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Abstract

The discrete time path integral Monte Carlo (PIMC) with a one-particle density matrix approx-

imation is applied to study the quantum phase transition in the coupled double-well chain. To

improve the convergence properties, the exact action for a single particle in a double well potential

is used to construct the many-particle action. The algorithm is applied to the interacting quantum

double-well chain for which the zero-temperature phase diagram is determined. The quantum phase

transition is studied via finite-size scaling and the critical exponents are shown to be compatible

with the classical two-dimensional (2D) Ising universality class – not only in the order-disorder

limit (deep potential wells) but also in the displacive regime (shallow potential wells).
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I. INTRODUCTION

The two-level tunneling model provides a phenomenological description of the low-

temperature properties of glassy materials[1]. In the simplest case, an isolated tunneling

system can be represented by a particle moving in a double-well potential. Experimental

findings have suggested that the interactions between the tunneling systems play a cru-

cial role in the low temperature behavior which deviates from the predictions of the non-

interacting two-level systems[2]. The model Hamiltonian of the system with L particles is

then given by

H =
L

∑

i=1

( p2
i

2µ
+ U(xi)

)

+
∑

j<i

V (xi, xj) , (1)

where xi is the (one-dimensional) displacement of the i-th particle (i = 1, . . . , L) of mass

µ from a reference position, pi = ~

i
∂

∂xi
denotes the momentum operator, U(xi) is a local

potential for the displacement of the i-th particle that is usually assumed to be a double well

potential, and V (xi, xj) describes the interaction between particles, see Fig. 1. Apart from

glassy materials, this coupled double-well model has been applied to other systems, including

structural phase transitions of a wide range of systems, e.g. uniaxial ferroelectrics[3]. Most

numerical computations devoted to understanding the interacting double-well model have

mainly treated the problem in the framework of the classical φ4 model or have been limited

in the ”two-state” limit by studying the corresponding Ising model. These simplifications

reveal the difficulties inherent in simulations of the quantum coupled double-well model.

In this paper we present an efficient path integral Monte Carlo (PIMC) algorithm to study

interacting particles, each of which is confined to a double well potential. The method is

presented in the next section, and it is applied to the one-dimensional interacting double-well

model in the Sec. III, which also contains the results: the phase diagram and the discussion

of the universality class of the quantum phase transition.

II. THE METHOD

The partition function of (1) is given by

Z =

∫

dx ρ(x,x; β) , (2)
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where x = (x1, . . . , xL) is the displacement configuration of the whole system and

ρ(x,x′; β) = 〈x|e−βH|x′〉 (3)

is the density matrix, with β = 1/T the inverse temperature. Observables that are diagonal

in the displacements, like the the m-th moment 〈xm
i 〉, are given by

〈O(x)〉 =
1

Z

∫

dx ρ(x,x; β)O(x) . (4)

By splitting the Hamiltonian (1) into two (non-commuting) parts H = HA +HB and using

the Suzuki-Trotter identity, one arrives at the path integral formula for ρ:

e−β(HA+HB) = lim
M→∞

[

e−τHAe−τHB

]M

(5)

with τ = β/M . The conventional choice for HA and HB is the kinetic energy for HA (which

is diagonal in the momenta pi) and the potential plus interaction energy U+V for HB (which

is diagonal in the displacement variables). In the lowest-order of the commutator expansion

– the so-called primitive approximation, the high-temperature density matrix becomes

ρ(x,x′; τ) =
L

∏

i,j

e−
τ
2
(U(xi)+V (xi,xj))ρ0(xi, x

′
i; τ)e

− τ
2 (U(x′

i)+V (x′

i,x
′

j)) (6)

where ρ0(xi, x
′
i; τ) is the free particle density matrix. This choice leads to bad convergence

properties in the Trotter number M [4] because of the fractal character of a trajectory of a

free quantum mechanical particle described by the term HA.

The purpose of this paper is to demonstrate the efficiency of another choice for HA

and HB by treating the single particle diffusion within a double well potential exactly and

separately from the particle interactions. Doing this, we have

HA =
L

∑

i=1

p2
i

2µ
+ U(xi)

HB =
∑

i<j

V (xi, xj) . (7)

This strategy is expected to be most promising in the case when the interactions are much

weaker than the mean potential energy of the particle.

With (7) the path integral expression for the density matrix becomes

ρ(x,x; β) = lim
M→∞

∫

dx1 . . . dxM−1

M−1
∏

m=0

ρA(xm,xm+1; τ)ρB(xm,xm+1; τ) (8)
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with x = x0 = xM and

ρA(x,x′; τ) =

L
∏

i=1

ρ(1)(xi, x
′
i; τ)

ρB(x,x′; τ) =
∏

i<j

e−
τ
2 (V (xi,xj)+V (x′

i,x
′

j)) , (9)

where

ρ(1)(x, x′; τ) = 〈x|e−τ p2

2µ |x′〉 e−τ U(x)+U(x′)
2 (10)

is the one-particle density matrix for a single particle in a potential U . For a double well

potential this is not known analytically but can easily be computed numerically with the

matrix multiplication method[5]. This method is based on the recursion formula

ρ(1)(x, x′; 2δτ) =

∫ xmax

xmin

dx′′ρ(1)(x, x′′; δτ)ρ(1)(x′′, x′; δτ) (11)

and the fact that in the limit δτ → 0 the one-particle density matrix ρ(1) can be factorized

into the kinetic and potential energy part:

ρ(1)(x, x′′; δτ) →
( µ

2π~2δτ

)1/2

e−
µ(x−x′)2

2~2δτ · e−
δτ
2

(U(x)+U(x′)). (12)

By squaring the density matrix k times, we will lower the temperature by a factor of 2k

and reach the required temperature τ . For a given potential U(x), the limits of integration,

xmin and xmax, are chosen appropriately – not too large for computational reasons and not

too small for numerical accuracy. Once the limits are set, a fine grid between xmin and

xmax should be constructed for the numerical integrations. The spacing between successive

grid points should be sufficiently small to ensure the high accuracy. We store this one-

particle density matrix in a two-dimensional array as a look-up table for use during the

simulations, and employ a simple bilinear interpolation to determine the matrix elements

for any point (xi, x
′
i) within [xmin, xmax] in the continuous position space. We note that the

symmetric break up of the propagator in the form of Eq. (10) satisfies a unitarity condition

ρ(1)(δτ)ρ(1)(−δτ) = 1, which can be utilized to reduce errors resulting from discretization of

τ , as discussed in [6].

Path integral Monte Carlo means the evaluation of the integral (8) via importance sam-

pling of the configurations (x1, . . . ,xM−1) (for fixed M) with the appropriate weight given

by the integrand of (8). Here we use a single step update scheme: Let X = (x1, . . . ,xM−1) =

{xi,m} be the current configuration. We generate a new configuration X′ which differs from
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the old configuration X only in a single particle displacement in a particular time slice:

x′i,m = xi,m + δ, where δ ∈ [−ε, ε] is a uniformly distributed random number, and ε the step

size. The acceptance probability w(X → X′) of this new configuration should be chosen to

fulfill detailed balance with respect to the weights of of the old and new configurations; a

possible choice is

w(X → X′) = min

[

1,
M−1
∏

m=0

ρA(xm−1,x
′
m; τ)ρB(x′

m,xm+1; τ)

ρA(xm−1,xm; τ)ρB(xm,xm+1; τ)

]

= min

[

1, e−τ∆V (X,X′) ·
ρ(1)(xi,m−1, x

′
i,m; τ)ρ(1)(x′i,m, xi,m+1; τ)

ρ(1)(xi,m−1, xi,m; τ)ρ(1)(xi,m, xi,m+1; τ)

]

, (13)

III. THE ONE-DIMENSIONAL MODEL AND RESULTS

To test the above algorithm we focus here on a one-dimensional geometry in which par-

ticles interact only with their nearest neighbors, and assume V (xi, xi+1) to be quadratic in

the displacements

HB =
∑

i<j

V (xi, xj) = −
L

∑

i=1

Jixixi+1 , (14)

(cf. Fig. 2). Furthermore we choose homogeneous interaction strength Ji = J > 0, and the

double-well potential in the symmetrical form with two minima located at ±1:

U(x) = V0(x
4 − 2x2). (15)

Periodic boundary conditions are imposed.

The model (1) with (14) and (15) has a Z2-symmetry (xi → −xi∀i) and corresponds to

a quantum version of a φ4 theory, which is expected to belong to the universality class of

1 + 1-dimensional Ising model. Suppose that the height of the potential barrier V0 is large

compared to the energy scale of the particle executing small oscillations in one of the double

wells. The model is then equivalent to the one-dimensional Ising model in a transverse field

HTIM = −Γ
∑

i

σx
i − J

∑

〈i,j〉

σz
i σ

z
j , (16)

where the transverse field Γ corresponds to the tunneling splitting in the double-well prob-

lem. Therefore we expect it to display a zero-temperature quantum phase transition ([9])

from a disordered phase with 〈xi〉 = 0 to an ordered phase with 〈xi〉 6= 0 at a critical inter-

action strength Jc (for fixed µ and V0). According to the universality hypothesis, the same
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universality class, i.e. the 2D Ising, should extent to the region where V0 is small compared

to the interactions between particles, the so-called displacive region[3, 7, 8].

For a given value of the parameters V0 and J we computed the following quantities: the

average of the displacement m (i.e. the magnetization in the spin formulation), defined as

m(L,M) = 1
LM

∑L
i

∑M
n 〈xi,n〉 , where xi,n is the position of the i-th particle at the time step

n with respect to the zero position of the local potential Vdw; the fourth-order cumulant of

the magnetization given by g = 1
2

(

3 − 〈m4〉 / 〈m2〉
2
)

, where 〈· · · 〉 denotes the expectation

value over MC configurations; the susceptibility defined as χ = Lβ (〈m2〉 − 〈|m|2〉). Close

to a quantum critical point, one expects[9] observables O to scale as

O = L−xOÕ

(

δ L1/ν ,
β

Lz

)

(17)

where xO is the scaling dimension of the observable O, ν the correlation length exponent

and z the dynamical exponent. If the transition falls into the Ising universality class, the

dynamical exponent z is unity[9]. In the following we assume this to be the case and check

whether our data are compatible with this. We choose a fixed value of the aspect ratio L/β,

corresponding to z = 1, so that the finite-size scaling function of these quantities involves

only one variable, i.e. O = L−xOÕ(δ L1/ν). For a given V0, the deviation from the critical

point is parameterized as δ = J − Jc. The scaling dimension is given by xm = −βm/ν

for the magnetization |m|, xχ = γ/ν for the magnetic susceptibility χ and xg = 0 for the

dimensionless fourth cumulant g. Typically we executed 106−107 MC steps to thermalize the

system. Once in equilibrium, we generated 4−5×107 MC configurations for measurements,

which were carried out every 5 MC steps. We have considered a wide rage of values of V0

between 0.01 and 5. At a fixed value of V0 we varied the strength of the ferromagnetic

interaction J for system sizes up to L = 64 to localize the zero-temperature critical point

Jc and to carry out the finite-size analysis.

To confirm the accuracy of the one-particle density matrices calculated by matrix mul-

tiplication method, we first compare the distribution of displacements of the particles in

the absence of the interaction obtained by PIMC with the distribution calculated by solv-

ing numerically the single particle Schrödinger equations. For the latter, we calculated the

first N = 50 energy eigenvalues En and the corresponding eigenstates ψn(x); the distribution

function of the displacement is then computed by P (x) =
∑N

n=1 |ψn(x)|2 e−βEn/
∑N

n=1 e
−βEn.

As shown in Fig. 3 for β = 16 by using τ = 0.25, the excellent agreement confirms the ac-
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curacy of the density matrices. Furthermore, we compare the results from PIMC within the

one-particle density matrix approximation with those in the primitive approximation for the

same parameters (e.g. V0 and J), as shown in Fig 4 as a typical example for the depen-

dence of magnetization |m| and its fourth-order cumulant g on the time step τ . The results

presented are averaged over 16 samples for each time step. We find that, with τ = 0.05,

the results obtained by the primitive approximation converge to the same values computed

with the one-particle density matrix for τ ≤ 0.25 within the statistical error bars. The CPU

time required on an Intel Pentium processor (2.40GHz) to calculate 500000 MC steps for a

system size L = 32 and β = 16 within the one-particle density matrix approximation using

τ = 0.25 is about 780 seconds, and with the primitive approximation using τ = 0.05 is

about 1485 seconds. The efficiency of the calculations with the one-particle density matrix

is gained from the fast convergence with respect to the number of time slice. After a careful

examination, we are convinced that the time step τ = 0.25, used in our simulations for

the high-temperature one-particle density matrix, is sufficiently small for the convergence.

We carried out 8 iterations for the matrix multiplication to generate a one-particle density

matrix with τ = 0.25 and the spacing between neighboring points within [xmin, xmax] was

chosen to be 0.01. In all cases studied we used a wide interval of [xmin, xmax], e.g. [−10,+10]

for V0 = 3, for the iterative integrations and then truncated this interval to a smaller one

while storing into the look-up table for PIMC simulations. The appropriate values for the

interval [xmin, xmax] in the look-up table were justified by doing a short run of the PIMC

simulation to check whether the particles would move beyond the chosen boundaries.

In Fig. 5 we present the zero-temperature phase diagram, in which the critical value Jc

is estimated by the intersection of g(J) curves at a given V0 for various system sizes (up to

L = 64) with fixed aspect ratio L/β = 2. We note the lack of monotonicity of the critical

Jc with respect to the potential barrier V0; Jc decreases with V0 in the deep well region,

while it increases with V0 in the small V0 region. This non-monotonic behavior of Jc(V0) is

qualitatively reproduced within the mean field approximation: Consider the effective single-

site Hamiltonian including a mean-field term

Hmf =
p2

2
+ V0(x

4 − 2x2) − 2Jxm, (18)

where the order parameter m is the expectation value of the displacement x in the ground
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state ψ0(x,m) of Hmf and is determined self-consistently via

m =

∫

dx x|ψ0(x,m)|2. (19)

Varying J and solving the non-linear equation (19) for m numerically, the critical point can

be estimated as the value of J above which a non-zero solution exists.

The mean-field result for Jc, depicted in Fig. 5, shows the same non-monotonic behavior

as our results for Jc from the PIMC and has a maximum at V0 = 1. This behavior of Jc

can be understood as follows: In the region V0 ≫ 1 the potential has two deep minima

separated by a barrier V0 giving rise to a nearly degenerated ground state doublet that is

well separated from the rest of the spectrum, as shown in the upper panel of Fig. 5. This

is called the order-disorder limit[3, 10] in the interacting double-well model. The energy

difference between the ground state and the first excited state, i.e. the tunneling splitting

Γ, is reduced as V0 grows, which results in a decrease of the critical ordering term Jc. In

the region V0 ≪ 1, on the other hand, the potential has two shallow minima and the two

lowest energy levels are not well separated from the rest of the spectrum. This is called the

displacive regime[11] in the interacting double-well model. In this displacive region, the zero

point energy of a single particle lies above the barrier of the local potential so that the local

potential is effectively in a single-well form. Without the interaction term, the particles

fluctuate around the x = 0 position (cf. Fig. 3); switching on the interaction shifts the

displacement expectation value 〈x〉 away from the origin and at the critical coupling Jc the

systems undergoes a displacive transition from a symmetric (disordered) phase to a broken

symmetry (ordered) phase. The key factor for the strength of the critical displacing force

Jc in this case is the width of the local potential, which decreases with increasing V0: the

wider the local potential, the weaker the force J needed for the displacement. Therefore,

the critical value Jc increases with V0 in the displacive regime.

For a particular value of V0 we can use the scaling form given in Eq. (17) for g, |m| and

χ to extract values of the critical exponents. In all cases a good data collapse is achieved

with the exponents βm = 1/8, γ = 7/4 and ν = 1.0, which is representative of the classical

2D Ising universality class. In Fig. 6 we show the finite-size scaling plots for V0 = 3 and

V0 = 0.01. For V0 = 0.01 which is well inside the displacive regime, the quality of the scaling

decreases and corrections to scaling become more pronounced. Interestingly, the peak of the

scaling function χ̃(t) of the susceptibility is shifted away from t = 0 for V0 = 0.01, whereas
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it is at t = 0 for V0 = 3, indicating the non-universality of the scaling function. Our results

for V0 ≪ 1 indicate that the model is in the Ising universality class even in the displacive

regime. For the interaction in the form given in Eq. (14), we expect that a phase transition

in the same universality still occurs when the local potential is reduced to only a quartic

term. To provide support for this we carried out simulations for the model with a local

potential given by U(x) = x4 which exhibits a single well. Our results depicted in Fig. 7

suggest that the critical behavior of this one-well model is indeed consistent with 2D Ising

universality[12]. We note that the coupling term (14) that we use can be brought into a

form that is more reminiscent of a lattice version of the standard φ4 (quantum) field theory:

HB =
J

2

L
∑

i=1

(xi − xi+1)
2 − J

L
∑

i=1

x2
i . (20)

Together with the local potential (15) this implies that the corresponding continuum model

for a scalar field φ contains a (dφ/dx)2-term and a potential energy of the form V0[φ
4 −

(2 + J/V0)φ
2)]. Since J is always positive and can be made arbitrarily large, this model

has always a phase transition (at zero temperature). On the other hand, the field theory

with a potential energy that has only a single minimum, like the pure quartic potential

V0φ
4, does not have a phase transition. We checked, within mean-field as well as with PIMC

simulations, that the corresponding lattice model

H =

L
∑

i=1

{

p2
i

2m
+
J

2
(xi − xi+1)

2 + V0x
4
i

}

(21)

also does not have a phase transition.

To summarize, we have demonstrated that PIMC within the one-particle density matrix

approximation is an efficient method to simulate quantum interacting many-body systems,

in which particles are confined in a local potential and interact with each other. Using this

method we have studied the zero-temperature phase transition of the coupled double-well

chain, both in the order-disorder case, corresponding to a coupled two-level tunneling system,

and in the displacive regime, in which the interaction dominates over the double-well struc-

ture. Based on this numerical scheme, our further study will include the double-well model

coupled through long-range/random interactions and coupled to a dissipative bath[13, 14].

In the presence of quenched disorder in the coupling, even for the case without dissipation,

implementation of many improved PIMC methods, e.g. Fourier PIMC techniques or cluster
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algorithms, becomes complex and the computational efficiency reduces. This motivates the

choice of a method which provides easy performance and can be extended to the random

case in a straightforward way, as the technique applied in this paper does.
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FIG. 1: Schematic representation of a coupled tunneling model in which the local potential is

described by a double-well form.
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FIG. 2: Representation of the model defined in Eq. (1) in the one-dimensional form.
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FIG. 3: The distribution of displacements of the particles, calculated for L = 32 and β = 16,

with J = 0. A comparison with numerical solutions (indicated by the solid line) of the Schrödinger

equation is shown. The excellent agreement confirms the accuracy of the density matrices.
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FIG. 4: The magnetization 〈|m|〉 and its fourth-order cumulant g, calculated by using the one-

particle density matrix and the primitive approximation. The model parameters are V0 = 1 and

J = 0.56 for a system size L = 32 at temperature β = 16. The values obtained from both methods

are compatible in the small τ limit.
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FIG. 5: Lower panel: The phase diagram of the coupled double-well chain: the critical ratio

Jc/V0 as well as the critical interaction Jc as functions of the depth of the potential well V0; the

ordered phase is located above the curves and the disordered phase is below the curves. The critical

Jc obtained by the mean field approach is indicated by the dashed line. Upper panel: The low

lying energy eigenvalues of the one-particle Hamiltonian for various V0, determined by numerical

solutions of the Schrödinger equation. The dotted line at E = 0 indicates the top of the potential

barrier.
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FIG. 6: Scaling plots of the cumulant(a), the magnetization(b) and the susceptibility(c) for

V0 = 0.01 (left) and V0 = 3 (right) using the two-dimensional Ising universality.
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FIG. 7: Scaling plots of the cumulant(a), the magnetization(b) and the susceptibility(c) for the

single-well model with U(x) = x4 using the two-dimensional Ising universality. In the scaling plot

(c), the system sizes only range from L = 16 to L = 64.
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