TAIWANESE JOURNAL OF MATHEMATICS
Vol. 10, No. 3, pp. 777-795, March 2006
This paper is available online at http://www.math.nthu.edu.tw/tjm/

REGULARITY AND BLOW-UP CONSTANTS OF SOLUTIONS FOR NONLINEAR DIFFERENTIAL EQUATION

Meng-Rong Li and Zing-Hung Lin

Abstract

In this paper we gain some results on the regularity and also the blow-up rates and constants of solutions to the equation $u^{\prime \prime}-u^{p}=0$ under some different situations. The blow-up rate and blow-up constant of $u^{(2 n)}$ are $(p-2 n+2)$ and $(\pm)(p-2 n+2) \cdot \Pi_{i=0}^{n-1}(p-2 i+2)(p-2 i+1) E(0)^{p / 2}$ respectively; blow-up rate and blow-up constant of $u^{(2 n+1)}$ are $(p-2 n+1)$ and $(p-2 n+2) \Pi_{i=0}^{n-1}(p-2 i+2) \cdot(p-2 i+1) E(0)^{p-n}$ respectively, where $E(0)=u^{\prime}(0)^{2}-\frac{2}{p+1} u(0)^{p+1}$.

0. Introduction

In this paper, we deal with the estimate of blow-up rate and blow-up constant of $u^{(n)}$ and the regularity of solutions for the nonlinear ordinary differential equation

$$
\begin{equation*}
u^{\prime \prime}-u^{p}=0 \tag{0.1}
\end{equation*}
$$

where $p>1$.
Our motivation on the problem is based on the studying properties of solutions of the semi-linear wave equation $\square u+f(u)=0[2,3]$ with particular cases in zero space dimension and the blow-up phenomena of the solution to equation (0.1) [4].

In this paper, if $p=\frac{r}{s}, r \in \mathbb{N}, s \in 2 \mathbb{N}+1,(r, s)=1$ (common factor) we say that p is odd (even respectively) if r is odd (even, respectively).

For $p \in \mathbb{Q}$ and $p \geq 1$, the function u^{p} is locally Lipschitz, therefore by standard theory for ordinary differential equation there exists exactly one local classical solution to the equation (0.1) together with initial values $u(0)=u_{0}, u^{\prime}(0)=u_{1}$.

Received February 11, 2004, accepted April 7, 2005.
Communicated by Tai-Ping Liu.
2000 Mathematics Subject Classification: 34, 34A12, 34C99.
Key words and phrases: Estimate, Life-span, Blow-up, Blow-up constant, Regularity.
This work is financed by Grand Hall Company.

Notations and Fundamental Lemmata

For a given function u in this work we use the following abbreviations

$$
a_{u}(t)=u(t)^{2}, E_{u}(t)=u^{\prime}(t)^{2}-\frac{2}{p+1} u(t)^{p+1}, J_{u}(t)=a_{u}(t)^{-\frac{p-1}{4}} .
$$

Definition. A function $g: \mathbb{R} \rightarrow \mathbb{R}$ has a blow-up rate r means that g exists only in finite time, that is, there is a finite number T^{*} such that the following holds

$$
\lim _{t \rightarrow T^{*}} g(t)^{-1}=0
$$

and there exists a non-zero $\beta \in \mathbb{R}$ with

$$
\lim _{t \rightarrow T^{*}}\left(T^{*}-t\right)^{r} g(t)=\beta,
$$

in this case β is called the blow-up constant of g.
One can find the detail in [4] for the lemmas given as follows without rigorous argumentations.

Lemma 1. Suppose that u is the solution of (0.1), then we have

$$
\begin{equation*}
E(t)_{u}=E_{u}(0), \tag{0.2}
\end{equation*}
$$

$$
\begin{equation*}
(p+3) u^{\prime}(t)^{2}=(p+1) E_{u}(0)+a_{u}^{\prime \prime}(t), \tag{0.3}
\end{equation*}
$$

$$
\begin{equation*}
J_{u}^{\prime \prime}(t)=\frac{p^{2}-1}{4} E_{u}(0) J_{u}(t)^{\frac{p+3}{p-1}} \tag{0.4}
\end{equation*}
$$

and
(0.5) $J_{u}^{\prime}(t)^{2}=J_{u}^{\prime}(0)^{2}-\frac{(p-1)^{2}}{4} E_{u}(0) J_{u}(0)^{\frac{2(p+1)}{p-1}}+\frac{(p-1)^{2}}{4} E_{u}(0) J_{u}(t)^{\frac{2(p+1)}{p-1}}$.

Lemma 2. Suppose that c_{1} and c_{2} are real constants and $u \in C^{2}(\mathbb{R})$ satisfies the inequality

$$
\begin{aligned}
& u^{\prime \prime}+c_{1} u^{\prime}+c_{2} u \leq 0, \quad u \geq 0, \\
& u(0)=0, u^{\prime}(0)=0,
\end{aligned}
$$

then u must be null, that is, $u \equiv 0$.

Lemma 3. If $g(t)$ and $h(t, r)$ are continuous with respect to their variables and the limit $\lim _{t \rightarrow T} \int_{0}^{g(t)} h(t, r) d r$ exists, then

$$
\lim _{t \rightarrow T} \int_{0}^{g(t)} h(t, r) d r=\int_{0}^{g(T)} h(T, r) d r
$$

Lemma 4. If T is the life-span of u and u is the solution of the problem (0.1) with $E_{u}(0)<0$ and $p>1$ then T is finite, that is, u is only a local solution of (0.1). Further, for $a_{u}^{\prime}(0) \geq 0$, we have the following estimates

$$
\begin{gather*}
J_{u}^{\prime}(t)= \tag{0.6}\\
=-\frac{p-1}{2} \sqrt{k_{1}+E_{u}(0) J_{u}(t)^{k_{2}}} \leq J^{\prime}(0) \quad \forall t \geq 0 \tag{0.7}\\
\int_{J_{u}(t)}^{J_{u}(0)} \frac{d r}{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}}=\frac{p-1}{2} t \quad \forall t \geq 0
\end{gather*}
$$

and

$$
\begin{equation*}
T \leq T_{1}^{*}\left(u_{0}, u_{1}, p\right)=\frac{2}{p-1} \int_{0}^{J_{u}(0)} \frac{d r}{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}} \tag{0.8}
\end{equation*}
$$

For $a_{u}^{\prime}(0)<0$, there is a constant $t_{0}\left(u_{0}, u_{1}, p\right)$ such that

$$
\begin{cases}J_{u}^{\prime}(t)=-\frac{p-1}{2} \sqrt{k_{1}+E_{u}(0) J_{u}(t)^{k_{2}}} & \forall t \geq t_{0}\left(u_{0}, u_{1}, p\right) \tag{0.9}\\ J_{u}^{\prime}(t)=\frac{p-1}{2} \sqrt{k_{1}+E_{u}(0) J_{u}(t)^{k_{2}}} & \forall t \in\left[0, t_{0}\left(u_{0}, u_{1}, p\right)\right]\end{cases}
$$

and

$$
\left\{\begin{array}{l}
\int_{\substack{J_{u}(t) \\
J_{u}\left(t_{0}\right)}}^{J_{u}(0)} \frac{d r}{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}}=\frac{p-1}{2}\left(t-t_{0}\left(u_{0}, u_{1}, p\right)\right) \quad \forall t \geq t_{0}\left(u_{0}, u_{1}, p\right) \tag{0.10}\\
\int_{J_{u}(0)}^{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}}=\frac{p-1}{2} t_{0}\left(u_{0}, u_{1}, p\right) .
\end{array}\right.
$$

Also we have

$$
\begin{align*}
T & \leq T_{2}^{*}\left(u_{0}, u_{1}, p\right) \\
& =\frac{2}{p-1}\left(\int_{0}^{k} \frac{d r}{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}}+\int_{J(0)}^{k} \frac{d r}{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}}\right) \tag{0.11}
\end{align*}
$$

where $k_{1}:=\frac{2}{p+1}, k_{2}:=\frac{2 p+2}{p-1}$ and $k:=\left(\frac{2}{p+1} \frac{-1}{E_{u}(0)}\right)^{\frac{p-1}{2 p+2}}$.
Furthermore, if $E_{u}(0)=0$ and $a_{u}^{\prime}(0)>0$, then

$$
\left\{\begin{array}{l}
J_{u}(t)=a_{u}(0)^{-\frac{p-1}{4}}-\frac{p-1}{4} a_{u}(0)^{-\frac{p-1}{4}-1} a_{u}^{\prime}(0) t, \tag{0.12}\\
a_{u}(t)=a_{u}(0)^{\frac{p+3}{p-1}}\left(a_{u}(0)-\frac{p-1}{4} a_{u}^{\prime}(0) t\right)^{-\frac{4}{p-1}}
\end{array}\right.
$$

for each $t \geq 0$, and

$$
\begin{equation*}
T \leq T_{3}^{*}\left(u_{0}, u_{1}, p\right):=\frac{4}{p-1} \frac{a_{u}(0)}{a_{u}^{\prime}(0)} \tag{0.13}
\end{equation*}
$$

Lemma 5. If T is the life-span of u and u is the solution of the problem (0.1) with $E_{u}(0)>0$, then T is finite; that is, u is only a local solution of (0.1). If one of the following is valid
(i) $a_{u}^{\prime}(0)^{2}>4 a_{u}(0) E_{u}(0)$ or
(ii) $a_{u}^{\prime}(0)^{2}=4 a_{u}(0) E_{u}(0)$ and $u_{1}>0$ or
(iii) $a_{u}^{\prime}(0)^{2}=4 a_{u}(0) E_{u}(0), u_{1}<0$ and p is odd.

Further, in case of (i), we have the estimate

$$
\begin{equation*}
T \leq T_{4}^{*}\left(u_{0}, u_{1}, p\right)=\frac{2}{p-1} \int_{0}^{J_{u}(0)} \frac{d r}{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}} \tag{0.14}
\end{equation*}
$$

and
(0.15)

$$
a^{\prime}(0) \geq 0 .
$$

In the case of (ii), we have also

$$
\begin{equation*}
T \leq T_{5}^{*}\left(u_{0}, u_{1}, p\right)=\frac{2}{p-1} \int_{0}^{\infty} \frac{d r}{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}} \tag{0.16}
\end{equation*}
$$

In case of (iii), we get

$$
\begin{equation*}
T \leq T_{6}^{*}\left(u_{0}, u_{1}, p\right)=\frac{2}{p-1} \int_{0}^{\infty} \frac{d r}{\sqrt{k_{1}+E_{u}(0) r^{k_{2}}}} \tag{0.17}
\end{equation*}
$$

Lemma 6. Suppose that u is the solution of the problem (0.1) with one of the following property
(i) $E_{u}(0)>0, a_{u}^{\prime}(0)^{2}<4 a_{u}(0) E_{u}(0)$ or
(ii) $a_{u}^{\prime}(0)^{2}=4 a_{u}(0) E_{u}(0), u_{1}<0$ and p is odd.

Then T_{0} given by

$$
\begin{equation*}
T_{0}\left(u_{0}, u_{1}, p\right)=\int_{-u_{0}}^{-u\left(T_{0}\right)} \frac{d r}{\sqrt{E_{u}(0)-2 r^{p+1} /(p+1)}} \tag{0.18}
\end{equation*}
$$

where $-u\left(T_{0}\right)=\left((p+1) E_{u}(0) / 2\right)^{1 /(p+1)}$ is the critical point of u, and u_{0} must be non-positive.

Remark. Under condition $(i) u_{0}$ must be negative and p must be even.
If u is the solution of the problem (0.1) with $E_{u}(0)=0$ and $a_{u}^{\prime}(0)=0$, then u must be null.

Lemma 8. Suppose that u is the solution of the problem (0.1) with $E_{u}(0)>0$ and one of the following holds
(i) $a_{u}^{\prime}(0)^{2}<4 a_{u}(0) E_{u}(0)$.
(ii) $a_{u}^{\prime}(0)^{2}=4 a_{u}(0) E_{u}(0)$ and $u_{1}<0, p$ is even.

Then u possesses a critical point $T_{0}\left(u_{0}, u_{1}, p\right)$ given by (0.18), provided condition (ii) holds or condition (i) together with $a_{u}^{\prime}(0)>0$ holds; and under (i), there exists $z<\infty$ such that

$$
a(z)=0
$$

For $a^{\prime}(0) \leq 0$, we have the null point (zero) z_{1} of a,

$$
z_{1}\left(u_{0}, u_{1}, p\right)=\frac{\sqrt{p^{2}-1}}{\sqrt{2}} \int_{0}^{\sqrt{\frac{4 a_{u}(0)}{\left(p^{2}-1\right) E_{u}(0)}}} \frac{d r}{\sqrt{2-(p-1) k_{3}^{2} r^{p+1}}}
$$

and

$$
T \leq T_{7}^{*}\left(u_{0}, u_{1}, p\right):=z_{1}\left(u_{0}, u_{1}, p\right)+T_{5}^{*}\left(u_{0}, u_{1}, p\right)
$$

where $k_{3}=\left(\frac{p^{2}-1}{4} E_{u}(0)\right)^{\frac{p-1}{4}}$.
Furthermore, we also have

$$
\begin{equation*}
\lim _{t \rightarrow z_{1}} a_{u}(t)\left(z_{1}-t\right)^{-2}=E_{u}(0) \tag{0.19}
\end{equation*}
$$

$$
\begin{array}{r}
\lim _{t \rightarrow z_{1}}\left(z_{1}-t\right)^{-1} a^{\prime}(t)=-2 E(0) \\
\lim _{t \rightarrow z_{1}} a_{u}^{\prime \prime}(t)=2 E_{u}(0) \tag{0.20}
\end{array}
$$

and $a_{u}(t)$ blows up at $T_{7}^{*}\left(u_{0}, u_{1}, p\right)$; that is, $\lim _{t \rightarrow T_{7}^{*}} 1 / a_{u}(t)=0$.
For $a_{u}^{\prime}(0)>0$, we have the null point z_{2} of a_{u}

$$
z_{2}\left(u_{0}, u_{1}, p\right)=\frac{\sqrt{p^{2}-1}}{\sqrt{2}}\left(\begin{array}{c}
\int_{0}^{2^{\frac{1}{p+1}(p-1)^{-\frac{1}{p+1}} k_{3}^{-\frac{2}{p+1}}}} \begin{array}{c}
\int^{\frac{1}{p+1}}(p-1)^{-\frac{1}{p+1}} k_{3}^{-\frac{2}{p+1}} \\
\int_{2 a(0)^{1 / 2}\left(p^{2}-1\right)^{-1 / 2}} E_{u}(0)^{-1 / 2}
\end{array} \frac{d r}{\sqrt{2-(p-1) k_{3}^{2} r^{p+1}}}+
\end{array}\right)
$$

and

$$
T \leq T_{8}^{*}\left(u_{0}, u_{1}, p\right):=z_{2}\left(u_{0}, u_{1}, p\right)+T_{6}^{*}\left(u_{0}, u_{1}, p\right)
$$

Furthermore, we also have

$$
\begin{equation*}
\lim _{t \rightarrow z_{2}} a_{u}(t)\left(z_{2}\left(u_{0}, u_{1}, p\right)-t\right)^{-2}=E_{u}(0) \tag{0.21}
\end{equation*}
$$

$$
\begin{gather*}
\lim _{t \rightarrow z_{2}}\left(z_{2}-t\right)^{-1} a_{u}^{\prime}(t)=-2 E_{u}(0) \tag{0.22}\\
\lim _{t \rightarrow z_{2}} a_{u}^{\prime \prime}(t)=2 E_{u}(0)
\end{gather*}
$$

and $a_{u}(t)$ blows up at $T_{8}^{*}\left(u_{0}, u_{1}, p\right)$; that is, $\lim _{t \rightarrow T_{8}^{*}\left(u_{0}, u_{1}, p\right)} 1 / a_{u}(t)=0$.
Further, under the condition (ii), we have the null point $z_{3}\left(u_{0}, u_{1}, p\right)$ of a,

$$
\begin{gathered}
z_{3}\left(u_{0}, u_{1}, p\right)=2 T_{0}\left(u_{0}, u_{1}, p\right) \\
T \leq T_{9}^{*}\left(u_{0}, u_{1}, p\right)=z_{3}\left(u_{0}, u_{1}, p\right)+T_{5}^{*}\left(u_{0}, u_{1}, p\right)
\end{gathered}
$$

and $a_{u}(t)$ blows up at $T_{9}^{*}\left(u_{0}, u_{1}, p\right)$. Furthermore we have

$$
\begin{equation*}
\lim _{t \rightarrow z_{3}} a_{u}(t)\left(z_{3}\left(u_{0}, u_{1}, p\right)-t\right)^{-2}=E_{u}(0) \tag{0.23}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow z_{3}\left(u_{0}, u_{1}, p\right)}\left(z_{3}\left(u_{0}, u_{1}, p\right)-t\right)^{-1} a_{u}^{\prime}(t)=-2 E_{u}(0), \tag{0.24}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow z_{3}} a_{u}^{\prime \prime}(t)=2 E_{u}(0) \tag{0.25}
\end{equation*}
$$

In Section I, we consider the regularity of solution u of equation (1) for $p \in \mathbb{N}$ and gain the expansion of $u^{(n)}$ in terms of $u^{(k)}, k<n$; in section II, we consider the regularity of solution u as $p \in \mathbb{Q}-\mathbb{N}$. In the last section, we study the blow-up rates and blow-up constants of $u^{(n)}$ as t approach to life-span T^{*} and null point (zero) z under some situations.

1. Regularity of Solution to the Equation (0.1) with $p \in \mathbb{N}$

In this section we study the regularity of the solution u of the nonlinear equation (0.1) as $p \in \mathbb{N}$. First, we see that the well-defined function u^{p} is locally Lipschitz, hence we have the local existence and uniqueness of solution to the equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}=u^{p} \tag{1.1}\\
u(0)=u_{0}, u^{\prime}(0)=u_{1}
\end{array}\right.
$$

Therefore, we rewrite $a_{u}(t)=a(t), J_{u}(t)=J(t)$ and $E_{u}(t)=E(t)$ for convenience. Using (0.2) we have

$$
\begin{equation*}
u^{\prime}(t)^{2}=E(0)+\frac{2}{p+1} u(t)^{p+1} \tag{1.2}
\end{equation*}
$$

1.1 Regularity of Solution to the Equation (1.1) with $p \in \mathbb{N}$

Now we consider problem (1.1) with $p \in \mathbb{N}$, we have the following results:
Theorem 1. If u is the solution of the problem (1.1) with the life-span T^{*} and $p \in \mathbb{N}$, then $u \in C^{q}\left(0, T^{*}\right)$ for any $q \in \mathbb{N}$ and

$$
\begin{gather*}
u^{(2 n)}=\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} E_{n i} u^{C_{n i}}, \tag{1.3}\\
u^{(2 n+1)}=\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} E_{n i} C_{n} i^{C_{n i}-1} u^{\prime} \\
=\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} O_{n i} u^{C_{n} i-1 u^{\prime}}
\end{gather*}
$$

for positive integer n, where $\left[\frac{C_{n 0}}{p+1}\right]$ denotes the Gaussian integer number of $\frac{C_{n 0}}{p+1}$,

$$
\begin{aligned}
& C_{n i}=(n-i)(p+1)-2 n+1, \\
& O_{n i}=E_{n i} C_{n i}, E_{00}=1
\end{aligned}
$$

and

$$
\begin{aligned}
E_{n 0}= & O_{(n-1) 0}\left[\frac{2}{p+1}\left(C_{(n-1) 0}-1\right)+1\right] \\
= & E_{(n-1) 0} C_{(n-1) 0}\left[\frac{2}{p+1}\left(C_{(n-1) 0}-1\right)+1\right] \\
E_{n(n-1)}= & O_{(n-1)(n-2)}\left(C_{(n-1)(n-2)}-1\right) E(0) \\
= & E_{(n-1)(n-2)} C_{(n-1)(n-2)}\left(C_{(n-1)(n-2)}-1\right) E(0), \\
E_{n k}= & O_{(n-1)(k-1)}\left(C_{(n-1)(k-1)}-1\right) E(0) \\
& +O_{(n-1) k}\left[\frac{2}{p+1}\left(C_{(n-1) k}-1\right)+1\right] \\
= & E_{(n-1)(k-1)} C_{(n-1)(k-1)}\left(C_{(n-1)(k-1)}-1\right) E(0) \\
& +E_{(n-1) k} C_{(n-1) k}\left[\frac{2}{p+1}\left(C_{(n-1) k}-1\right)+1\right]
\end{aligned}
$$

for positive integer k and $0<k<n$.
Proof. Let v_{n} be the n-th derivative of u; that is $v_{n}:=u^{(n)}$, then $v_{0}^{n}=u^{n}$, $v_{0}=u, v_{1}=u^{\prime}, v_{2}=u^{\prime \prime}, v_{1}^{2}=\left(u^{\prime}\right)^{2}$. To prove (1.3) we use mathematical induction. When $n=1$, we have

$$
\begin{gathered}
v_{2}=\sum_{i=0}^{\left[\frac{C_{10}}{p+1}\right]} E_{1 i} u^{C_{1 i}}=E_{10} u^{C_{10}}=v_{0}^{p}, \\
C_{00}=(0-0)(p+1)-2 \times 0+1=1, C_{10}=p
\end{gathered}
$$

and

$$
E_{10}=E_{00} C_{00}\left[\frac{2}{p+1}\left(C_{00}-1\right)+1\right]=1 .
$$

Suppose $v_{2 n}=\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} E_{n i} \cdot v_{0}^{C_{n} i}, n \in \mathbb{N}$. Then

$$
v_{2 n+1}=\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} E_{n}{ }_{i} C_{n i} \cdot v_{0}^{C_{n}{ }_{i}-1} \cdot v_{1}
$$

and

$$
v_{2 n+2}=\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} E_{n i} C_{n i}\left(v_{0}^{C_{n i}-1} \cdot v_{2}+\left(C_{n i}-1\right) v_{0}^{C_{n i}-2} \cdot v_{1}^{2}\right)
$$

By (1.2) we obtain

$$
\begin{aligned}
& v_{2 n+2}=\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} O_{n i} \cdot\left[\frac{2}{p+1}\left(C_{n i}-1\right)+1\right] v_{0}^{C_{n i}+p-1} \\
& +\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} O_{n i} \cdot\left(C_{n i}-1\right) \cdot E(0) v_{0}^{C_{n i}-2} \\
& =\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} O_{n i} \cdot\left[\frac{2}{p+1}\left(C_{n i}-1\right)+1\right] v_{0}^{C_{(n+1) i}} \\
& +\sum_{i=0}^{\left[\frac{C_{n 0}}{p+1}\right]} O_{n i} \cdot\left(C_{n i}-1\right) \cdot E(0) v_{0}^{C_{(n+1)(i+1)}} \\
& =O_{n 0} \cdot\left[\frac{2}{p+1}\left(C_{n 0}-1\right)+1\right] v_{0}^{C_{(n+1) 0}} \\
& +O_{n 0} \cdot\left(C_{n 0}-1\right) \cdot E(0) v_{0}^{C_{(n+1) 1}} \\
& +O_{n 1} \cdot\left[\frac{2}{p+1}\left(C_{n 1}-1\right)+1\right] v_{0}^{C_{(n+1) 1}} \\
& +O_{n 1} \cdot\left(C_{n 1}-1\right) \cdot E(0) v_{0}^{C_{(n+1) 2}} \\
& +O_{n 2} \cdot\left[\frac{2}{p+1}\left(C_{n 2}-1\right)+1\right] v_{0}^{C_{(n+1) 2}}+\cdots \\
& +\ldots+O_{n\left[\frac{C_{n 0}}{p+1}\right]} \cdot\left(C_{n\left[\frac{C_{n 0}}{p+1}\right]}-1\right) \cdot E(0) v_{0}^{C_{(n+1)}\left(\left[\frac{C_{n 0}}{p+1}\right]+1\right)} .
\end{aligned}
$$

Hence

$$
v_{2 n+2}=\sum_{i=0}^{\left[\frac{C_{(n+1) 0}}{p+1}\right]} E_{(n+1) i} \cdot v_{0}^{C_{(n+1) i}}
$$

which completes the induction procedures and we obtain (1.3). Using (1.3), we get (1.4).

1.2. The Properties of $u^{(n)}$

Drawing the graphs of the $u^{(n)}$ is not easy, so in this section we choose a spacial index $p=2$.

We consider only on the properties of the solution u to the case that $E(0)=0$ for the equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}=u^{2} \tag{1.5}\\
u(0)=1, \quad u^{\prime}(0)=\sqrt{\frac{2}{3}}
\end{array}\right.
$$

The solution of equation (1.5) can be solved explicitly

$$
u(t)=\frac{6}{(\sqrt{6}-t)^{2}}
$$

and this affords the graphs of $u, u^{\prime}, u^{\prime \prime}, u^{(3)}$ and $u^{(4)}$ below.

Fig. 1.5.

With the help of graphing with maple we find that the n-th derivative $u^{(n)}$ is smooth and that the blow-up rate of $u^{(n)}$ is increasing in n. Here we do not give rigorous proof, we will illustrate this in section III.

2. Regularity of Solution to the Equation (0.1) with $p \in \mathbb{Q}-\mathbb{N}$

According to the preceding section we obtain the solution $u \in C^{q}(0, T)$ of (0.1) with $p \in \mathbb{N}$ for any $q \in \mathbb{N}$. In this section we consider the equation of (0.1) with $p \in \mathbb{Q}-\mathbb{N}$.

Except the null points (zeros) of $u, u^{(q)}$ are also differentiable for any $q \in \mathbb{N}$. We have

Theorem 2. If u is the solution of the problem (0.1) with $p \in \mathbb{Q}-\mathbb{N}, p \geq 1$ and the followings do not hold
(i) $a^{\prime}(0)^{2}<4 a(0) E(0), E(0)>0$,
(ii) $a^{\prime}(0)^{2}=4 a(0) E(0), E(0)>0$ and $u_{1}<0, p$ is even, then $u \in C^{q}(0, T)$ for any $q \in \mathbb{N}$. Further, we have

$$
\begin{equation*}
u^{(2 n)}=\sum_{i=0}^{n-1} E_{n i} u^{C_{n i}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
u^{(2 n+1)} & =\sum_{i=0}^{n-1} E_{n}{ }_{i} C_{n}{ }_{i} u^{C_{n} i^{-1}} u^{\prime} \tag{2.2}\\
& =\sum_{i=0}^{n-1} O_{n}{ }_{i} u^{C_{n} i-1} u^{\prime} .
\end{align*}
$$

Proof. Same as the procedures given in the proof of Theorem 1, to prove (2.1) and (2.2) by mathematical induction. If t_{0} is the null (zero) point of u, then

$$
\lim _{t \rightarrow t_{0}} u^{c_{n i}}\left(t_{0}\right)^{-1}=0
$$

for $i>\frac{n(p-1)+1}{p+1}=\frac{C_{n 0}}{p+1}$ since that $C_{n}{ }_{i}<0$, for $i>\frac{C_{n 0}}{p+1}$. By lemma 8 we know that u possesses the null point (zero) only in the case (i) or (ii). Hence, we obtain the assertions by Theorem 1 .

Similarly, by the same arguments above, we have also a result as following:
Theorem 3. If u is the solution of the problem (0.1) with $p \in \mathbb{Q}-\mathbb{N}, p \geq 1$ and one of the followings holds
(i) $a^{\prime}(0)^{2}<4 a(0) E(0), E(0)>0$
(ii) $a^{\prime}(0)^{2}=4 a(0) E(0), E(0)>0 a n d u_{1}<0, p$ is even.

Then $u \in C^{[p]+2}(0, T)$, where $[p]$ mean that Gaussian integer number of p.
Further, we have

$$
\begin{equation*}
u^{(2 n)}=\sum_{i=0}^{n-1} E_{n i} u^{C_{n} i}, \quad \text { for } n \leq\left[\frac{p}{2}\right]+1 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
u^{(2 n+1)} & =\sum_{i=0}^{n-1} E_{n i} C_{n i} u^{C_{n}-1} u^{\prime} \\
& =\sum_{i=0}^{n-1} O_{n}{ }_{i} u^{C_{n i}-1} u^{\prime}, \text { for } n \leq\left[\frac{p}{2}\right]+1 \tag{2.4}
\end{align*}
$$

Proof. Same as the proof of Theorem 1, we obtain also the identities (2.3) and (2.4).

By lemma 8, we know that u possesses the null point (zero) in the case (i) or (ii). (Figure 2.1) If t_{0} is the null point of u then $\lim _{t \rightarrow t_{0}} u^{-c_{n} i}(t)=0$ for $C_{n} i<0$. Hence, in the case of (i) or (ii), we should find the range of n with $C_{n} i \geq 0$ as $i=n-1$, and then $u^{(2 n)}$ exists only in such situation.

Here

$$
C_{n i}=(p+1)(n-i)-2 n+1
$$

Let

$$
C_{n(n-1)}=(p+1)(n-(n-1))-2 n+1 \geq 0
$$

then we get $n \leq \frac{p}{2}+1$. Since n is an integer, we have $n \leq\left[\frac{p}{2}\right]+1$.
Now $u^{(2 n)}$ exists for $n \leq\left[\frac{p}{2}\right]+1$ in the case (i) or (ii); thus we obtain that $u \in C^{[p]+2}(0 . T)$.

Example 2.1. To draw the graphs of $u^{(n)}$ for $p \in \mathbb{Q}-\mathbb{N}$ is not easy, so we choose a special index $p=\frac{7}{3}$.

We consider on the properties of the solution u to the case that $E(0)>0$ for the equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}=u^{\frac{7}{3}} \tag{2.5}\\
u(0)=-1, u^{\prime}(0)=1
\end{array}\right.
$$

Fig. 2.1.

Fig. 2.2. Graphs of u in solid, u^{\prime} in dash, $u^{\prime \prime}$ in dots.

Because the solution of equation (2.5) can not be solved explicitly, we solve this ode numerically and obtain the graphs of $u, u^{\prime}, u^{\prime \prime}, u^{(3)} u^{(4)}$ and $u^{(5)}$ below by Maple.

Fig. 2.3. Graphs of $u^{(3)}$ in solid, $u^{(4)}$ in dash, $u^{(5)}$ in dots.
By Theorem 3, we know that $u \in C^{4}(0, T)$. With the help of graph with maple, we find the $t_{0} \sim 1.4$ of the null point of u (Figure 2.2) and the $u^{(5)}$ is close in infinite as t approach to 1.4 (Figure 2.3). Hence we know that $u^{(5)}(t)$ does not exist for $t=t_{0}$ by the graph. The blow-up rate of $u^{(n)}$ is increasing in n. It will be illustrate in the next section .

3. The Blow-up Rate and Blow-up Constant

Finding out the blow-up rate and blow-up constant of $u^{(n)}$ of the equation (0.1) given as follows is our main result, we have the following results:

Theorem 4. If u is the solution of the problem (0.1) with one of the following properties that
(i) $E(0)<0$ or
(ii) $E(0)=0, a^{\prime}(0)>0$ or
(iii) $E(0)>0, a^{\prime}(0)^{2}>4 a(0) E(0)$ or
(iv) $E(0)>0, a^{\prime}(0)^{2}=4 a(0) E(0), u_{1}>0$ or
(v) $E(0)>0, a^{\prime}(0)^{2}=4 a(0) E(0), u_{1}<0$ and p is odd.

Then the blow-up rate of $u^{(2 n)}$ is $\frac{2}{p-1}+2 n$, and the blow-up constant of $u^{(2 n)}$ is $\mid E_{n 0}$ $\left.\left(\frac{\sqrt{2(P+1)}}{p-1}\right)^{\frac{2}{p-1}+2 n} \right\rvert\,$; that is, for $n \in \mathbb{N}, m \in\{1,2,3,4,5,6\}$

$$
\begin{aligned}
& \lim _{t \rightarrow T_{m}^{*}} u^{(2 n)}\left(T_{m}^{*}-t\right)^{\frac{2}{p-1}+2 n} \\
= & (\pm 1)^{C_{n 0}} E_{n 0}\left(\frac{\sqrt{2(P+1)}}{p-1}\right)^{\frac{2}{p-1}+2 n}:=K_{2 n}
\end{aligned}
$$

The blow-up rate of $u^{(2 n+1)}$ is $\frac{2}{p-1}+2 n+1$, and the blow-up constant of $u^{(2 n+1)}$ is $\left|E_{n 0} C_{n 0} \sqrt{\frac{2}{p+1}}\left(\frac{\sqrt{2(P+1)}}{p-1}\right)^{\frac{2}{p-1}+2 n+1}\right| ;$ that is, for $n \in \mathbb{N}, m \in\{1,2,3,4,5,6\}$

$$
\begin{align*}
& \lim _{t \rightarrow T_{m}^{*}} u^{(2 n+1)}\left(T_{m}^{*}-t\right)^{\frac{2}{p-1}+2 n} \\
= & (\pm)^{C_{n 0}} E_{n 0} C_{n 0} \sqrt{\frac{2}{p+1}}\left(\frac{\sqrt{2(P+1)}}{p-1}\right)^{\frac{2}{p-1}+2 n+1}:=K_{2 n+1} \tag{3.2}
\end{align*}
$$

where

$$
\begin{aligned}
C_{n 0} & =(p-1) n+1 \\
E_{n 0} & =\Pi_{i=0}^{n-1}\left[\frac{2(p-1)^{2} i^{2}+(p-1) i}{p+1}+(p-1) i+1\right] .
\end{aligned}
$$

Proof. Under condition (i), $E(0)<0, a^{\prime}(0) \geq 0$ by (0.7) and (0.8), we obtain that

$$
\begin{equation*}
\int_{0}^{J(t)} \frac{1}{T_{1}^{*}-t} \frac{d r}{\sqrt{k_{1}+E(0) r^{k_{2}}}}=\frac{p-1}{2} \quad \forall t \geq 0 \tag{3.3}
\end{equation*}
$$

Using lemma 3 and (3.3) we have

$$
\lim _{t \rightarrow T_{1}^{*}} \frac{1}{\sqrt{k_{1}}} \frac{J(t)}{T_{1}^{*}-t}=\frac{p-1}{2} ; \quad(\text { see appendix A.1) }
$$

in other words,

$$
\begin{equation*}
\lim _{t \rightarrow T_{1}^{*}} a(t)\left(T_{1}^{*}-t\right)^{\frac{4}{p-1}}=\left(\frac{2}{(p-1) \sqrt{k_{1}}}\right)^{\frac{4}{p-1}} \tag{3.4}
\end{equation*}
$$

and then

$$
\begin{equation*}
\lim _{t \rightarrow T_{1}^{*}} u(t)\left(T_{1}^{*}-t\right)^{\frac{2}{p-1}}= \pm\left(\frac{2}{(p-1) \sqrt{k_{1}}}\right)^{\frac{2}{p-1}} \tag{3.5}
\end{equation*}
$$

Here $C_{n i}=p+(n-1-i)(p+1)-2(n-1)$, hence we have $C_{n}{ }_{i}>C_{n j}$ as $i<j$.
By (2.1) and (3.5), we obtain

$$
\begin{aligned}
& \lim _{t \rightarrow T_{1}^{*}} u^{(2 n)}\left(T_{1}^{*}-t\right)^{\frac{2}{p-1} \times C_{n 0}} \\
& =(\pm 1)^{C_{n 0}} E_{n 0}\left(\frac{2}{(p-1) \sqrt{k_{1}}}\right)^{\frac{2}{p-1} \times C_{n 0}}
\end{aligned}
$$

Since $\frac{2}{p-1} \times C_{n 0}=\frac{2}{p-1}+2 n$ and $k_{1}=\frac{2}{p+1}$, so we get (3.1) for $m=1$.
By (0.6), we find that

$$
\begin{equation*}
\lim _{t \rightarrow T_{1}^{*}} J^{\prime}(t)=-\frac{p-1}{\sqrt{2 p+2}} \tag{3.6}
\end{equation*}
$$

and

$$
\frac{2 \sqrt{2}}{\sqrt{p+1}}=\lim _{t \rightarrow T_{1}^{*}}\left(a(t)\left(T_{1}^{*}-t\right)^{\frac{4}{p-1}}\right)^{-\frac{p-1}{4}-1} \cdot \lim _{t \rightarrow T_{1}^{*}} a^{\prime}(t)\left(T_{1}^{*}-t\right)^{\frac{4}{p-1} \times \frac{p+3}{4}}
$$

Together (3.4) and (2.2) we obtain that

$$
\begin{equation*}
\lim _{t \rightarrow T_{1}^{*}} u^{\prime}(t)\left(T_{1}^{*}-t\right)^{\frac{2}{p-1}+1}= \pm \sqrt{k_{1}}\left(\frac{2}{(p-1) \sqrt{k_{1}}}\right)^{\frac{2}{p-1}+1} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{aligned}
& \lim _{t \rightarrow T_{1}^{*}} u^{(2 n+1)}\left(T_{1}^{*}-t\right)^{\frac{2}{p-1} C_{n 0}+1} \\
= & \lim _{t \rightarrow T_{1}^{*}} \sum_{i=0}^{n-1} E_{n}{ }_{i} C_{n}{ }_{i} u^{C_{n} i^{-1}} \cdot u^{\prime} \cdot\left(T_{1}^{*}-t\right)^{\frac{2}{p-1} C_{n 0}+1} \\
= & \lim _{t \rightarrow T_{1}^{*}} E_{n 0} C_{n 0} u^{C_{n 0}-1} \cdot u^{\prime} \cdot\left(T_{1}^{*}-t\right)^{\frac{2}{p-1} C_{n 0}+1} \\
= & \lim _{t \rightarrow T_{1}^{*}} E_{n 0} C_{n 0} u^{C_{n 0}-1} \cdot\left(T_{1}^{*}-t\right)^{\frac{2}{p-1} C_{n 0}-1} \cdot u^{\prime} \cdot\left(T_{1}^{*}-t\right)^{\frac{2}{p-1}+1} \\
= & \lim _{t \rightarrow T_{1}^{*}}(\pm)^{C_{n 0}} E_{n 0} C_{n 0} \sqrt{k_{1}}\left(\frac{2}{(p-1) \sqrt{k_{1}}}\right)^{\frac{2}{p-1} C_{n 0}+1}
\end{aligned}
$$

thus (3.2) for $m=1$ is proved.
For $E(0)<0, a^{\prime}(0)<0$, by (0.10) we have

$$
\begin{equation*}
\int_{0}^{J(t)} \frac{d r}{\left(T_{2}^{*}-t\right) \sqrt{k_{1}+E(0) r^{k_{2}}}}=\frac{p-1}{2} \quad \forall t \geq t_{0} \tag{3.8}
\end{equation*}
$$

Using lemma 3, (3.8) and (2.1), therefore we gain the estimate (3.1) for $m=2$, and by (0.9) we get the estimate (3.2) for $m=2$. (see appendix A.2)

Under (ii), $E(0)=0, a^{\prime}(0)>0$, inducing (0.12), we have

$$
\begin{equation*}
a(t)=a(0)^{\frac{p+3}{p-1}}\left(\frac{p-1}{4} a^{\prime}(0)\left(T_{3}^{*}-t\right)\right)^{-\frac{4}{p-1}} \quad \forall t \geq 0 . \tag{3.9}
\end{equation*}
$$

In view of (3.9) and (2.1), we get the estimate (3.1) for $m=3$.

Using (0.12), we also obtain

$$
J^{\prime}(t)=J^{\prime}(0) \quad \forall t \geq 0
$$

and

$$
\lim _{t \rightarrow T_{1}^{*}} a(t)^{-\frac{p-1}{4}-1} a^{\prime}(t)=-\frac{p-1}{4} a(0)^{-\frac{p-1}{4}-1} a^{\prime}(0) .
$$

By (3.9) and (2.2), the estimate (3.2) for $m=3$ is completely proved.
Under (iii) or (iv) or (v), the proofs of estimates (3.1) and (3.2) for $m=4,5,6$ are similar to the above arguments, we omit the argumentations.

Theorem 5. Suppose that u is the solution of the problem (0.1) with $E(0)>0$ and one of the following properties holds
(i) $a^{\prime}(0)^{2}<4 a(0) E(0)$ and $a^{\prime}(0) \leq 0$.
(ii) $a^{\prime}(0)^{2}<4 a(0) E(0)$ and $a^{\prime}(0)>0$.
(iii) $a^{\prime}(0)^{2}=4 a(0) E(0)$ and $u_{1}<0, p$ is even. Then we have

$$
\begin{equation*}
\lim _{t \rightarrow z_{1}} u^{(2 n)}(t)\left(z_{m}-t\right)^{-C_{n(n-1)}}=(\pm)^{C_{n(n-1)}} E_{n(n-1)} E(0)^{\frac{C_{n(n-1)}}{2}} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow z_{1}} u^{(2 n+1)}(t)\left(z_{m}-t\right)^{-C_{n(n-1)}+1}=E_{n(n-1)} C_{n(n-1)} E(0)^{C_{n(n-1)}-1} \tag{3.11}
\end{equation*}
$$

for $n \in \mathbb{N}, m \in\{1,2,3\}$, where z_{m} is the null point (zero) of u and

$$
\begin{aligned}
& C_{n(n-1)}=p-2 n+2 \\
& E_{n(n-1)}=\Pi_{i=0}^{n-1}(p-2 i+2)(p-2 i+1) E(0)^{n-1}
\end{aligned}
$$

Proof. Under (i) using (0.19) and (0.20) we get

$$
\begin{equation*}
\lim _{t \rightarrow z_{1}} u(t)\left(z_{1}-t\right)^{-1}= \pm E(0)^{\frac{1}{2}} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow z_{1}} u^{\prime}(t)\left(z_{1}-t\right)^{-1}=\mp E(0)^{\frac{1}{2}} \tag{3.13}
\end{equation*}
$$

By (2.1) and (3.12) we obtain that

$$
\begin{aligned}
& \lim _{t \rightarrow z_{1}} u^{(2 n)}\left(z_{1}-t\right)^{-C_{n(n-1)}} \\
= & \lim _{t \rightarrow z_{1}} \sum_{i=0}^{n-1} E_{n i} u^{C_{n i}}\left(z_{1}-t\right)^{-C_{n(n-1)}} \\
= & \lim _{t \rightarrow z_{1}} E_{n(n-1)} u^{C_{n(n-1)}}\left(z_{1}-t\right)^{-C_{n(n-1)}} \\
= & (\pm 1)^{C_{n(n-1)}} E_{n(n-1)} E(0)^{\frac{C_{n(n-1)}}{2}} .
\end{aligned}
$$

Therefore, (3.10) for $m=1$ is proved.
From (2.2), (3.12) and (3.13), we obtain

$$
\begin{aligned}
& \lim _{t \rightarrow z_{1}} u^{(2 n+1)}\left(z_{1}-t\right)^{-C_{n(n-1)}+1} \\
= & \lim _{t \rightarrow z_{1}} \sum_{i=0}^{n-1} E_{n i} C_{n i} u^{C_{n i}-1} u^{\prime}\left(z_{1}-t\right)^{-C_{n(n-1)}+1} \\
= & \lim _{t \rightarrow z_{1}} E_{n(n-1)} C_{n(n-1)} u^{C_{n(n-1)}-1} u^{\prime}\left(z_{1}-t\right)^{-C_{n(n-1)}+1} \\
= & E_{n(n-1)} C_{n(n-1)} E(0)^{C_{n}(n-1)} .
\end{aligned}
$$

Thus, (3.11) for $m=1$ is obtained.
Under the (ii) or (iii), the proofs of estimations (3.10) and (3.11) for $m=2,3$ are similar to the above arguments, we do not bother them again.

Appendix Proof of Theorem 4

A. 1 Lemma

Lemma A1. If $\int_{0}^{J(t)} \frac{1}{T^{*}-t} \frac{d r}{\sqrt{k_{1}+E(0) r^{k_{2}}}}=\frac{p-1}{2} \quad$ for each $t \geq 0$, then

$$
\lim _{t \rightarrow T^{*}} \frac{1}{\sqrt{k_{1}}} \frac{J(t)}{T^{*}-t}=\frac{p-1}{2}
$$

Proof. Let $r=\left(T^{*}-t\right) s$, then using lemma 3, we conclude

$$
\begin{aligned}
& \lim _{t \rightarrow T^{*}} \int_{0}^{\frac{J(t)}{\left(T^{*}-t\right)}} \frac{d s}{\sqrt{k_{1}+E(0)\left(T^{*}-t\right)^{k_{2}} s^{k_{2}}}} \\
& =\frac{1}{\sqrt{k_{1}}} \int_{0}^{\lim _{t \rightarrow T^{*}}} \int_{\left(\frac{J(t)}{\left(T^{*}-t\right)}\right.}^{d s=\lim _{t \rightarrow T^{*}} \frac{1}{\sqrt{k_{1}}} \frac{J(t)}{T^{*}-t} .}
\end{aligned}
$$

A.2. Lemma

Lemma A2. If u is the solution of the problem (0.1) with $E(0)<0$ and $a^{\prime}(0)<0$, then (3.1) and (3.2) hold for $m=2$.

Proof. By lemma A1.

AcKNOWLEDGMENT

We want to thank Prof. Tsai Long-Yi and Prof. Klaus Schmitt for their continuous encouragement and their discussions of this work, and to Grand Hall for their financial support.

References

1. R. Bellman. Stability Theory of Differential Equation, McGraw-Hill Book Company. 1953.
2. M. R. Li, Nichtlineare Wellengleichungen 2. Ordnung auf beschrankten Gebieten, PhD-Dissertation Tubingen 1994.
3. M. R. Li, Estimation for The Life-span of solutions for Semi-linear Wave Equations. Proceedings of the Workshop on Differential Equations V., National Tsing-Hua University Hsinchu, Taiwan, Jan. 10-11, 1997,
4. M. R. Li, On the Differential Equation $u^{\prime \prime}=u^{p}$, Taiwanese Math. J., 9(1) (2005), 39-65.

Meng-Rong Li and Zing-Hung Lin
Department of Mathematic Sciences,
National Chengchi University,
Taipei 116, Taiwan, R.O.C.
E-mail: Liwei@math.nccu.edu.tw

