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Abstract

Diagnosability has played an important role in the reliability of multiprocessor systems. The strongly t-diagnosable system is
(t + 1) diagnosable except when all of the neighbors of a node are simultaneously faulty. In this paper, we discuss the in-depth
properties of diagnosability for t-regular and t-connected networks under the comparison model. We show that a t-regular and
t-connected multiprocessor system with at least 2t + 6 nodes, for t � 4, is strongly t-diagnosable under the comparison model if
the following two conditions hold: (1) the system is triangle free, and (2) there are at most t − 2 common neighbors for each pair
of distinct nodes in the system.
© 2007 Published by Elsevier B.V.
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1. Introduction

Fault tolerance is a fundamental consideration in the
design of a multiprocessor system. The degree of fault
tolerance of a multiprocessor system is closely bound
up with the reliability of this system. As the number
of processors in a multiprocessor system increases, the
complexity of the system can adversely affect its relia-
bility. To maintain reliability, the system should be able
to identify faulty nodes and replace them with fault-free
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ones. The process of finding faulty nodes is called the
diagnosis of the system, and the maximum number of
faulty nodes the system can identify is called its diag-
nosability.

Several different models of fault diagnosis have been
proposed in the literature [9–11]. In 1967, the Preparata,
Metze, and Chien (PMC) model was introduced for
system-level diagnosis in multiprocessor systems [11].
The PMC model was also used in [2,3,5,6,8,13]. Malek
and Maeng proposed the comparison model, also known
as the MM model [9,10]. The MM model sends the
same input (or task) from a node w to a pair of distinct
neighbors, u and ν, and then compares their responses.
The node w is called the comparator of nodes u and ν.
In a special version of the MM-model called the MM*-
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model, a comparison is performed by each processor for
each pair of distinct neighbors. Different comparators
can examine the same pair of nodes, and either the two
responses will be consistent, or they will disagree. The
goal of the comparison is to identify the faulty/fault-free
status of the nodes in the system. Using a comparison
model, Sengupta and Dahbura described a diagnosable
system and presented a polynomial algorithm to deter-
mine the set of all faulty nodes under the MM*-model
[12]. The MM*-model was employed in [1,2,4,7,14,15],
and this type of comparison model is studied here.

Identifying the degree of diagnosability for a sys-
tem is an important subject of the reliability of multi-
processor systems. In a given system, it is impossible
to determine whether a processor is fault-free or faulty
if all of its neighbors are faulty. Therefore, Lai et al.
[8] proposed a new measure of diagnosability in mul-
tiprocessor systems, which is strongly t-diagnosable. If
all of the neighbors of a processor in a t-diagnosable
system are not simultaneously faulty, the t + 1 faulty
node can be identified under the PMC model. This may
prove practical in real systems. In this paper, we discuss
the properties of strongly t-diagnosable for t-regular
and t-connected networks of N nodes with N � 2t + 6
and t � 4 under the comparison model, which will con-
tribute to the more precise identification of diagnosabil-
ity for multiprocessor systems.

The next section provides background and explains
the notations used in this paper. In Section 3, we de-
rive the strongly t-diagnosable network of a t-regular
and t-connected network under the comparison model.
Section 4 contains concluding remarks.

2. Preliminaries and notations

A multiprocessor system can be described as an
undirected graph G = (V ,E) whose the vertex set V

represents the set of processors and the edge set E rep-
resents the set of communication links. Assume that V ′
is a subset of V , the subgraph of G induced by V − V ′
is denoted as G − V ′. The neighbor set of a node ν is
defined as N(ν) = {u ∈ V | (u, ν) ∈ E}, moreover, the
neighbor set of a node ν in V ′ is denoted by NV ′(ν).
The connectivity of G is defined as κ(G) = min{|V ′| |
V ′ ⊆ V , and G − V ′ is not connected}. A graph G is
t-connected if κ(G) � t . It follows from Menger’s the-
orem that there exist t internally node-disjoint (abbre-
viated as disjoint) paths between any two distinct nodes
in a given t-connected graph.

A multigraph M = (V ,C) is usually applied to the
comparison scheme of the system, where V represents
the node set and C represents the labeled-edge set. The
following definitions [1,7,12] are useful in this paper.
Let (u, ν)w denote an edge labeled by w. In M , each
(u, ν)w ∈ C expresses that the nodes u and ν are com-
pared by w. The same pair of nodes may be compared
by distinct comparators, thus M is a multigraph. For
each (u, ν)w ∈ C, the result of comparing nodes u and ν

by w is denoted as r((u, ν)w) such that r((u, ν)w) = 0
if the outputs of u and ν agree, and r((u, ν)w) = 1
otherwise. If r((u, ν)w) = 0 and w is fault free, it is
apparent that both u and ν are fault free. Moreover, if
r((u, ν)w) = 1, there must exist at least one faulty node
among u, ν and w. If w is faulty, the results of the com-
parison would be unreliable because the exact status of
u and ν are unknown. The complete result of all com-
parisons, defined as a function s :C → {0,1}, is called
the syndrome of the diagnosis.

Given a subset F ⊆ V , if a syndrome s can arise
when all the nodes in F are faulty and all the nodes
in V − F are fault free, then F is said to be consis-
tent with s. A system is said to be diagnosable if there
is a unique F ⊆ V that is consistent with s for every
syndrome s. A system is called a t-diagnosable sys-
tem if the system is diagnosable as long as its num-
ber of faulty nodes is no greater than t . Let F be the
set of faulty nodes, then σ(F ) denote the set of syn-
dromes that could be produced under the occurrence
of F . Two distinct sets, S1, S2 ⊂ V , are said to be in-
distinguishable if and only if σ(S1) ∩ σ(S2) 	= ∅; oth-
erwise, S1 and S2 are said to be distinguishable. The
symmetric difference between S1 and S2 is defined as
S1�S2 = (S1 − S2) ∪ (S2 − S1).

The purpose of this study is to discuss the properties
of diagnosability for t-regular networks. The following
lemma and definition are useful for distinguishing two
sets in the comparison model, and will be used later to
prove a strongly t-diagnosable system under a compar-
ison model.

Lemma 1. (See [12].) For any S1, S2 where S1, S2 ⊂ V

and S1 	= S2, (S1, S2) is a distinguishable pair if and
only if at least one of the following conditions is satisfied
(as illustrated in Fig. 1):

(1) ∃u,w ∈ V − S1 − S2, and ∃ν ∈ S1�S2 such that
(u, ν)w ∈ C,

(2) ∃u, ν ∈ S1 − S2, and ∃w ∈ V − S1 − S2, such that
(u, ν)w ∈ C,

(3) ∃u, ν ∈ S2 − S1, and ∃w ∈ V − S1 − S2, such that
(u, ν)w ∈ C.

Definition 1. (See [8].) A system G is strongly t-di-
agnosable if the following two conditions hold:
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Fig. 1. Three distinguishable conditions under the comparison model.

(1) G is t-diagnosable and
(2) For any two distinct subsets S1, S2 ⊂ V , with |Si | �

t + 1, i = 1,2, either
(a) (S1, S2) is a distinguishable pair or
(b) (S1, S2) is an indistinguishable pair and there

exists a node ν ∈ V such that N(ν) ⊆ S1 and
N(ν) ⊆ S2.

According to the above definition, it is apparent that
a (t + 1)-diagnosable system is strongly t-diagnosable
and it is naturally “stronger” than a t-diagnosable
system. The strongly t-diagnosable system is almost
(t + 1)-diagnosable under the PMC model. It is only
not (t + 1)-diagnosable when all of the neighbors of
a node ν are simultaneously faulty [1,8]. However, we
are interested in systems that are t-diagnosable rather
than (t + 1)-diagnosable. In the remainder of this pa-
per, we will focus our attention on the properties of
strongly t-diagnosable for the t-regular and t-connected
networks.

3. Strongly t-diagnosable on regular networks

In this section, we will show that a t-regular and t-
connected network with at least 2t + 6 nodes is strongly
t-diagnosable under the comparison model if the fol-
lowing two conditions are both satisfied: (1) the system
is triangle free, and (2) each pair of distinct nodes have
at least two neighbors that are not in common. The con-
tent of Lemma 2 describes a sufficient condition for a
t-diagnosable system.

Lemma 2. (See [1].) Let G be a t-regular and t-con-
nected network with N nodes and t > 2. G is t-diag-
nosable under the comparison model if N � 2t + 3.

Based on Lemma 2, now we do not need to consider
the t-regular and t-connected networks with N < 2t +3
nodes. Moreover, we study only the networks of t-re-
gular and t -connected with t � 4 in the following dis-
cussion.

Then, we first discuss the networks of 4-regular
and 4-connected with N nodes such that 2t + 3 �
Fig. 2. An example of 4-connected and not strongly 4-diagnosable,
with 11 nodes.

Fig. 3. An example of 4-connected and not strongly 4-diagnosable,
with 12 nodes.

N � 2t + 5. We classify the networks of 4-regular
and 4-connected with N nodes into three categories:
(1) N = 2t + 3 = 11, (2) N = 2t + 4 = 12, and (3) N =
2t +5 = 13, and give an example for each category to il-
lustrate that this network is not a strongly t-diagnosable
system.

The graph shown in Fig. 2 is a 4-regular and
4-connected network with N = 2t + 3 = 11 nodes. It
is a triangle free network. Let S1 = {2,3,5,9,11} and
S2 = {4,6,7,9,11}. According to Lemma 1 and Defini-
tion 1, it can be simply determined that the pair (S1, S2)

is indistinguishable, moreover, and this network is not
strongly 4-diagnosable under the comparison model.

Then we consider the second category of 4-regular
and 4-connected networks, which have N = 2t + 4 =
12 nodes. Fig. 3 is a 4-regular and 4-connected net-
work with 12 nodes that is triangle free. Let S1 =
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Fig. 4. An example of 4-connected and not strongly 4-diagnosable
network, with 13 nodes.

{1,5,7,9,11} and S2 = {1,2,3,7,11}. Similarly, the
pair (S1, S2) is indistinguishable, and this network
is not strongly 4-diagnosable under the comparison
model. Next, we consider the third category. Fig. 4 is a
4-regular and 4-connected network with N = 2t + 5 =
13 nodes and is triangle free. Let S1 = {1,5,6,8,12}
and S2 = {1,3,8,10,12}. Similarly, the pair (S1, S2)

is indistinguishable, and this network is not strongly
4-diagnosable under the comparison model.

Thus, we have showed that the networks of 4-regular
and 4-connected with N nodes, for 2t +3 � N � 2t +5,
are not strongly 4-diagnosable under the comparison
model. Then, in the remaining discussion of this sec-
tion, we will focus our attention on the properties of
strongly t-diagnosable for the t-regular and t-connected
networks with N nodes, where N � 2t + 6 and t � 4.
To reduce the complexity of proof, we distinguish the
following two lemmas:

Lemma 3. Given a t-regular and t-connected network
G with N � 2t + 6 nodes for t � 4. Let with 0 � |S1 ∩
S2| � t − 1 and |Si | = t + 1 for i = 1,2. (S1, S2) is a
distinguishable pair under the comparison model if G

is triangle free.

Proof. Let V ′′ = S1 ∪ S2 and V ′ = V − V ′′, where
V ′ may not be connected. And we can observe that
|V ′′| = 2(t + 1) − |S1 ∩ S2| � t + 3 and |S1�S2| =
|V ′′ − S1 ∩ S2| � 4. We first consider that the subgraph
induced by V ′ contains a connected component R with
cardinality of at least 2. We thus let w be any node in R

and ν be any node in S1�S2. Because G is t-connected,
it follows that there exist t disjoint paths from w to ν.
However, there exist at most t − 1 disjoint paths from w

to ν via the nodes in S1 ∩ S2 because |S1 ∩ S2| � t − 1.
Therefore, there exists at least one path from w to ν such
that no node of this path belongs to S1 ∩ S2. Because w

is contained in nontrivial component R, we can find an-
other node u in R, which is adjacent to w. Hence, there
exist u,w ∈ V − S1 − S2 and ν ∈ S1�S2 such that both
u and ν can be compared by w. Then, the condition (1)
in Lemma 1 is satisfied and we conclude that (S1, S2) is
a distinguishable pair.

Next, we consider the condition that all the con-
nected components of the subgraph induced by V ′ are
isolated nodes. Thus, all the t neighbors of each node
of V ′ are contained in V ′′ = S1 ∪ S2. In this condition,
(S1, S2) is a distinguishable pair if and only if condi-
tion (2) or (3) in Lemma 1 is satisfied. Considering the
cardinality of S1 ∩ S2, we deal with the following three
cases:

Case 1. 0 � |S1 ∩ S2| � t − 3.
Because 0 � |S1 ∩ S2| � t − 3 and t � 4, each node

of V ′ must have at least three neighbors in S1�S2 such
that two of them are concurrently contained in either
S1 − S2 or S2 − S1. Thus, either condition (2) or (3) in
Lemma 1 is satisfied, and (S1, S2) is a distinguishable
pair.

Case 2. |S1 ∩ S2| = t − 2.
In this case, |V ′′| = 2(t + 1) − |S1 ∩ S2| = t + 4 and

|V ′| = N − |V ′′| � t + 2. Assume that (S1, S2) is an in-
distinguishable pair. Therefore, conditions (2) and (3) of
Lemma 1 cannot be satisfied, implying that each node of
V ′ has at most one neighbor in S1 − S2 and at most one
neighbor in S2 −S1, respectively. Thus, each node of V ′
must be connected to at least t − 2 neighbors in S1 ∩ S2
because the degree of node is t . Therefore, we can find
at least (t + 2)(t − 2) = t2 − 4 edges which are incident
from V ′ to S1 ∩ S2. However, the number of nodes in
S1 ∩ S2 is t − 2 and the degree of node is t , thus, there
must be no more than t2 − 2t edges incident to S1 ∩ S2.
For t � 4, we have t2 − 4 > t2 − 2t , which is a contra-
diction. Consequently, (S1, S2) is a distinguishable pair.

Case 3. |S1 ∩ S2| = t − 1.
It follows that |V ′′| = 2(t + 1) − |S1 ∩ S2| = t + 3

and |V ′| = N − |V ′′| � t + 3. Assume that (S1, S2) is
an indistinguishable pair. Thus, conditions (2) and (3)
of Lemma 2 cannot be satisfied. Using the same argu-
ment as in Case 2, we can find at least (t + 3)(t − 2) =
t2 + t − 6 edges incident from V ′ to S1 ∩ S2. Similarly,
because |S1 ∩ S2| = t − 1 and the degree of node is t ,
there must be no more than t2 − t edges incident to
S1 ∩ S2. Thus, we have t2 + t − 6 > t2 − t for t � 4,
which is a contradiction. Hence, (S1, S2) is a distin-
guishable pair, completing the proof of the lemma. �
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Lemma 4. Given a t-regular and t-connected network
G with N � 2t + 6 nodes for t � 4. Let S1, S2 ⊂ V with
|S1 ∩ S2| = t and |Si | = t + 1 for i = 1,2. (S1, S2) is a
distinguishable pair under the comparison model if the
following two conditions hold:

(1) G is triangle free.
(2) Each pair of distinct nodes u and ν of G has

|N(u) ∩ N(ν)| � t − 2.

Proof. Let V ′′ = S1 ∪ S2 and V ′ = V − V ′′. Accord-
ing to the assumption of |S1 ∩ S2| = t and |S1| = |S2| =
t + 1, we have |V ′′| = t + 2. Moreover, there are just
two nodes, denoted as ν1 and ν2, contained in S1�S2
such that ν1 ∈ S1 − S2 and ν2 ∈ S2 − S1. Considering
the three conditions of Lemma 1, it can be observed that
(S1, S2) is a distinguishable pair if and only if the con-
dition (1) in Lemma 1 holds. More precisely, (S1, S2)

is a distinguishable pair if and only if there exists one
nontrivial component R with |R| � 2 in the subgraph in-
duced by V ′ such that ν1 or ν2 is adjacent to some node
in R. We assume that all nodes in the subgraph induced
by V ′ are trivial components, and then we will show
that (S1, S2) is a distinguishable pair through proof by
contradiction.

If both N(ν1) and N(ν2) are contained in V ′′ (i.e.,
|NV ′(ν1)| = |NV ′(ν2)| = 0), combining with the fact of
|N(ν2)| = t = |N(ν2)|, |S1 ∩ S2| = t , and t � 4, it indi-
cates the following two conditions: (1) a triangle will be
produced if ν2 is a neighbor of ν1; and (2) if ν2 is not a
neighbor of ν1, all nodes of S1 ∩ S2 would be contained
in N(ν1) ∩ N(ν2). Therefore, it generates a contradic-
tion that there exists either |N(ν1) ∩ N(ν2)| > t − 2 or
a triangle. Thus, NV ′(ν1) and NV ′(ν2) cannot simulta-
neously be empty. The following cases are considered
according to the cardinality of NV ′(ν1), where the dis-
cussion for |NV ′(ν2)| can be treated similarly.

Case 1. There are t nodes in NV ′(ν1), that is,
|NV ′(ν1)| = t .

According to the assumption that two distinct nodes
have at most t − 2 common neighbors, i.e., |N(ν1) ∩
N(ν2)| � t − 2, we can observe that there exist at least
two nodes, say u1 and u2, in NV ′(ν1) − (NV ′(ν1) ∩
NV ′(ν2)). By the assumption that each node in the
subgraph induced by V ′ is a trivial component and
|S1 ∩ S2| = t , each of u1 and u2 has t − 1 neighbors
(except for ν1) in S1 ∩ S2, moreover, there exist at least
t − 2 common neighbors of u1 and u2 in S1 ∩ S2. To-
gether with the common neighbor ν1, the total number
of common neighbors of u1 and u2 is at least t − 1,
which is a contradiction with |N(u1) ∩ N(u2)| � t − 2.
Thus, there exists one nontrivial component in the sub-
graph induced by V ′, which is adjacent to ν1 or ν2 such
that (S1, S2) is a distinguishable pair.

Case 2. NV ′(ν1) is an empty set, that is, |NV ′(ν1)|
= 0.

Because |NV ′(ν1)| = 0, in this case all neighbors of
ν1 are contained in V ′′ = S1 ∪ S2. We first prove that
ν2 is not a neighbor of ν1. Assume that ν2 is a neigh-
bor of ν1, then all of the remaining t − 1 neighbors of
ν1 must be contained in S1 ∩ S2. Moreover, in order to
keep triangle free, all those t − 1 neighbors of ν1 in
S1 ∩ S2 would be not adjacent to ν2, and there exists at
most one feasible neighbor of ν2 in S1 ∩ S2. Therefore,
at least t − 2 neighbors of ν2 will be contained in V ′,
i.e., |NV ′(ν2)| � t − 2. Let ν+ be an arbitrary node in
NV ′(ν2), then ν+ has t − 1 neighbors in S1 ∩ S2 by our
assumption that all nodes in the subgraph induced by
V ′ are trivial components. Thus, there should exist at
least t − 2 common neighbors of ν+ and ν1 in S1 ∩ S2.
Together with one another common neighbor ν2, there
exist at least t − 1 common neighbors of ν+ and ν1,
which contradicts with the assumption that two nodes
have at most t − 2 common neighbors. Therefore, ν2 is
not a neighbor of ν1.

Thus, all the t neighbors of ν1 are contained in
S1 ∩S2 such that N(ν1) = S1 ∩S2. By the assumption of
|N(ν1) ∩ N(ν2)| � t − 2, ν2 should have at most t − 2
neighbors in S1 ∩ S2, in other words, there will exist
at least two neighbors of ν2 in V ′, i.e., |NV ′(ν2)| � 2.
Considering any two nodes in NV ′(ν2), these two nodes
are not adjacent to ν1 since ν1 does not has any neigh-
bor in V ′. Moreover, the two nodes are trivial compo-
nents in the subgraph induced by V ′ according to our
assumption, thus, each of them has t − 1 neighbors in
S1 ∩ S2. Because N(ν1) = S1 ∩ S2, there exist t − 1
common neighbors of ν1 and each of the two nodes
in S1 ∩ S2, which contradicts the assumption that two
distinct nodes have at most t − 2 common neighbors.
Therefore, there exists one nontrivial component in the
subgraph induced by V ′, which is adjacent to ν1 or ν2
such that (S1, S2) is a distinguishable pair.

Case 3. The number of neighbors of ν1 in V ′ is nei-
ther t nor 0, that is, 1 � |NV ′(ν1)| � t − 1.

Let ν+ be an arbitrary node in NV ′(ν1), all the t − 1
neighbors (except for ν1) of ν+ are contained in V ′′
because ν+ is assumed to be a trivial component in the
subgraph induced by V ′. Moreover, for keeping triangle
free, all these t − 1 neighbors of ν+ are not adjacent
to ν1. Hence, the feasible neighbors of ν1 in V ′′ are
those nodes which are not adjacent to ν+.

Now we discuss the following two cases, which are
distinguished by the number of common neighbors of
ν1 and ν2 in V ′.
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Fig. 5. The illustration for subcase 3.1 in Lemma 3.

Subcase 3.1. There exists no common neighbor of ν1
and ν2 in V ′.

In this condition, ν+ is not adjacent to ν2, thus all
the t − 1 neighbors (except for ν1) of ν+ are contained
in S1 ∩ S2, and ν1 has at most one feasible neighbor in
S1 ∩ S2. Note that ν1 would have one more neighbor
in V ′′ if ν2 is adjacent to ν1. Thus, ν1 has at most two
neighbors in V ′′ and has at least t − 2 neighbors in V ′.
Because t � 4, ν1 must have one neighbor, denoted as
ν++, other than ν+ in V ′. By assumption, ν++ is also
a trivial component in the subgraph induced by V ′. As
the same discussion about ν+, v++ has t − 1 neighbors
(except for ν1) in S1 ∩ S2, too. Because |S1 ∩ S2| = t ,
there obviously exist at least t − 2 common neighbors
of ν+ and ν++ in S1 ∩ S2, which is illustrated in Fig. 5.
Together with another common neighbor ν1, we have
|N(ν+)∩N(ν++)| � t − 1, which is a contradiction for
the assumption that two nodes have at most t − 2 com-
mon neighbors.

Subcase 3.2. There exists at least one common neigh-
bor of ν1 and ν2 in V ′.

Because there exists one common neighbor, in order
to keep triangle free, ν1 cannot be adjacent to ν2. Then
we consider the following two conditions.

(1) |NV ′(ν1) ∩ NV ′(ν2)| = 1.

Let ν+ be the unique common neighbor of ν1 and ν2
in V ′. The other t − 2 neighbors (except for ν1 and ν2)
of ν+ are all contained in S1 ∩S2 because ν+ is a trivial
component in the subgraph induced by V ′. Thus, the
number of feasible neighbors of ν1 in S1 ∩ S2 is at most
two. We first discuss the case that ν1 has two neighbors
in S1 ∩ S2. Then, all the other t − 3 neighbors (except
for ν+) of ν1 are contained in V ′, which are all assumed
Fig. 6. An illegal condition for subcase 3.2 in Lemma 3.

to be trivial in the subgraph induced by V ′. Therefore,
each of those t − 3 nodes must have t − 1 neighbors in
S1 ∩ S2. For keeping triangle free, all the t − 1 nodes in
S1 ∩S2 cannot be adjacent to ν1 (otherwise, a 3-cycle as
described in Fig. 5 would appear). However, there exist
at most t − 2 suchlike nodes in S1 ∩ S2. Thus, we get a
contradiction.

Next, we discuss the case that ν1 has exactly one
neighbor, say ν1+, in S1 ∩ S2. Since ν1 is not adjacent
to ν2, the remaining t − 1 neighbors of ν1 should be
all contained in V ′. Then, except for ν+, ν1 has t − 2
neighbors in V ′, which are assumed to be trivial in the
subgraph induced by V ′ and not adjacent to ν2 because
ν+ is the unique common neighbor of ν1 and ν2 in V ′.
Thus, for keeping triangle free, each of these t −2 nodes
must have t − 1 neighbors in (S1 ∩ S2) − {v1+}, i.e.,
all of the t − 1 nodes in (S1 ∩ S2) − {v1+} are their
common neighbors, which is a contradiction to the as-
sumption that two distinct nodes have at most t − 2
common neighbors.

(2) 2 � |NV ′(ν1) ∩ NV ′(ν2)| � t − 2.

Let nodes ν+ and ν++ be two arbitrary nodes in
NV ′(ν1)∩NV ′(ν2). Obviously, each of ν+ and ν++ has
t − 2 neighbors (other than ν1 and ν2) in S1 ∩ S2 since
it is assumed to be trivial in the subgraph induced by
V ′. Suppose that the number of common neighbors of
ν+ and ν++ in S1 ∩ S2 is at least t − 3. Then, together
with the other two common neighbors ν1 and ν2, there
exist at least t − 1 common neighbors of ν+ and ν++,
which would violate the assumption that two nodes have
at most t − 2 common neighbors. Hence, we conclude
that ν+ and ν++ have at most t − 4 common neighbors
in S1 ∩ S2.
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Therefore, each node in S1 ∩S2 must be a neighbor of
ν+ or a neighbor of ν++. To keep triangle free, all nodes
of S1 ∩S2 must be not adjacent to ν1. Because ν2 is not
adjacent to ν1, all neighbors of ν1 should be contained
in V ′, i.e., |NV ′(ν1)| = t , which is a contradiction for
1 � |NV ′(ν1)| � t − 1. Hence, there exists a nontrivial
component in the subgraph induced by V ′, which is ad-
jacent to ν1 or ν2 such that (S1, S2) is a distinguishable
pair, completing the proof of this lemma. �

By Lemmas 3 and 4, we derive the following theo-
rem about the property of strongly t-diagnosable for a t-
regular and t-connected network G with N nodes where
N � 2t + 6 and t � 4 under the comparison model.

Theorem 1. For t � 4, given a t-regular and t-connec-
ted network G with N � 2t + 6 nodes, G is strongly
t-diagnosable under the comparison model if the fol-
lowing conditions are satisfied:

(1) G is triangle free.
(2) Each pair of distinct nodes u and ν of G have

|N(u) ∩ N(ν)| � t − 2.

Proof. We will show that both the two conditions of
Definition 1 are satisfied to complete the proof of this
theorem. Let S1, S2 ⊂ V with 0 � |S1 ∩ S2| � t and
|Si | � t + 1 for i = 1,2. It follows from Lemma 2 that
G is t-diagnosable. Thus, condition (1) of Definition 1
holds.

Because G is t-diagnosable and not (t + 1)-diagno-
sable, it is apparent that (S1, S2) is a distinguishable
pair for |Si | � t , i = 1,2, and 0 � |S1 ∩ S2| � t − 1.
Moreover, it follows from Lemmas 3 and 4 that (S1, S2)

is a distinguishable pair for |Si | = t + 1, i = 1,2, and
0 � |S1 ∩ S2| � t . Hence, condition 2(a) of Definition 1
is satisfied.

Now, let ν be an arbitrary node in V . Assume that
S1 = N(ν) ∪ v and S2 = N(ν), then we have |S1| =
t + 1, |S2| = t , and |S1 ∩ S2| = t . Therefore, there ex-
ists one node ν ∈ V with N(ν) ⊆ S1 and N(ν) ⊆ S2
such that (S1, S2) is an indistinguishable pair. The con-
dition 2(b) of Definition 1 is satisfied. Therefore, the
theorem holds. �
4. Concluding remarks

In the field of diagnosability, the comparison model
is a well-known and practical fault diagnosis model.
Identifying the degree of diagnosability for a system un-
der the comparison model is an important subject of the
reliability of multiprocessor systems. In this paper, we
studied the properties of the strongly t-diagnosable and
proved that a t-regular and t-connected multiprocessor
system with at least 2t + 6 nodes, for t � 4, is strongly
t-diagnosable under the comparison model if the fol-
lowing two conditions hold: (1) the system is triangle
free, and (2) there are at most t − 2 common neighbors
for each pair of distinct nodes in the system. Such re-
sults should be useful in the design of a fault-tolerant
multiprocessor system and be contributive to the inves-
tigation of reliability of the systems.
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