripheral lung
(cyan) corresponds to lower blood volume. There-
fore, PDC maps present the combined information
of MTT and PBV. It also shows that the lower part
of the lung has higher but slower perfusion (steel
blue) than the upper part (olive green). [Color figure
can be viewed in the online issue, which is avail-
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40 able at www.interscience.wiley.com.]

and provided high contrast-to-noise ratio (CNR) images in
all normal volunteers. Figure 2a shows the PDC maps of
two adjacent slices from a healthy volunteer analyzed by
KCN-FCM. The spatially averaged SI time courses of the
clusters in the first slice are shown in Fig. 2b, and those in
the lung parenchyma are magnified in Fig. 2c. Major com-
ponents in the cardiovascular system are clearly differen-
tiated and pseudo-colorized from red to blue in the order

of circulation consequence as follows: superior vena cava
(orange), right atrium and right ventricle (red), pulmonary
artery trunk and bilateral main pulmonary arteries (yel-
low), segmental pulmonary arteries and lung parenchyma
(green, olive green, and cyan), pulmonary veins and left
atrium (steel blue and blue), left ventricle and aorta (blue),
inferior vena cava and myocardium (magenta), and spleen
(purple). Figure 2d and e show the MTT and PBV maps,
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FIG. 3. A 65-year-old male with lung cancer in the
right upper lobe. a: The PDC map clearly marked
the tumor (arrow) as dark green mixed with small
parts of light green clusters (arrow). b: The aver-
aged Sl time course of each cluster. The (¢) MTT
and (d) PBV maps confirm that the lung tumor has
slow and large flows, respectively; however, the
boundary of the tumor is ill-defined in the PBV
map. With the advantage of multislice analysis, we
found that the light green cluster of the tumor had
the same peak time as the descending aorta (ar-
row) in another slice (e). This finding suggests that
the tumor receives its blood supply from a branch
of the aorta (i.e., the bronchial artery). It should be
noted that the patient failed to sustain the breath-
hold well, which resulted in a sudden signal change
on the 23rd scan. [Color figure can be viewed in the
online issue, which is available at www.interscience.
wiley.com.]

respectively, of the first slice in Fig. 2a. In the PBV map,
the variation in the mediastinum could not be differenti-
ated because pseudo-color was used to maximize contrast
in the lungs. When the three maps were compared, most
clusters in the PDC map (Fig. 2a) corresponded to regions
with different MTTs. However, the superior vena cava, RV,
and pulmonary arteries were better separated by the PDC
map than by the MTT because these regions have high
blood volume. This indicates that the PDC map also con-
tains information on the PBV. In addition, regions with
different perfusion in the lungs were also differentiated by
KCN-FCM (in green and blue colors). The upper part of the
lung showed more olive green areas than the lower part,
while the lower part of the lung showed more steel blue
areas than the upper part (Fig. 2a). From the averaged SI
time courses in these clusters (Fig. 2c), it can be seen that
the steel blue cluster is enhanced later and higher than the
olive green cluster, indicating that the lower lung has a
longer MTT and higher PBV. This upper—lower lobar gra-
dient, which is in accord with normal perfusion physiol-
ogy (9), was better shown by the PDC map than by the PBV
map, and was more prominent in the posterior slice (the
second slice) than in the anterior slice (the first slice).

We found that in the healthy subjects, four major seg-
ments of the hemodynamic consequent phases could be
consistently divided:

1. Right-atrium — right ventricle — pulmonary trunk —
bilateral main pulmonary arteries.

2. Lung parenchyma.

Pulmonary vein — left atrium.

4. Left ventricle — aorta.

w
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Generally, about five (median = 5, range = 4 —7) clusters
(including pulmonary arteries, veins, and parenchyma)
could be discriminated in the lung parenchyma, and about
six (median = 6, range = 5—8) clusters (including atriums,
ventricles, arteries, veins, and myocardium) could be dif-
ferentiated in the heart. A comparison of scans with inter-
frame intervals of 2 R-R and 1 R-R revealed that the iden-
tified clusters in similar slice positions were very close,
but overall, more clusters could be identified using 2 R-R.
Although 1 R-R provided better temporal resolution, 2 R-R
appeared to be sufficient to separate the major compart-
ments while allowing for more slice numbers (e.g., seven
vs. three slices) to cover broader areas of the lungs and the
cardiac system. Furthermore, the PDC maps of 2 R-R had
better quality because the SNR of the 2 R-R data was higher
due to the thicker slices and more time for longitudinal
relaxation. Based on the above advantages, we used only
the 2 R-R technique in the patient studies.

Patients

Acquired Pulmonary Perfusion Disorders

Figure 3 shows the results from a patient with lung cancer.
The PDC (Fig. 3a) and MTT (Fig. 3c) maps both clearly
identify the tumor in the middle of the right lung. Al-
though the PBV map (Fig. 3d) also shows the abnormality,
the boundary can not be differentiated from the nearby
high blood volume regions. In addition, the PDC map
indicates that there are two components in the tumor, one
of which is synchronized with that of the descending aorta
(Fig. 3e). This indicates that the tumor receives a blood
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supply from a branch of the aorta (i.e., the bronchial ar-
tery). Since malignant lung tumors get most of their blood
supply from the aorta (in contrast to benign tumors, which
get their blood from the pulmonary artery), this finding
helped us to characterize the tumor.

Figure 4 shows a representative slice from a patient with
Swyer-James syndrome, a disease that involves acquired
obliteration of the unilateral pulmonary arteries due to
bronchiolitis during childhood. The PDC map (Fig. 4a)
shows scarce SI in the left lung (Fig. 4b), indicating severe
perfusion deficit in the left lung. The combination of the
MTT (Fig. 4c) and PBV (Fig. 4d) maps largely agrees with
this result. However, only the PDC and PBV maps identify
the small portion of normal left upper lung (arrow in Fig.
4a). The status of the left apical lung was confirmed by
Tc99M-MAA perfusion scintigraphy (Fig. 4e). Identifica-
tion of the small normal apical lung is important because
it may expand to compensate for lung function after the
diseased lower lung is resected.

Congenital Pulmonary Perfusion Disorders

Figure 5 shows the results from a 3-year-old patient with
Tetralogy of Fallot after total correction with residual left
peripheral pulmonary stenosis. While the PDC (Fig. 5a)
and MTT (Fig. 5c) maps showed differences between the
left and right lungs, the PBV map (Fig. 5d) appeared sim-
ilar in the bilateral lungs. This incorrect measurement was

FIG. 4. A 23-year-old male with acquired oblitera-
tion of the unilateral pulmonary arteries and a small
airway due to childhood bronchiolitis (Swyer-
James syndrome). The (@) PDC map and (b) aver-
aged Sl time curve of each cluster are shown. Note
that the left lower lobe has almost no perfusion,
and the width of the signal enhancement in the
right lung is much wider than that in normal cases.
Compared to the (¢) MTT and (d) PBV maps, the
PDC and PBV maps better identify the small por-
tion of normal left upper lung (arrow). e: Tc99M-
MAA perfusion scintigraphy with exaggerated gain
confirms the presence of the left apical lung (ar-
row). [Color figure can be viewed in the online
issue, which is available at www.interscience.
wiley.com.]

due to poor model fitting of the perfusion dynamics. As
indicated by the delayed SI curve in the left lung (the cyan
line in Fig. 5b), there may have been some overlap with the
second-pass transit. Thus, the PBV may have been overes-
timated, which led to an appearance that was indistin-
guishable from the SI curve in the normal lung paren-
chyma (the green line in Fig. 5b). If this is the case, a
careful examination of both the MTT and PBV maps will
be needed. Furthermore, the PDC map clearly shows
branches of the pulmonary artery in the right lung (Fig. 5a,
orange color, arrow), whereas they are absent in the left
lung. This was confirmed by conventional invasive angiog-
raphy (Fig. 5e, arrow). This finding is important because it
suggests that the deficient and delayed perfusion of the left
lung was due to peripheral stenosis of the left pulmonary
artery after a surgical procedure. The SI curves of some
clusters in the lungs also showed a large fluctuation from
the respiratory motion. This was because the sedated chil-
dren could not hold their breath during the scan. The
KCN-FCM analysis identified this signal change and
worked well even in this condition. This robustness is
important for analyzing pediatric data.

Figure 6 shows a 1-year-old patient with pulmonary
atresia and a major aortopulmonary collateral artery. The
KCN-FCM analysis (Fig. 6a) was better at discriminating
perfusion deficiency in the left apical lung than the MTT-
PBV method (Fig. 6¢ and d). In addition, KCN-FCM solely
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FIG. 5. A3-year-old patient with Tetralogy of Fallot
received surgical total correction for severe periph-
eral stenosis of the left main pulmonary artery. The
(@) PDC map and (b) averaged Sl time curve in
each cluster, and the (¢) MTT and (d) PBV maps are
shown. Both the PDC and MTT maps (but not the
PBV map) show distinct perfusion patterns in the
left lung vs. the right lung. In addition, the PDC
map clearly shows the branches of the pulmonary
artery in the right lung (orange color, arrow), while
they are absent in the left lung. This finding was
confirmed by conventional invasive angiography
(e, arrow). Note that even with jittered patterns due
to regular respiratory motion in free breathing, the
KCN-FCM analysis still worked well. [Color figure
can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]

demonstrated a distinct perfusion pattern of the aorta in
the right upper lung (Fig. 6a, red cluster), indicating a
possible connection with the descending aorta. This was
confirmed by MRA (Fig. 6e), which showed a large collat-
eral artery (arrow) from the descending aorta to the right
upper lung. Identification of the aortic collateral artery is
important because it must be ligated after total correction
of Tetralogy of Fallot is performed.

DISCUSSION

We have demonstrated the feasibility of a model-free
method, KCN-FCM, for analyzing pulmonary perfusion
MRI. This method distinguished regions with different
perfusion kinetics without assuming forms of the signal
enhancement. In normal volunteers, vessels and compart-
ments at different time phases of the pulmonary circula-
tion were differentiated. This ability to segment anatomi-
cal-functional complexes facilitated subsequent studies on
perfusion in different functional regions, such as the pul-
monary arteries/veins, lung parenchyma, and left/right
heart. Several kinds of pathological conditions were eval-
uated. The boundaries of the abnormalities were clearly
delineated, and the actual tracer kinetics in interrogated
compartments (normal or abnormal) were easily visual-
ized and compared. In addition, since this method is also
sensitive to other kinds of signal fluctuations, it could be
used to identify artifacts, such as motion artifacts (Fig. 3b
and 5b), to evaluate the quality of the data.
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Current quantitative perfusion analyses rely on a pre-
sumed perfusion kinetic function to obtain quantitative
parameters for diagnosis. They also include operator-de-
pendent procedures, such as selecting the time interval for
function fitting, which are difficult to perform in compli-
cated pathological situations. Although the proposed
method did not provide quantitative indices, it presented
an objective, concise, hemodynamic segmentation on one
single map. The cluster waveform obtained from this anal-
ysis provided an easy way to visualize the major tracer
kinetics in the lungs. In some of the patients (e.g., Figs. 4b
and 6b) the dynamics of the contrast agent were quite
different from those of the normal condition, even in re-
gions without lesions. Thus, pathological conditions
would not be fully described by the analysis based on an
assumed model derived from healthy subjects, and the
estimation of the actual MTT, PBV, and PBF would be
biased. The normal and pathological phenomena identi-
fied by this model-free analysis method not only helped us
to understand the actual kinetics that would be overlooked
by model-based methods, they also assisted in the creation
and testing of new models.

Ideally, model-free analyses should differentiate areas
with distinctive signal enhancements, which represent the
distinction between MTT, PBV, and/or PBF. The KCN-
FCM results showed that most of the clusters were close to
regions with different MTTs. Only a small portion of the
clusters were similar to regions with different PBVs. This
was mainly due to the SI normalization used in both
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algorithms. Intensity normalization was necessary to make
the algorithms classify based on the shape of the waveform
but not the amplitude. Suitable normalization was also
required so that the algorithms would converge to a min-
imum more easily. After intensity normalization was per-
formed, the differences in the amplitudes, which were
related to the integral of the signal change, were dimin-
ished. Thus, only large differences in the PBV could be
discriminated. We tested several normalization strategies
(results not shown) and found that we could achieve better
differentiation of most structures by dividing by the me-
dian of the time course in KCN.

The proposed method concatenates two different kinds
of clustering algorithms. If either algorithm is used alone,
it is difficult to achieve both sufficient separation of fea-
tures and efficient processing. This two-stage clustering
approach takes advantage of the fast processing property of
KCN and the ambiguous feature-separating capability of
FCM to obtain a better balance between effectiveness and
efficiency. An additional advantage is that a more detailed
analysis of a region, such as the lungs, can be attained by
displaying the KCN clusters included in this area. Interro-
gated analysis on the lung parenchyma per se can also be
achieved by removing the clusters corresponding to major
vessels and the heart.

Of all of the parameters in the KCN and FCM algorithms,
the cluster number was the one that affected the analysis

FIG. 6. A 1-year-old patient with Tetralogy of Fallot
and major aortopulmonary collateral arteries. The
(@) PDC map and (b) averaged Sl time curve in
each cluster, and the (¢) MTT and (d) PBV maps are
shown. KCN-FCM analysis discriminated perfu-
sion deficiency in the left apical lung better than the
MTT-PBV method. In addition, the PDC map solely
demonstrated a distinct perfusion pattern of the
aorta in the right upper lung (red), which suggests
that the right upper lung received blood supply
from the aorta instead of the pulmonary artery. This
was confirmed by MRA (e), which showed a large
aortopulmonary collateral artery (arrow) from the
descending aorta to the right upper lung. LA, left
atrium of the heart; Ao, descending aorta; curved
arrows, pulmonary arteries. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]

40 50

result the most. Finding the optimum cluster number is
one of the most difficult issues in cluster analysis. Classi-
fying data for too many clusters makes analysis and inter-
pretation tiresome, while obtaining too few clusters results
in mixed features. Since it was difficult to estimate the
exact number of different patterns in the data, we let KCN
overclassify the data, and used FCM to group similar clus-
ters together. In our study we found that it was sufficient to
set the cluster number of KCN at 50. Using too large a
cluster number only reduced the efficiency of the process-
ing. The optimum cluster number for FCM was variable
and depended on the complexity of the patterns identified
by KCN. Hence, it was adjusted case by case. Algorithms
that could automatically split or combine clusters based
on some separation-compactness indices may eliminate
the problem of choosing the optimal cluster number (20).

Since the SNR of the lungs was still lower than that of
the muscles, liver, or heart, we had to exclude uninterest-
ing regions to focus on identifying the pattern of interest.
Otherwise, the patterns in the lungs would be misclassi-
fied and produce misleading results. This would be an
issue in cases of disease because the data quality is usually
inferior to that of normal volunteers. We adopted several
strategies to eliminate the pixels with little or too much
signal enhancement. Nonetheless, some background re-
gions and tissues were retained. Using a manually selected
region of interest or a mask of the lungs to restrict the
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analysis region could reduce misclassification and im-
prove the separation of patterns with lesser disparity.

For a finer description of the tracer kinetics and better
differentiation of the signal enhancement of less signifi-
cant differences, it would be advisable to use an interframe
interval of 1 R-R because it could provide more temporal
information. However, the slice number, i.e., the spatial
coverage, would largely be limited. This would hinder the
observation of the full extent of the lesion sites and the
relations of tracer kinetics between different regions. A
comparison of the 2 R-R and the 1 R-R results in the
normal volunteers indicated that the major clusters were
similar, since 2 R-R was enough to record the dynamics of
the perfusion enhancement. Furthermore, with higher
SNR of the 2 R-R data, the KCN-FCM analysis results had
better quality.

To minimize physiological motion and enhance T, con-
trast, we innovatively applied ECG-gated, interleaved
notch-saturation segmented gradient-echo EPI to study the
contrast-enhanced pulmonary perfusion. Since a TE of
1.1 ms and an image acquisition time of 200 ms were
achieved with four echoes per segment, the SNR in the
lung was adequate without noticeable ghosting from the
heart. For example, the typical SNR in the lung paren-
chyma of a normal volunteer without enhancement was at
least 7—8, and the peak percentage enhancement of the
lung parenchyma was about 150-250%. Although the use
of the notched saturation pulse may raise concerns about
the signal in regions with fast flow, in our experience we
did not observe any distortion of the input function. The
magnetization-prepared fast gradient-echo sequences,
which are commonly used in DCE-MRI of pulmonary per-
fusion [3,5], required long recovery times to achieve suffi-
cient T, contrast. However, this limited the number of
slices that could be acquired within one trigger interval.
With a band-stop saturation pulse applied in advance to
saturate the next slice to be acquired, this new method
provided a recovery time that was long enough without
sacrificing slice coverage. In our experiments, three slices
could be acquired with high CNR within the 1 R-R inter-
val. Furthermore, compared to fast 3D MRA, which is
usually used to examine the lung, this ECG-gated fast
imaging showed only a slight misregistration due to respi-
ratory motion, rather than the blurred 3D data of 2-s tem-
poral resolution obtained by MRA. This feature is espe-
cially important when the method is applied to children.

With ECG gating, respiratory motion became the remain-
ing major source of signal fluctuation. Signal variation
caused by respiratory motion was observed in some pa-
tients due to their inability to hold their breath well. Our
results showed that KCN-FCM analysis was still able to
distinguish major clusters in the presence of this kind of
fluctuation. The robustness with respect to motion was
important when the method was applied to pediatric im-
aging. Since this kind of motion usually occurred in the
later scans in adults, we could reduce this artifact by
discarding all frames after the motion became substantial.
Although this strategy improved the analysis results in our
testing (results not shown), it sometimes lost information
that arose late in the time course. Furthermore, this strat-
egy would be impractical for children because when they
are sedated, they are unable to hold their breath through-
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out the entire scanning session. For better application in
children, some methods to reduce signal fluctuations from
respiratory motion could be used. Since this fluctuation
increases the jittering of the SI time course, one could use
a window function to smooth the signal time course. Image
registration algorithms that consider the deformation of
the moving lungs would be a more suitable approach to
eliminate the respiratory motion (21).

In future studies, we will utilize the structural-func-
tional information obtained from the KCN-FCM analysis to
improve the quantification of pulmonary perfusion. Since
the progression of the tracer kinetics in major structures of
the pulmonary circulation is clearly identified, models
that are more comprehensive can be created and tested.
The tissue perfusion could be modeled by a two-compart-
ment model that considers Gd-DTPA as a partially diffus-
ible agent that moves between the tissue and the capillary
bed. The modeling could then be tested using the arterial
input and venous output functions identified by the KCN-
FCM analysis.

CONCLUSIONS

We have shown the potential of a temporal clustering
method, KCN-FCM, for analyzing pulmonary perfusion
MRI. In addition to visualizing the dynamics in different
regions of the cardiac and pulmonary vessels and paren-
chyma, the time domain information provided by this
method could elucidate the actual kinetics that would be
overlooked by a conventional model. With this tool, the
ATF could be obtained more easily, and models could be
optimized to precisely quantify pulmonary perfusion.
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