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a b s t r a c t

Based on the well known Karhunen–Loève expansion, it can be shown that many omnibus tests lack
power against ‘‘high frequency’’ alternatives. The smooth tests of Neyman (1937) may be employed
to circumvent this power deficiency problem. Yet, such tests may be difficult to compute in many
applications. In this paper, we propose a more operational approach to constructing smooth tests. This
approach hinges on a Fourier representation of the postulated empirical process with known Fourier
coefficients, and the proposed test is based on the normalized principal components associated with
the covariance matrix of finitely many Fourier coefficients. The proposed test thus needs only standard
principal component analysis that can be carried out using most econometric packages. We establish the
asymptotic properties of the proposed test and consider two data-driven methods for determining the
number of Fourier coefficients in the test statistic. Our simulations show that the proposed tests compare
favorably with the conventional smooth tests in finite samples.

© 2013 Published by Elsevier B.V.
1. Introduction

Specification tests are indispensable tools in the process of
model searching. There are basically two types of specification
tests: directional tests and omnibus tests. A directional test fo-
cuses on certain alternatives of interest. While this test is pow-
erful against the postulated alternatives, it is not a consistent test
in general because it may not have power against some other al-
ternatives. On the other hand, when researchers do not have any
particular alternative in mind, they may prefer an omnibus test
that is capable of detecting any potential deviations from the null
hypothesis. There are numerous omnibus tests in the literature,
such as the tests of martingale difference (e.g., Durlauf, 1991; Deo,
2000; Domínguez and Lobato, 2003) and general specification tests
(e.g., Bierens, 1982, 1990; Bierens and Ploberger, 1997).

It can be verified that the limits of many omnibus tests are
a functional of some stochastic (possibly Gaussian) process. By
thewell known Karhunen–Loève (KL) expansion (Karhunen, 1946;
Loève, 1955), the limiting process in an omnibus test can be
represented as a weighted sum of the products of the normal-
ized principal components and eigenfunctions associated with the
covariance operator, with the weights being the corresponding
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eigenvalues that diminish to zero. This suggests that such om-
nibus tests mainly have local power against a few orthogonal
directions determined by the eigenfunctions with larger eigenval-
ues, but lack power against ‘‘high frequency’’ alternatives, i.e., the
directions related to very small eigenvalues. See, e.g., Eubank and
LaRiccia (1992), Bierens and Ploberger (1997), Janssen (2000), and
Escanciano (2009) for more discussions.

The aforementioned power deficiency may be circumvented by
employing ‘‘smooth’’ tests, in the sense of Neyman (1937); see also
Eubank and LaRiccia (1992), Fan (1996), Ghosh and Bera (2001),
and Escanciano andMayoral (2010).1 By construction, such smooth
tests avoid diminishing weights in the limit and hence have more
even power against a collection of directions. There have been
many smooth tests in the literature, such as the tests of good-
ness of fit (Eubank and LaRiccia, 1992; Delgado and Stute, 2008),
tests ofmartingale difference (Delgado et al., 2005; Escanciano and
Mayoral, 2010), and general specification tests (Stute, 1997; Escan-
ciano, 2009). A major difficulty of smooth tests is that they may
not be easy to implement, because the statistics rely on the eigen-
pairs (eigenfunctions and corresponding eigenvalues) of the limit-
ing process, which are usually unknown. It is, however, technically
involved to estimate these eigenpairs; see, e.g., William and Seeger

1 Another class of tests based on ‘‘kernel smoothing’’ also has better power
against ‘‘high frequency’’ alternatives, e.g., Fan and Li (1996, 2000) and Fan (1998).
In this paper, by smooth test we mean Neyman’s smooth test.
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(2000, 2001), Carrasco et al. (2007), and Escanciano (2009). Thus,
smooth tests are not readily available in many applications.

In this paper, we propose a more operational approach to con-
structing smooth tests. This approach hinges on a Fourier repre-
sentation of the postulated empirical process with known Fourier
coefficients. The proposed smooth test is based on the normal-
ized principal components associated with the covariance matrix
of finitely many Fourier coefficients. We thus need only a stan-
dard principal component analysis that can be carried out using
most econometric and statistics packages. This is much simpler
than estimating the eigenpairs of the limiting process. We estab-
lish the asymptotic properties of the proposed test and consider
two data-driven methods for determining the number of Fourier
coefficients in the test statistic. The first method, proposed by In-
glot and Ledwina (2006), employs a model-selection criterion; the
second method, studied in Inglot et al. (1994) and Fan (1996), is
designed to maximize the asymptotic power. Monte Carlo simula-
tions show that the proposed smooth tests compare favorablywith
the conventional smooth tests in finite samples.

This paper proceeds as follows. We review the conventional
smooth test and propose a new smooth test in Section 2. The
asymptotic properties of the proposed test and two data-driven
tests are discussed in Section 3. Section 4 reports simulation
results. Section 5 concludes the paper. All technical conditions and
proofs are deferred to Appendix.

2. The proposed smooth test

2.1. The CvM and smooth tests

Many omnibus tests for model specification can be expressed
in terms of a functional of an empirical process. In these tests, the
behavior of the empirical process is essentially governed by its lim-
iting process under the null hypothesis but tends to deviate from
the limiting process otherwise; the chosen functional is then used
to measure these deviations. The well known functionals include
the Kolmogorov–Smirnov (KS) functional, i.e., the supremum func-
tional, and Cramér–von Mises (CvM) functional, i.e.,


f 2(s)ds for a

square integrable function f .
Let Xn denote a square integrable empirical process on [a, b]

such that Xn ⇒ X on [a, b], where ⇒ denotes weak convergence
(of the associated probability measure) and X is also a square
integrable process with zero mean. An omnibus test based on the
CvM functional (hereafter the CvM test) is such that b

a
X2
n (τ )dτ

d
−→

 b

a
X2(τ )dτ ,

where
d

−→ stands for convergence in distribution. The covariance
operator of X, KX , with the kernel KX (s, τ ) = E[X(s)X(τ )], is such
that

KX f (τ ) :=

 b

a
KX (s, τ )f (s)ds.

Corresponding to KX , there exist orthonormal eigenfunctions
{εm(·)} and the associated eigenvalues {αm} that satisfy b

a
KX (s, τ )εm(s)ds = αmεm(τ ),

where α1 ≥ α2 ≥ · · ·.2

2 The orthonormal eigenfunctions {εm(·)} satisfy
 b
a em(s)en(s)ds = 0 and b

a e2m(s)ds = 1.
WhenX is quadraticmean continuous on [a, b], its KL expansion
is, in the quadratic mean sense,

X(τ ) = lim
M→∞

M
m=1

zmεm(τ )

= lim
M→∞

M
m=1

√
αmz∗

mεm(τ ), τ ∈ [a, b], (1)

where zm =
 a
b X(s)εm(s)ds are the principal components, which

are mutually uncorrelated with variance αm, and z∗
m = zm/

√
αm

are the normalized principal components with variance one. It
is readily seen that (1) is also a Fourier representation in the
eigenfunctions {εm(·)}, with zm the Fourier coefficients. It follows
from (1) and the Parseval Theorem that, in the quadratic mean
sense, the limit of the CvM test is: b

a
X2(τ )dτ = lim

M→∞

M
m=1

z2m = lim
M→∞

M
m=1

αm(z∗

m)2. (2)

When KX is square integrable, αm → 0 as m tends to infinity.3
Therefore, the CvM test based on Xn virtually has no local
power against ‘‘high frequency’’ alternatives, i.e., the directions
corresponding to very small eigenvalues (i.e., αm with largem).

To alleviate the power deficiency in the CvM test, it is natu-
ral to construct a test whose limit does not involve the dimin-
ishing weights αm. To this end, consider the process ΞM(τ ) =M

m=1 z
∗
mεm(τ ) and note that b

a
Ξ 2

M(τ )dτ =

M
m=1

(z∗

m)2, (3)

cf. (2). Letting ẑ∗
m,n be consistent estimates of z∗

m based on the
sample of size n, wemay construct the following test: for a givenM ,

Tn,M =

M
m=1

(ẑ∗

m,n)
2. (4)

It is clear that the limit of Tn,M is (3). This is a smooth test in the
sense of Neyman (1937); see also Ghosh and Bera (2001) for a re-
view of Neyman’s smooth test. When X is a Gaussian process, it is
well known that zm are independent Gaussian random variables so
that z∗

m are i.i.d. N (0, 1). In this case, (3) has a χ2(M) distribution.
Compared with the CvM test with the limit (2), the smooth

test Tn,M ought to have more even power against the directions
corresponding to the first M principal components. For the
remaining directions corresponding to other components (z∗

m with
m > M), Tn,M would have no power. Yet, the power loss may
be minimal because the CvM test itself has little power against
these directions, due to the presence of the diminishing weights
αm. On the other hand, Tn,M cannot be easily implemented unless
the eigenpairs of the covariance operatorKX , hence the normalized
principal components z∗

m, are known. Unfortunately, except for
some special X processes, such as the standard Wiener process
and Brownian bridge, the eigenpairs are unknown and need to be
estimated. Estimating the eigenpairs of the covariance operator is,
however, technically involved; see, e.g., William and Seeger (2000,
2001), Carrasco et al. (2007), and Escanciano (2009). Therefore,
constructing smooth tests may not be as straightforward as one
would think.

3 By square integrability of KX , b

a

 b

a
K 2
X (s, τ )dτds =

 b

a


∞

m=1

α2
mε2

m(s)


ds =

∞
m=1

α2
m < ∞,

where the first equality follows from the Parseval’s theorem. It follows thatαm → 0
asm → ∞. It can also be shown that αm → 0 when KX is integrable.
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2.2. The proposed smooth test

As discussed in the preceding section, itmay be difficult to com-
pute the conventional smooth test when the normalized princi-
pal components, which are also the Fourier coefficients associated
with the eigenfunctions {ε(·)} of X , are unknown. To circumvent
this problem, we consider a different Fourier representation of X
such that the sample counterparts of its Fourier coefficients have
an analytic form. It is then straightforward to compute the nor-
malized principal components of the first M sample Fourier co-
efficients and construct a smooth test based on these principal
components.

The Fourier representation of X in the orthonormal basis
functions {em(·)} is, in the quadratic mean sense,

X(τ ) = lim
M→∞

M
m=1

ζmem(τ ), (5)

where ζm =
 b
a X(τ )em(τ )dτ are the associated Fourier co-

efficients, cf. the KL expansion (1). Given the first M Fourier
coefficients ζM = [ζ1ζ2 . . . ζM ]

′, let var(ζM) denote its variance–
covariance matrix, with λi,M and ui,M , i = 1, . . . ,M , its associ-
ated eigenvalues and eigenvectors, respectively, such that λ1,M ≥

λ2,M ≥ · · · ≥ λM,M > 0. Then,

var(ζM) = UM3MU ′

M ,

where UM = [u1,Mu2,M . . . uM,M ] satisfies U ′

MUM = UMU ′

M = IM ,
and 3M is the diagonal matrix with λi,M on the principal diagonal.
The normalized principal components are

ζ∗

M := [ζ ∗

1,Mζ ∗

2,M . . . ζ ∗

M,M ]
′
= 3

−1/2
M U ′

MζM . (6)

Similar to z∗
m in the KL expansion, ζ ∗

m,M are uncorrelated random
variables withmean zero and variance 1, and they are i.i.d.N (0, 1)
when X is Gaussian.

Note that
M

m=1 ζ 2
m,M =

M
m=1 λm,M(ζ ∗

m,M)2 which also in-
volves diminishing weights λm,M , cf. (2). In the light of the con-
ventional smooth test, we may construct a test with the limitM

m=1(ζ
∗

m,M)2, which does not involve the diminishing weights
λm,M . To this end, we consider the Fourier representation of the
empirical process Xn in {em(·)}:

Xn(τ ) = lim
M→∞

M
m=1

ζm,nem(τ ), (7)

with ζm,n the Fourier coefficient of Xn associated with the basis
function em(·). In particular, when Xn is such that

Xn(τ ) =
1

√
n

n
t=1

φ(ηt , τ ) + oP(1),

where E[φ(ηt , ·)|Ft−1] = 0, the Fourier coefficients are:

ζm,n =

 b

a
Xn(τ )em(τ )dτ

=

 b

a

1
√
n

n
t=1

φ(ηt , τ )em(τ )dτ :=
1

√
n

n
t=1

Φm(ηt),

where Φm(ηt) =
 b
a φ(ηt , τ )em(τ )dτ . With proper choice of basis

functions {em(·)}, Φm mayhave analytic forms; see next subsection
for examples.

Given Xn ⇒ X, ζn,M = [ζ1,nζ2,n . . . ζM,n]
′ converges in distribu-

tion to ζM , and hence,

var(ζM) = lim
n→∞

var(ζn,M) = lim
n→∞

var


1

√
n

n
t=1

8M(ηt)


,

where 8M(ηt) = [Φ1(ηt)Φ2(ηt) . . . ΦM(ηt)]
′. When ζm,n, m =

1, . . . ,M , have analytic forms, a consistent estimator for var(ζn,M),
denoted as var(ζn,M), can be conveniently computed using an
Eicker–White estimator or a Newey–West estimator. Such an esti-
mator provides a good approximation to var(ζM)without knowing
ζM or var(ζM). The eigenpairs of var(ζn,M), the matrix of eigenvec-
tors (Un,M ) and the diagonal matrix with eigenvalues on the princi-
pal diagonal (3n,M ), are then readily computed. The resulting nor-
malized principal components are:

ζ∗

n,M := [ζ ∗

1,n,M
ζ ∗

2,n,M . . .ζ ∗

M,n,M ]
′
= 3−1/2

n,M
U ′

n,Mζn,M , (8)

cf. (6). In analogy with the conventional smooth test (4), the pro-
posed test is:

Jn,M =

M
m=1

ζ ∗

m,n,M

2
. (9)

Our approach relies on the first M Fourier coefficients of a
Fourier representation of the empirical process Xn and their princi-
pal components; the knowledge of the covariance structure of the
limiting process X is not needed.4 Note that a key element of our
approach is to find suitable basis functions such that the Fourier co-
efficients have analytic forms; see the examples in the subsection
below. Then, consistent estimation of var(ζn,M) and estimation of
its eigenpairs can all be done using the standard econometric pack-
ages. By contrast, the conventional smooth test, in general, requires
estimating the eigenpairs of the covariance operator of the limiting
process X , which is practically more cumbersome. The proposed
test is thusmore operational and hence a useful complementwhen
the conventional smooth test is not readily available.

2.3. Examples

In this section, we illustrate the proposed test using the follow-
ing examples. In particular, we show how basis functions may be
chosen so as to deliver Fourier coefficients with analytic forms. The
first example is concerned with testing model specification, where
the proposed testworks but the conventional smooth test does not.
The second example focuses on the hypothesis of martingale dif-
ference, where both the conventional and proposed smooth tests
are applicable.

Example 1: testing model specification
Consider the null hypothesis of correct model specification:

H0 : E[yt |Ft−1] = f (xt , θo), for some θo ∈ Θ,

where Ft−1 is the information set up to time t − 1 containing
the variable xt . For simplicity, we assume yt and xt to be one-
dimensional. A model specification test may be based on the
following empirical process:

Xn(τ ) =
1

√
n

n
t=1


yt − f (xt , θo)


w(xt , τ ) =

1
√
n

n
t=1

φ(ηt , τ ),

where w(xt , τ ) is a misspecification indicator indexed by τ (0 ≤

τ ≤ 1), and φ(ηt , τ ) =

yt − f (xt , θo)


w(xt , τ ) with ηt = (yt , xt)′.

Two common choices of w(xt , τ ) in the literature are: the
indicator function 1(xt ≤ τ), where 1(S) = 1 if S occurs and
0 otherwise, and the exponential function exp(xtτ). Taking the

4 Escanciano andMayoral (2010) also suggest to construct smooth tests based on
an expansion in general orthogonal basis functions. Their approach is quite different
from ours, as it still depends on the covariance kernel of the limiting process.
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classical Fourier series as basis functions, we have

w(xt , τ ) = ϕ0(xt)

+

∞
k=1


ϕc
k(xt) cos(2πkτ) + ϕs

k(xt) sin(2πkτ)

,

where ϕ0(xt), ϕc
k(xt) and ϕs

k(xt) are the Fourier coefficients. It can
be shown that, when w(xt , τ ) = exp(xtτ), the Fourier coefficients
are

ϕ0(xt) =
1
xt

[exp(xt) − 1],

ϕc
k(xt) =

xt
x2t + (2πk)2

[exp(xt) − 1], k = 1, 2, . . . ,

ϕs
k(xt) =

−2πk
x2t + (2πk)2

[exp(xt) − 1], k = 1, 2, . . . .

Then, the empirical process Xn is such that

Xn(τ ) = ζ0,n + lim
K→∞

K
k=1


ζ c
k,n cos(2πkτ) + ζ s

k,n sin(2πkτ)

,

where

ζ0,n =
1

√
n

n
t=1


yt − f (xt , θo)


ϕ0(xt),

ζ c
k,n =

1
√
n

n
t=1


yt − f (xt , θo)


ϕc
k(xt), k = 1, 2, . . . ,

ζ s
k,n =

1
√
n

n
t=1


yt − f (xt , θo)


ϕs
k(xt), k = 1, 2, . . . .

In the notations of preceding subsections, we have:

ζn,M =



ζ0,nζ

c
1,nζ

s
1,n . . . ζ c

M/2,n

′
, M is even,

ζ0,nζ
c
1,nζ

s
1,n . . . ζ c

(M−1)/2,nζ
s
(M−1)/2,n

′
,

otherwise;
(10)

ϕM =


ϕ0ϕ

c
1ϕ

s
1 . . . ϕc

M/2

′
, M is even,

ϕ0ϕ
c
1ϕ

s
1 . . . ϕc

(M−1)/2ϕ
s
(M−1)/2

′
, otherwise.

(11)

Under the null hypothesis,

var(ζn,M) = var


1

√
n

n
t=1

[yt − f (xt , θo)]ϕM(xt)



=
1
n

n
t=1

E

[yt − f (xt , θo)]2ϕM(xt)ϕ′

M(xt)

.

We can consistently estimate var(ζn,M) using an Eicker–White
estimator:

var(ζn,M) =
1
n

n
t=1


û2
t ϕM(xt)ϕ′

M(xt)

, (12)

with ût = yt − f (xt , θ̂n) and θ̂n a consistent estimator for θo.
The eigenpairs and principal components of (12) are then readily
computed. We can also derive the analytic-forms of ϕM(xt) when
1(xt ≤ τ) is employed as the misspecification indicator and com-
pute var(ζn,M) accordingly; see Example 2 below. Note that the
conventional smooth test is not available in this case, because Xn
converges to a Gaussian process whose covariance kernel is un-
known.

Example 2: testing the martingale difference hypothesis
Consider now the hypothesis of martingale difference:

H0 : E[yt |Ft−1] = 0. (13)
Following Escanciano and Mayoral (2010), the marked empirical
process is

Xn(ξ) =
1

σo
√
n

n
t=1

yt1(yt−1 ≤ ξ),

where σ 2
o = E[y2t |Ft−1]. Let F(·) be a non-decreasing transforma-

tion such that 0 ≤ F(ξ) ≤ 1, ∀ξ ∈ R. Then, Xn(ξ) can be expressed
as

Xn(τ ) =
1

σo
√
n

n
t=1

yt1(Ft−1 ≤ τ),

with Ft−1 := F(Yt−1) and F(ξ) := τ .
In this case, the Fourier representation for Xn is

Xn(τ ) = ζ0,n + lim
K→∞

K
k=1


ζ c
k,n cos(2πkτ) + ζ s

k,n sin(2πkτ)

,

where

ζ0,n =
1

σo
√
n

n
t=1

ytϕ0(Ft−1),

ζ c
k,n =

1
σo

√
n

n
t=1

ytϕc
k(Ft−1), k = 1, 2, . . . ,

ζ s
k,n =

1
σo

√
n

n
t=1

ytϕs
k(Ft−1), k = 1, 2, . . . ,

and

ϕ0(Ft−1) = 1 − Ft−1,

ϕc
k(Ft−1) =

−1
2πk

sin(2πkFt−1), k = 1, 2, . . . ,

ϕs
k(Ft−1) =

1
2πk

[cos(2πkFt−1) − 1], k = 1, 2, . . . .

Using the same notations in (10) and (11), we have under the null
hypothesis that

var(ζn,M) = var


1

σo
√
n

n
t=1

ytϕM(Ft−1)



=
1

σ 2
o n

n
t=1

E

y2t ϕM(Ft−1)ϕ

′

M(Ft−1)

.

A consistent estimator of var(ζn,M) is, with σ̂ 2
n =

n
t=1 y

2
t /n,

var(ζn,M) =
1

σ̂ 2
n n

n
t=1

y2t ϕM(Ft−1)ϕ
′

M(Ft−1), (14)

from which the eigenpairs can be easily computed. Note that
the conventional smooth test works in this example because Xn
converges to the standardWiener processwhose covariance kernel
and eigenpairs are well known; see Section 4.1 below and also
Escanciano and Mayoral (2010) for details.

3. Asymptotic properties

In this section, we will establish the asymptotic properties of
the proposed smooth test. Consider the general empirical process:

Xn(τ ) =
1

√
n

n
t=1

φ(ηt , τ ) + oP(1), τ ∈ [a, b],

whereE[φ(ηt , ·)|Ft−1] = 0, andFt is the sigma-algebra generated
by {ηi : 1 ≤ i ≤ t}. We will maintain the assumption that Xn ⇒

X on [a, b], where X is a quadratic mean continuous, Gaussian
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process with zero mean and the covariance kernel KX (·, ·). This
convergence holds under mild conditions on the data generating
process. We summarize the required regularity conditions in the
Appendix; see also Stute (1997) and Escanciano and Mayoral
(2010) for such conditions in different contexts.

Given the basis functions {em(·)}, ζm and ζm,n are the Fourier
coefficients of the Fourier representations (5) and (7), respectively.
The result below follows easily from the maintained assumption
that Xn converges weakly to a Gaussian process X with mean zero.

Lemma 3.1. For a given M, ζn,M
d

−→ ζM , as n → ∞, where ζM is
a vector of M normal random variables with mean zero.

It is then not difficult to see that the normalized principal
components of var(ζn,M) also converge in distribution to those of
var(ζM).

Lemma 3.2. For a given M,

ζ∗

n,M
d

−→ ζ∗

M ∼ N (0, IM),

as n → ∞, whereζ∗

n,M is given by (8).

The limiting distribution of Jn,M is an immediate consequence of
Lemma 3.2 and is the same as that of a conventional smooth test.

Theorem 3.3. For a given M,

Jn,M =
ζ∗

n,M

′ζ∗

n,M

 d
−→ (ζ∗

M)′(ζ∗

M) ∼ χ2(M),

as n → ∞.

It remains to determine the number of components, M , in the
proposed smooth test. Two data-driven methods are considered
in this paper. The first one is based on a model-selection type
criterion:

Jms
n,M =

M
m=1

(ζ ∗

m,n,M)2, (15)

where ‘‘ms’’ in the notation stands for ‘‘model selection’’, M is a
number between the lower boundm and the upper boundM , such
thatM
m=1

(ζ ∗

m,n,M)2

= max


M

m=1

(ζ ∗

m,n,M)2 − P (n,M, q),m ≤ M ≤ M


,

with P (n,M, q) a penalty term combining Schwarz’s and Akaike’s
selection rules:

P (n,M, q) =


2M ln(n), if max

1≤m≤M
|ζ ∗

m,n,M | ≤


q ln(m),

2M, otherwise,

and q a fixednumber. This data-drivenmethodwas also considered
by Inglot and Ledwina (2006), Escanciano and Lobato (2009),
and Escanciano and Mayoral (2010), among others. When the
proposedζ ∗

m,n,M in (15) are replaced with the normalized principal
components ẑ∗

m,n in (4), we have exactly the data-driven smooth
test of Escanciano and Mayoral (2010), which will be referred to
as Tms

n,M in our subsequent simulations. It has also been shown

that, under the null, M → m in probability. The result below is
analogous to that of Escanciano and Mayoral (2010).

Theorem 3.4. The asymptotic distribution of Jms
n,M under the null is

Jms
n,M d

−→ χ2(m).
In addition, we consider the data-driven method of Inglot et al.
(1994) and Fan (1996); the resulting test is also known as an ‘‘adap-
tive Neyman’s test’’. Specifically, Fan (1996) suggests maximizing
the asymptotic power of Jn,M tests by choosing themaximumof the
standardized Jn,M tests, i.e.,

Jn,M∗ = max
1≤M≤M


Jn,M − M

√
2M


,

given the upper bound M . Following Fan (1996), the second data-
driven test is based on an adjustment of Jn,M∗ :

Jann,M∗ =


2 ln ln(M) Jn,M∗

−

2 ln ln(M) + 0.5 ln ln ln(M) − 0.5 ln(4π)


, (16)

where ‘‘an’’ in the notation stands for ‘‘adaptive Neyman’’. This ad-
justment leads to the following analytic result for Jann,M∗ ; see Fan
(1996, Theorem 2.1).

Theorem 3.5. Under the null, the asymptotic distribution of Jann,M∗ is

P(Jann,M∗ < ε) → exp(− exp(−ε)), as M, n → ∞.

Given the significance level α, the corresponding asymptotic
critical value, canα , is such that exp(− exp(−canα )) = 1 − α. That
is, the asymptotic critical region of this data-driven test with
significance level α is:

Jann,M∗ > canα = − ln(− ln(1 − α)).

Although this is an analytic result, Fan and Lin (1998) and Fan and
Huang (2001) find in their simulations that this approximation
may be poor when the sample size is small or when M is small.
Instead, one may implement this test based on the simulated
distribution of Jann,M∗ for eachM .

4. Simulations

In our simulations, we consider testing the martingale differ-
ence hypothesis and linearity of model specifications. As the con-
ventional smooth test is available only for the former, the proposed
test is compared with that of Escanciano and Mayoral (2010) in
this case but not otherwise. As benchmarks, we also compute the
CvMandKS tests based on awild bootstrap procedure in all experi-
ments. In our simulations, we consider three sample sizes n = 100,
200, 300. For the proposed smooth tests, we simulate Jn,M (9) for
M = 1, 2, 3, 4, 5, and two corresponding data-driven tests Jms

n,M (15)

and Jann,M∗ (16), with q = 2.4,m = 3, andM = 5, 8, 11 for n = 100,
200 and 300, respectively.5 Note that we implement Jann,M∗ based on
the critical values of the simulated distribution. All nominal sizes
are 5%. The number of Monte Carlo replications is 3000; the num-
ber of bootstraps is 500.

4.1. Testing the martingale difference hypothesis

For testing themartingale difference hypothesis (13), we follow
the simulations in Escanciano and Mayoral (2010). Letting ut
be i.i.d. N (0, 1), we consider three different data generating
processes (DGPs) for size simulations.

(1) IID: yt = ut .
(2) GARCH: yt = σtut , with σ 2

t = 0.001 + 0.01y2t−1 + 0.90σ 2
t−1.

5 To ease comparison, we set the parameters of our simulations as those in
Escanciano and Mayoral (2010).
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(3) SV (Stochastic Volatility): yt = exp(σt)ut , where σt =

0.936σt−1 + 0.32vt , and vt are also i.i.d. N (0, 1) and {ut} and
{vt} are mutually independent.

The proposed smooth test (9) and two data-driven tests (15)
and (16) are computed using the eigenpairs of (14). Let σ 2

= E[y2t ]
and σ̂ 2

n =
n

t=1 y
2
t /n be a consistent estimate. The conventional

CvM and KS tests are:

CvMn =
1
n

n
i=2


1

σ̂n
√
n

n
t=1

yt1(yt−1 ≤ yi−1)

2

,

KSn = max
i=2,...,n

 1
σ̂n

√
n

n
t=1

yt1(yt−1 ≤ yi−1)

 .
Under suitable regularity conditions,

Xn(ξ) ⇒ W(τ 2(ξ)),

where W is the standard Wiener process, and τ 2(ξ) := σ−2E
[y2t 1(yt−1 ≤ ξ)]. It is well known that the eigenpairs associated
with the covariance kernel ofW are:

αm =
1

(m − 1/2)2π2
,

εm(t) =
√
2 sin((m − 1/2)π t), t ∈ [0, 1], m = 1, 2, . . . .

The conventional smooth test is computed as (4): Tn,M =
M

m=1
(ẑ∗

m,n)
2, with

ẑ∗

m,n =
1

√
αm


R

εm(τ 2
n (ξ))


1

σ̂n
√
n

n
t=1

yt1(yt−1 ≤ ξ)


τ 2
n (dξ)

=

√
2

σ̂n
√
n

n
i=2

yi cos

(m − 1/2)πτ 2

n (yi−1)

,

and τ 2
n (ξ) = σ̂−2

n
n

t=2 y
2
t 1(yt−1 ≤ ξ)/n.6 The data-driven test,

Tms
n,M , of Escanciano and Mayoral (2010) is computed according to

(15), whereζ ∗

m,n,M are replaced with ẑ∗
m,n.

The empirical sizes are summarized in Table 1. As expected, the
empirical sizes of the bootstrapped CvM and KS tests are very close
to the nominal size 5% in all cases. The smooth tests of Escanciano
and Mayoral (2010), Tn,M , and the proposed smooth tests, Jn,M ,
perform reasonably well in most cases but are under-sized when
the DGP is SV. It can be seen that the data-driven tests, Tms

n,M of
Escanciano and Mayoral (2010) and the proposed Jms

n,M and Jann,M∗ ,
also have quite accurate sizes, except when the DGP is SV.

For power simulations we consider the following DGPs: let ut
be i.i.d. N (0, 1).

(4) NLMA (Nonlinear Moving Average): yt = ut−1ut−2(ut−2 +ut +

1).
(5) BIL (Bilinear): yt = ut + 0.15ut−1yt−1 + 0.05ut−1yt−2.
(6) TAR-1 (Threshold AR):

yt =


−0.5yt−1 + ut , if yt−1 ≥ 1,
0.4yt−1 + ut , otherwise.

(7) Exp-AR (Exponential AR): yt = 0.6yt−1 exp(−0.5y2t−1) + ut .

The empirical powers are summarized in Table 2. Clearly, KSn
and CvMn have quite different power performance. While KSn has
no power in all cases but BIL, CvMn has no power against NLMA but
high power against TAR-1. Compared with CvMn, the conventional

6 Note that ẑ∗
m,n are different from those in the simulations of Escanciano and

Mayoral (2010), which are based on a ‘‘sample’’ version of z∗
m; see Eq. (4) in their

paper.
smooth tests Tn,M have better empirical powers under NLMA and
Exp-AR (except for Tn,1) and have comparable powers under BIL
and TAR-1. It is interesting to observe that the proposed smooth
tests, Jn,M , dominate the conventional smooth tests in most cases.
These results are encouraging, as they indicate that deviations from
the null may be detected without knowledge of the covariance
kernel of the limiting process. Similar results are also obtained
when comparing the proposed data-driven tests Jms

n,M and Jann,M∗ with
Tms
n,M of Escanciano andMayoral (2010). Yet, the powers of Jann,M∗ are,

in general, slightly lower than those of Jms
n,M , except for the case of

TAR-1. Compared with those Jn,M tests, we find that the powers of
the two proposed data-driven tests are neither the highest nor the
lowest. This indicates that the proposed data-driven tests aremore
robust than the smooth test with a givenM , since the directions of
deviations from the null may vary from case to case.

4.2. Testing linear model specification

We now consider testing the hypothesis of a correct linear
model specification:

H0 : P (E [yt |xt ] = xtθo) = 1 for some θo ∈ 2 ⊂ R.

Following Lee et al. (1993), we generate four DGPs for power
simulations with ut i.i.d. N (0, 1) and y0 = 0.

(1) NLAR (Nonlinear AutoRegressive): yt = 0.7|yt−1|/[|yt−1| +

2] + ut .
(2) STAR (Smooth Transition AutoRegressive):

yt = 0.6Φ(yt−1)yt−1 + ut , where Φ(·) denotes the standard
normal distribution function.

(3) Threshold AutoRegressive (TAR-2):

yt =


0.9yt−1 + ut , if |yt−1| < 1,
−0.3yt−1 + ut , otherwise.

(4) Sign autoregressive (SGN): yt = sgn(yt−1) + ut , where

sgn(x) =

1, if x > 0,
0, if x = 0,
−1, if x < 0.

Constructing misspecification indicators using the indicator
function, the proposed smooth test (9) and two data-driven tests
(15) and (16) are computed using the eigenpairs of (12). The CvM
and KS test statistics are computed as:

CvMn =
1
n

n
i=1

 1
√
n

n
t=1


yt − xt θ̂n


1(xt ≤ xi)


2

,

KSn = max
i=1,...,n

 1
√
n

n
t=1


yt − xt θ̂n


1(xt ≤ xi)

 ,
where θ̂n is the OLS estimator. As the KL expansion is not available
in this case, we do not consider the conventional smooth tests in
these simulations.

The empirical powers are summarized in Table 3. Compared
with CvMn and KSn, Jn,M with M = 2, 3, 4, 5 perform significantly
better under TAR-2 and SGN but are less powerful under NLAR;
none of these tests have clear power advantage under STAR. Again,
comparedwith those Jn,M tests, the twoproposeddata-driven tests,
Jms
n,M and Jann,M∗ , are more robust because their powers are neither
the highest nor the lowest. It is also interesting to note that, while
Jms
n,M outperforms Jann,M∗ in the previous simulations, Jann,M∗ performs
better in most cases here. This suggests that each data-driven
method has its ownmerit and that these two data-driven tests can
complement each other.
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Table 1
Size simulations: testing the martingale difference hypothesis.

Test IID GARCH SV
n = 100 200 300 100 200 300 100 200 300

CvMn 5.37 4.50 5.47 5.00 4.80 5.40 3.77 4.53 4.43
KSn 5.20 5.03 5.53 4.83 5.40 5.03 3.13 3.67 4.53

Tn,1 4.93 4.57 5.50 4.73 4.70 5.40 1.70 2.70 3.53
Tn,2 4.47 4.63 4.90 4.40 4.97 4.47 1.60 2.47 2.53
Tn,3 4.00 4.27 4.70 4.03 4.67 4.53 1.40 1.90 2.30
Tn,4 3.93 4.17 4.90 3.60 4.43 4.20 1.37 1.93 2.73
Tn,5 3.63 3.97 5.10 3.37 4.50 4.13 1.03 1.67 2.73
Tms
n,M 4.23 4.37 4.80 4.40 4.87 4.63 1.43 1.97 2.30

Jn,1 5.13 4.53 5.73 5.07 5.47 4.97 3.30 4.10 4.30
Jn,2 5.23 4.70 5.77 5.10 5.03 4.87 2.77 3.20 4.40
Jn,3 4.33 4.53 5.10 3.77 4.93 4.33 1.93 2.63 3.93
Jn,4 4.00 4.57 4.93 3.53 3.87 4.00 1.60 2.77 4.00
Jn,5 3.90 4.30 4.70 2.80 3.53 3.70 1.67 3.00 4.00
Jms
n,M 4.50 4.57 5.27 3.87 5.10 5.73 2.00 2.70 4.07
Jann,M∗ 4.60 4.40 4.73 3.70 4.47 6.63 1.93 2.47 3.43

Notes:
1. the entries are rejection frequencies in percentage; the nominal size is 5%;
2. for Tms

n,M and Jms
n,M , we set q = 2.4,m = 3, and M = 5, 8, 11 for n = 100, 200 and 300, respectively;

3. for Jann,M∗ ,M = 5, 8, 11 for n = 100, 200 and 300, respectively.
Table 2
Power simulations: testing the martingale difference hypothesis.

Test NLMA BIL TAR-1 Exp-AR
n = 100 200 300 100 200 300 100 200 300 100 200 300

CvMn 4.03 6.40 10.77 15.33 30.30 46.30 73.70 94.90 99.23 23.37 38.53 55.73
KSn 2.87 4.80 8.07 32.07 55.33 73.37 0.07 0.00 0.00 6.77 7.43 6.90

Tn,1 1.30 1.33 1.77 14.37 29.17 45.00 69.43 92.27 98.13 20.63 30.70 40.70
Tn,2 6.37 15.53 25.07 12.23 23.63 37.70 73.70 97.53 99.70 44.50 80.67 93.57
Tn,3 7.93 20.83 35.73 18.37 43.53 64.77 68.80 96.80 99.87 49.00 84.97 96.63
Tn,4 8.67 24.40 42.80 15.50 39.00 58.93 64.07 96.13 99.73 41.93 80.50 95.00
Tn,5 8.03 25.37 45.17 14.50 41.17 64.40 62.37 96.90 99.87 38.30 78.57 94.47
Tms
n,M 8.27 22.07 38.00 18.53 43.93 64.97 69.03 96.90 99.90 49.03 84.97 96.63

Jn,1 2.47 2.57 3.47 19.37 39.13 58.13 74.53 94.83 99.03 16.27 24.47 33.53
Jn,2 13.17 23.80 35.77 17.60 34.57 52.40 64.03 91.77 98.33 60.67 91.67 98.57
Jn,3 12.43 28.23 47.00 26.23 60.47 82.57 77.73 98.63 99.93 53.60 88.03 97.27
Jn,4 12.17 31.20 48.90 25.10 58.83 82.93 84.83 99.83 100.00 47.33 84.53 96.30
Jn,5 11.77 34.73 57.17 20.93 54.93 79.37 80.77 99.73 100.00 42.40 80.03 94.67
Jms
n,M 13.20 29.50 48.23 26.53 60.80 82.70 79.13 99.03 99.97 53.70 88.10 97.27
Jann,M∗ 9.27 26.07 46.37 22.03 51.33 74.93 80.23 99.50 100.00 49.57 84.77 96.33

Notes:
1. the entries are rejection frequencies in percentage; the nominal size is 5%;
2. the parameters for the proposed tests are the same as those in Table 1.
Table 3
Power simulations: testing model linearity.

Test NLAR STAR TAR-2 SGN
n = 100 200 300 100 200 300 100 200 300 100 200 300

CvMn 34.60 61.33 79.77 28.80 61.67 81.63 10.07 15.63 24.83 19.00 25.13 34.40
KSn 34.37 62.83 81.70 27.50 60.37 81.73 9.90 18.87 32.23 25.23 53.43 81.50

Jn,1 36.63 64.87 83.13 34.50 67.83 86.03 3.03 2.97 3.53 4.00 5.13 6.30
Jn,2 21.10 47.87 70.60 16.57 47.63 72.00 17.63 65.60 91.90 72.23 99.30 100.00
Jn,3 20.80 52.17 77.23 26.20 73.77 93.43 26.13 71.30 92.83 73.03 99.03 100.00
Jn,4 17.77 46.73 73.03 22.93 69.97 92.47 86.53 99.70 100.00 95.53 100.00 100.00
Jn,5 14.03 42.03 68.47 17.23 62.93 89.60 82.23 99.57 100.00 93.77 100.00 100.00
Jms
n,M 21.10 52.27 77.30 26.43 73.87 93.50 63.87 96.67 99.70 83.23 99.63 100.00
Jann,M∗ 26.93 54.37 76.53 27.80 68.83 89.57 73.07 99.00 100.00 88.77 99.93 100.00

Note:
1. the entries are rejection frequencies in percentage; the nominal size is 5%;
2. the parameters for the proposed tests are the same as those in Table 1.
5. Concluding remarks

In this paper, we propose a more operational approach to con-
structing Neyman’s smooth tests without knowing the covariance
kernel of the limiting process. This approach greatly expands the
scope of smooth tests because it enables researchers to compute a
smooth test even when the limiting process is non-standard and
the conventional smooth test is not available. It is also found from
our simulations that, together with one of the data-driven meth-
ods, the proposed test has nice finite-sample performance. Smooth
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testsmay be further extended. Note that, smooth tests enjoy power
advantage in certain directions by sacrificing test consistency. It is
therefore important to construct an omnibus test that is consistent
and also carries the spirit of smooth tests; see, e.g., Fan (1996). This
topic is currently being investigated.
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Appendix

For the general empirical process:

Xn(τ ) =
1

√
n

n
t=1

φ(ηt , τ ) + oP(1), τ ∈ [a, b],

whereE[φ(ηt , ·)|Ft−1] = 0, andFt is the sigma-algebra generated
by {ηi : 1 ≤ i ≤ t}. The following conditions ensure Xn ⇒ X on
[a, b], where X is a quadratic mean continuous, Gaussian process
with zeromean and the covariance kernel KX (·, ·). See Stute (1997)
and Escanciano and Mayoral (2010) for similar conditions.

(A1) {ηt} is a strictly stationary and ergodic sequence of random
vectors defined on the probability space (Ω, F , P) such that
E[ηt,j]

2+δ < ∞ for some δ and for all j.
(A2) Under E[φ(ηt , ·)|Ft−1] = 0, n−1n

t=1 φ(ηt , s)φ(ηt , τ ) −

KX (s, τ ) = oP(1) uniformly in (s, τ ) ∈ [a, b] × [a, b].
(A3) For every ϵ = 2−ν

∈ (0, 1), there exists a finite partition
Pν = {Ak; 1 ≤ k ≤ Nϵ} of every compact subset of [a, b], such
that 1

0


log(Nϵ)dϵ < ∞, sup

ν∈N

Vn(Pν)

2−2ν
= OP(1),

where

Vn(Pν) = max
1≤k≤Nϵ

1
n

n
t=1

sup
s,τ∈Ak

× E

|φ(ηt , s) − φ(ηt , τ )|2|Ft−1


.

Proof of Lemma 3.1. Given Xn(·) ⇒ X(·) on [a, b], the continuous
mapping theorem ensures that, as n tends to infinity,

ζm,n =

 b

a
Xn(τ )em(τ )dτ

d
−→

 b

a
X(τ )em(τ )dτ = ζm, m = 1, . . . ,M.

As X is a Gaussian process with mean zero, ζm is a normal random
variable with mean zero. �

Proof of Lemma 3.2. Given that var(ζn,M) is a consistent estima-
tor of var(ζM) the corresponding eigenpairs, Un,M and 3n,M , are
consistent forUM and3M , respectively. Consequently, the normal-
ized principal components are:ζ∗

n,M = [ζ ∗

1,n,M
ζ ∗

2,n,M . . .ζ ∗

M,n,M ]
′
= 3−1/2

n,M
U ′

n,Mζn,M .
Since3n,M
P

−→ 3M andUn,M
P

−→ UM ,ζ∗

n,M is such that

ζ∗

n,M = 3
−1/2
M U ′

Mζn,M + oP(1)
d

−→ 3
−1/2
M U ′

MζM ,

by Lemma 3.1. The limit is nothing but ζ∗

M which contains M
uncorrelated random variables with mean zero and variance one.
When X is Gaussian, we immediately have ζ∗

M ∼ N (0, IM). �

Proof of Theorem 3.3. The result is immediate from Lemma 3.2.
�

Proof of Theorem 3.4. Let M is a number between the bounds m
and M such that
M

m=1

(ζ ∗

m,n,M)2 = max


M

m=1

(ζ ∗

m,n,M)2 − 2M ln(n),m ≤ M ≤ M


,

then by the proof of Theorem 1 of Escanciano and Mayoral (2010),

lim
n→∞

P(M = M) = 1 and lim
n→∞

P(M = m) = 1.

We immediately have Jms
n,M d

−→ χ2(m) by Theorem 3.3. �

Proof of Theorem 3.5. From Theorem 1 in Darling and Erdös
(1956), we have

P


Jn,M∗ <


2 ln ln(M) +

ln ln ln(M)

2

2 ln ln(M)

+
t

2 ln ln(M)


= exp


−(

√
4π)−1 exp(−ν)


,

as n,M → ∞. Letting ε = ν + 0.5 ln(4π), the desired result is
immediate. �
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