
 The Open Statistics and Probability Journal, 2012, 4, 1-4 1 

 

 1876-5270/12 2012 Bentham Open 

Open Access 

Wald's Identity for the Fair Coin-Tossing Games and Some Applications 

Ying-Chao Hung* 

Department of Statistics National Chengchi University No. 64, Sec. 2, ZhiNan Rd., Wenshan District Taipei 11605, 

Taiwan (R.O.C) 

Abstract: We provide a simple proof of Wald's second identity for a class of problems that can be formulated as a fair 

coin-tossing game. The identity provides a useful technique for computing the expected stopping time and allows us to 

explore the second-order moment of the so-called heads-minus-tails distribution. We also introduce some interesting 

applications related to this simple identity.  
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1. INTRODUCTION 

Let 
+

Zjj}X{  be a sequence of i.i.d. random variables 

that represent the consecutive outcomes of tossing a fair 

coin, i.e., P(X j = 1) = P(X j = 1) =
1

2
, where  Xj = 1 represents 

the outcome of a head and 1=X j  the outcome of a tail. 

Let N  be the stopping time of any fair coin-tossing game 

with respect to the filtration 
  
Fn = {X1,…, Xn }  and consider the 

partial sum process 
 
Sn = X1 + + Xn , 0=S

0
. Therefore, 

N
S  

represents the partial sum at the stopping time N , which is 

the difference between the number of heads and the number 

of tails (also known as the ``heads-minus-tails") when the 

game stops. Note that such a fair coin-tossing game has 

many applications. For example, in the gambler's ruin 

problem 
N

S  denotes the player's fortune earned when the 

game stops; in the symmetric random walk SN denotes the 

location when it stops; just to name a few. 

Conventional studies for the partial sum processes have 
focused on their moments by utilizing the results from the 
central limit theorem [1, 2] or through direct calculations 
based on the heads-minus-tails distribution [3, 4]. For the 
stopped processes SN, researchers are mostly interested in 
finding the value of E(N). The computation of E(N) has been 
largely dependent on the strong theoretical results from the 
fundamental Wald's equation and the martingale stopping 
theorem [1, 2, 5]. However, these theoretical results may not 
directly apply to examples such as fair coin-tossing games or 
symmetric random walks (think about solving E(N) by using 
Wald's equation but E(SN) = E(Xj) = 0). To overcome this 
problem, the Wald's second identity turns out to be quite 
useful. 

 
 

*Address correspondence to this author at the Department of Statistics 

National Chengchi University No. 64, Sec. 2, ZhiNan Rd., Wenshan District 

Taipei 11605, Taiwan (R.O.C); Tel: 886-2-29387115;  

Fax: 886-2-29398024; E-mail: hungy@nccu.edu.tw 

The Wald's second identity states that, let {X j } j Z
+

 be a 

sequence of i.i.d. random variables with 0=)X(E 1  and 

E(X1
2 ) < , then for a stopping time N with <)N(E  we 

have E(SN
2 ) = E(X1

2 )E(N )  [2, 6-9]. Note that for the fair coin-

tossing game, this identity simply reduces to Var(SN ) = E(N ) . 

In this letter we provide another proof of Wald's second 

identity for the fair coin-tossing games. The identity can 

serve as a useful technique for computing the expected 

stopping time. Further, it allows us to explore the second-

order moment of the heads-minus-tails distribution, which 

was not fully discussed in literature. In Section 2 we 

introduce the identity and sketch a simple proof of it. In 

Section 3 we introduce some interesting applications related 

to this identity. 

2. ANOTHER PROOF OF WALD'S SECOND 

IDENTITY FOR THE FAIR COIN-TOSSING GAMES 

Based on the formulation of fair coin-tossing games 
introduced in Section 1, the reduced form of Wald's second 
identity is shown as follows. 

Theorem 1 For any stopping time N  with respect to the 
filtration 

 
Fn = {X1,…, Xn }  and such that <)N(E , we have 

Var(SN) = E(N). 

Proof: Since <)N(E , the fundamental Wald's 

equation gives that E(SN ) = E(
i=1

N
Xi ) = E(N )E(X1 ) = 0 . To prove 

that )N(E=)S(Var N , it then suffices to show E(SN
2 ) = E(N ) . 

Let nS=Z
2

nn
, since  

 )X,,X|1)n(S(E=)X,,X|Z(E n1
2

1nn11n …… +
++

 

 )X,,X|1)n()XS((E= n1
2

1nn …++
+

 

 )X,,X|X(ES2nS= n11nn
2
n …

+
+  

 
nn

Z=0Z= +  
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 1n
2
n1nn }nS{=}Z{  is a martingale with respect to the 

filtration Fn. A similar argument shows that 

1n
2

nN )}nN(S{  is also a martingale with respect to Fn. 

Hence, we have that  

0=1)S(E=1))N(S(E=))nN(S(E 2
1

2
1N

2
nN  

which implies …1,2,=nforall )nN(E=)S(E 2
nN . Since 

0S
2

nN
, by Fatou's Lemma we have that  

)nN(Eliminf=)S(Eliminf)Sliminf(E
n

2
nN

n

2
nN

n

 (1) 

 The reverse of Fatou's lemma gives that  

)nN(Elimsup=)S(Elimsup)Slimsup(E
n

2
nN

n

2
nN

n

 (2) 

 Since )nN(  is increasing with n , 
N=)nN(liminf=)nN(limsup nn , and thus  

  

E(
n

limsup(N n)) = E(
n

liminf (N n)) = E(N )  (3) 

 Since we also know that 
2
N

2
nNn

2
nNn S=Slimsup=Sliminf , by Eq. (1)-(3) we 

conclude that  

)N(E=)S(E=)Slimsup(E=)Sliminf(E 2
N

2
nN

n

2
nN

n

 

Remark 1. The readers can refer to [2, 6-8] for 
alternative proofs of the Wald's second identity.  

Remark 2. The following example shows that Theorem 
1 is not correct when E(N ) = . Consider tossing a fair coin 
and stop when Sn = 1 , it is obvious that Var(SN ) = 0 . However, 
a little algebra shows that E(N ) = , which simply violates 
the identity shown in Theorem 1. 

3. APPLICATIONS 

In this section we introduce some interesting applications 
by utilizing the identity shown in Theorem 1. 

APPLICATION 1 (THE OCCURRENCE OF STRINGS) 

Let us consider the sample space = { 1,1} , the n-tuple 

 n =  for each integer n>1, and 
 

* =
n 1 n

. Any 

element A *  is called a string . Further, if A n , then A 

is called a string of length n . For example, suppose we toss 

a fair coin and stop until the particular outcome/pattern 

)H,T,T,H,H(  appears. Then the corresponding string is 

1,1)1,(1,1,=A , which is of length 5. 

We next introduce a general framework for finding the 

solution of the ``expected occurrence time" of strings. Let 

1jj}X{  be a sequence of i.i.d. random variables such that 

P(X1 = 1) = P(X1 = 1) =
1

2
. The string A = (a1,a2 , ...,am )  is a sub-

string of the string B = (b1,b2 , ...,bn )  if a1 = bi ,  a2 = bi+1, ...,  

1mim
b=a

+
 for some 1 i n m +1.  For each string A n , 

let TA be the first occurrence time of the string A (with 

respect to the stochastic process {X j } j 1 ) which is defined as 

TA = inf {m : (Xm-n+1,Xm-n+2,…,Xm) =A}, or =T
A

 if no 

such m  exists. For any given k  strings A1, A2 , ..., Ak
*  such 

that Ai  is not a sub-string of jA  and jA  is not a sub-string 

of 
i

A  for any 1 i < j k , let Nk = min{TA1
,TA2

, ...,TAk
} , i.e., 

k
N  

is the first occurrence time of one of the strings A1, A2 , ..., Ak . 

For any string )s,...,s,s(=S k21  in * , define 

P(S) =
i=1

k
P(X j = si ) . For any two strings A and B of the same 

length, define also the operation BA  as  

 

A B =
S (A) (B)

P(S) 1  

where )A(  and )B(  are the suffix and prefix of A and B, 
respectively (see [10] for details). The following lemma, 
which was introduced in [10-12], is essential for solving 
E(Nk). 

Lemma 1 Let A1,…,Ak be k distinct strings in * (2 < k 
<2

n
) and Nk = min{TA1

,…,TAk
}. For each i = 1,2,…,k, let Pk 

= P{TA
i
,…,Nk} Then we have the following system of k+1 

linear equations (with k+1 variables): 

   

0 1 1
1

( A
i

A
i

A
j

A
i
)

i+1, j+1

1

E(N
k
)

p
1

p
k

=

1
A

1
A

1

A
k

A
k

 

Note that given any k  distinct strings A1,…,Ak, E(Nk) 
can be simply solved by the linear equations in Lemma 1. 
Based on the result of Theorem 1, we then obtain the 
variance of  SN

k
. 

 Remark 3. Lemma 1 also applies to a general setting 
that  = {w1,w2,…,wm} [10-13]. The current setting  = {-
1,1}for the coin-tossing games is just a special case of it.  

 Example 1. Consider two strings A1 = (H,H,T) = (1,1,-

1) and A2 = (H,T,H) = (1,-1,1). Let N2 be the occurrence 

time until one of the strings A1 and A2 appears. By Lemma 1 

we have that  

  

0 1 1
1 0 6
1 6 0

E(N
2
)

p
1

p
2

=
1
8

10
 

 Solving the above linear equations we have that E(N2) = 
6, which also gives that Var(SN

2
) = 6  by Theorem 1. 

 Example 2. Consider three strings A1 = (H,H,Y) = (1,1,-

1), A2 = (H,T,H) = (1,-1,1), and A3 = (H,T,T,H) = (1,-1,-1,1). 

Let  N3 be the occurrence time until one of the strings A1, A2, 

and  A3 appears. By Lemma 1 we have that  

  

0 1 1 1
1 0 6 6
1 6 0 8
1 14 16 0

E(N
3
)

p
1

p
2

p
3

=
1
8

10
18

 

 Solving the above linear equations we have that E(N3) = 
38/1, which also gives that Var(SN3

) = 38/7 by Theorem 1. 

 Example 3. Toss a fair coin and let N be the number of 

tosses until either m consecutive heads are observed or n 
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consecutive tails are observed. Let A1 = (1,1,…,1) (of length 

m) and A2 = (-1,-1,…,-1) (of length n). Solving the linear 

equations in Lemma 1, we obtain that E(N2) = (2
m+1

 -2)(2
n+1

 

-2)/(2
m+1

 +2
n+1

 -4). By Theorem 1 we then have that Var(SN2) 

= E(N2) = (2
m+1

 -2)(2
n+1

 -2)/(2
m+1

 + 2
n+1

 -4). 

APPLICATION 2 (A TWO-PLAYER RUIN PROBLEM) 

Consider a coin-tossing game with two players (Player I 
and Player II) where each player has a 50% chance of 
winning for each toss. For each toss, Player I wins if a head 
appears, while Player II wins if a tail appears. After each toss 
of the coin, the loser must transfer one penny to the winner. 
Suppose Player I has b pennies and Player II has a pennies at 
the beginning of the game, and the game stops when one of 
the players goes broke. Let N be the number of tosses when 
the game stops. The question is, what is the expectation of N? 

This two-player ruin problem can be formulated as 

follows. It is clear that N = inf {n : Sn = a or Sn = -b}. First, 

we have that  E(SN) = 0 by the fundamental Wald's equation. 

Second, it is clear that P(SN = a) =
b

a + b
 and P(SN = b) =

a

a + b
.  

Thus, Var(SN ) = ( b)2 (
a

a + b
) + a2 (

b

a + b
) = ab = E(N ) , which is 

the direct result of Theorem 1.  

 Remark 4. Application 2 can be also formulated as a 
well-known symmetric random walk, where one starts at 
zero and stops when he reaches a or -b, a and b are positive 
integers. In this case, Sn represents the location after n steps, 
while SN = a or -b. In general, a direct computation of E(N) 
requires a more intricate procedure. The readers can refer to 
[6, 8] for more details.  

APPLICATION 3 (THE NEGATIVE BINOMIAL 

RANDOM VARIABLE) 

Let N be the total number of tosses needed to obtain n 
heads, then N is a negative binomial random variable with 
parameters n and p-1/2. Let Y be the number of heads minus 
the number of tails in N tosses (i.e. Y = n-(N-n) = 2n-N). By 
Theorem 1, Var(Y) = E(N) = 2n, which agrees with the fact 
that Var(Y) = Var(2n-N) = Var(N) = 2n when p = 1/2. 

APPLICATION 4 (THE BEST-OF-
 
(2n - 1)  SERIES) 

The best-of- (2n 1)  format refers to a head-to-head 
competition between two teams (or players) in which one 
team must win n  games (i.e. the majority of the games) to 
win the series. For example, the most common playoff 
format in the major North American sports (such as NBA, 
MLB, NHL, etc) is best-of-seven. This format indicates that 
each team must win four out of seven games in order to win 
a playoff series. Suppose now Team I has a 50% chance of 
winning Team II in a single game and the best-of- (2n 1)  
series is considered. Let N be the number of games two 
teams play until one of the teams wins n games. Therefore,  

E(N ) = k
k=n

2n 1

P(N = k) = 2
k=n

2n 1

k
k 1

n 1
2 k

= 2n
k

nk=n

2n 1

2 k

 

Since it can be shown that 

k

n
2 k

k=n

2n
= 1

 (see later for 

the proof), by Theorem 1 we have that  

Var(SN ) = E(N ) = 2n{1
2n

n
2 2n}

 

which is the variance of the difference between the 
number of games the winner wins and the number of games 
the loser wins. 

 Now we show how to prove 

k

n
2 k

k=n

2n
= 1

. Since  

k

nk=n

2n

2 k
=

k

k nk=n

2n

2 k
= 2 n

n + j

jj=0

n

2 j  

it suffices to show 
n + j

   jj=0

n
2 j

= 2n

. We prove this by 

mathematical induction. Let 
F(n) =

n + j

   jj=0

n
2 j

, first, it is 

clear that F(2) = 1+ 3 2 1
+ 6 2 2 = 22 . Suppose it is true that 

F(n) = 2n , then we need to show that F(n +1) = 2n+1 . To see 

this, note that  

F(n + 1) =
n + 1+ j

jj=0

n+1

2 j
= (

j=0

n+1

1+
j

n + 1
)

n + j

j
2 j

             =
n + j

jj=0

n+1

2 j
+

1

(n + 1)
j

j=0

n+1 n + j

j
2 j

             = 2n
+

2n + 1

n + 1
2 (n+1)

+
1

(n + 1)
j

j=0

n+1 n + j

j
2 j   

 (4) 

 We next examine the summation term in the right hand 
side of Eq. (4). Note that  

j
j=0

n+1 n + j

j
2 j

= j
j=1

n+1 n + j

j
2 j

= (
j=1

n

n + j)
n + j 1

j 1
2 j

                         = (
i=0

n

n + 1+ i)
n + i

i
2 (i+1)

                         = (n + 1)
n + i

ii=0

n

2 (i+1)
+ i

i=0

n n + i

i
2 (i+1)    

 (5) 

 Let 
T (n) = i

i=0

n n + i

i
2 i

, Eq. (5) then reduces to  

j
j=0

n+1 n + j

j
2 j

=
n + 1

2
F(n) +

1

2
T (n) =

n + 1

2
2n

+
1

2
T (n) 

 (6) 

 Since the term in the left hand side of Eq. (6) can be 

written as 
T (n) + (n + 1)

2n +1

n +1
2 (n+1) , Eq. (6) can be further 

written as  

T (n) + (n + 1)
2n +1

n +1
2 (n+1)

=
n +1

2
2n

+
1

2
T (n)

 

based on which we obtain that  

T (n) = (n + 1)2n (n + 1)
2n + 1

n + 1
2 n  

 (7) 

 Taking the results of Eq. (7) and Eq. (6) into Eq. (4), we 
then have that  

F(n + 1) = 2n
+

2n + 1

n + 1
2 (n+1)

+
1

(n + 1)

n + 1

2
2n

+
1

2
T (n)

             = 2n
+

2n + 1

n + 1
2 (n+1)

+ 2n 1
+ 2n 1

2n + 1

n + 1
2 (n+1)

             = 2n+1

 



4    The Open Statistics and Probability Journal, 2012, Volume 4 Ying-Chao Hung 

 The proof is now complete. 

 Remark 5. The readers can refer to an alternative proof 

of 
E(N ) = 2n{1

2n

n
2 2n}

 given in [14]. Based on the result, it 

is easy to show that )N(E  (or 
  
Var(S

N
) ) has the following 

properties: (i) It is increasing with n; and (ii) E(N ) / 2n  (or 

  
Var(S

N
) / 2n ) increases to 1 as n increases to infinity. 
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