
ORIGINAL ARTICLE

Comments on “enhancement of an efficient
liveness-enforcing supervisor for flexible
manufacture systems”

Daniel Y. Chao

Received: 1 May 2011 /Accepted: 1 September 2011 /Published online: 23 September 2011
# Springer-Verlag London Limited 2011

Abstract Region theory can synthesize maximally permissive
supervisors by solving a set of inequalities based on the
marking/transition-separation instances (MTSIs). It is infeasible
to solve these inequalities for either a sizable net or a small net
with a sizable initial marking. Huang et al. [1] propose novel
crucial MTSIs to reduce the number of MTSIs. Experimental
results show that the proposed control policy is the most
efficient algorithm among the closely related approaches. One
example shows that it not only reaches all live states but also
employs fewer control arcs than that by Li et al. Huang et al.
offer no hints on why it employs fewer control arcs. This
paper develops theory to explain the physics behind.

1 Introduction

utilized as much as possible. This leads to strong competition
for resources among process. Consequently, deadlocks occur
due to processes holding resources mutually waiting for others
to release their resources. Deadlock prevention [1–16] adds
monitors to problematic siphons to prevent them from
becoming insufficiently marked.

Uzam and Zhou [2, 3] apply region analysis to a well-
known S3PR (systems of simple sequential processes with
resources) in Fig. 1. The benchmark reaches 26,750 states,
where 21,581 are legal, i.e., either good or dangerous states

(i.e., boundary states to reach forbidden regions). There are
5,299 elements in the set of marking/transition-separation
instances (MTSI) denoted by Ω. This implies that 5,299 LPPs
(linear programming problems) have to be solved to find an
optimal liveness-enforcing supervisor with 21,581 reachable
states in the controlled system. However, |Ω| (cardinality of
Ω) grows exponentially with respect to the size of a plant
model. It is clearly infeasible to solve |Ω| LPPs for either a
sizable net or a small net with a large initial marking.

They further propose an iterative approach [4]. At each
iteration, a first-met bad marking (FBM) is singled out from
the reachability graph of a given Petri net model. The
objective is to prevent this marking from being reached via
a place invariant of the Petri net. A well-established
invariant-based control method is used to derive a control
place. This process is carried out until the net model
becomes live. The proposed method is generally applicable,
easy to use, effective, and straightforward although its off-
line computation is of exponential complexity. Huang et al.
apply the FBM method to a well-known S3PR to achieve a
near maximumally permissive control policy (21,562
states). The more FBM, the more monitors and control
arcs will be added. The benchmark above requires more
monitors and arcs than the one in [5], where several
monitors using the FBM method are lumped into one.

Li et al. [5] propose a two-stage policy as described below.
In the first stage, a monitor is added for each elementary
siphon based on the method in [6, 13]. Next, the controlled
net is still with some dead marking, and they utilize the
theory of regions to control the deadlock problem. An MTSI
is associated with each illegal or forbidden marking. It states
the MTSIs play a guard role to prevent all possible markings
from being entered into the dead zone. However, quite a few
of the equations must be solved by the MTSI stage [5]. The
resulting model is maximally permissive.
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Deadlock prevention

In an FMS, a set of processes share a set of costly resources. To
be competitive and save the cost, these resources must be



Huang et al. [1] propose novel crucial MTSIs (CMTSIs)
to reduce the number of MTSIs and hence the computation
burden. In addition, the number of control arcs is fewer.
Experimental results show that the proposed control policy
is the most efficient algorithm among the closely related
approaches. Furthermore, the resulting model remains
maximally permissive with no redundant monitors. It is
quite time-consuming to remove redundant monitors using
the method in [10]. However, Huang et al. offer no hints on
why it employs fewer control arcs.

Intuitively fewer MTSI corresponds to fewer forbidden
markings and hence, fewer control arcs are employed as
mentioned earlier. However, both models (Huang et al. [1]
and Li et al. [5]) employ the same number of monitors and
are maximally permissive. This paper develops a new
theory to explain the physics behind.

To shorten the paper, we assume the reader is familiar
with basic terminologies of Petri nets in [6].

2 Formal derivation

We first give an intuition as to why fewer control arcs are
employed in [1] followed by an example and a theory to
explian it in more detail. In the sequel, we restrict marking
to the set of operation places as in [4] using the FBM
approach.

2.1 Intuitive explanation

The FBM method adds a monitor for each FBM. There may
be a number of FBM for a siphon, and each one needs a
monitor. If one lumps these monitors into a single one,
fewer control places and arcs can be employed. However,
the modified (called controller) region [V] ([V] plus V forms
a P-invariant [17]) is larger (than that of marked operation
places) and affects the uncontrolled model more; hence it
reaches fewer states. The MTSI method considers all FBM
while the CMTSI considers only a few equivalently
lumping several FBM into the critical one. This roughly
explains why the CTMSI method employs fewer arcs.

For the benchmark in Fig. 1, the FBM method by Uzam
et al. results in the controlled model in Table 1. If one
lumps V 1
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model reaches fewer (21,363) [16] states than the FBM one
(21,562) in [4], but with 11 monitors and 54 control arcs
fewer than 19 monitors and 120 control arcs reported in [8].

2.2 Example from [1]

The second example from [1] is shown in Fig. 2. Using the
two-stage policy by Li et al., add monitor (places VS2, VS3,
and VS4) in the first stage for each elementary siphon. The
partially controlled net is called (N2L1, M0).
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It is worth to mention that eight MTSIs are found. It
states the MTSIs play a guard role to prevent all possible
markings from being entered into the dead zone. However,
quite a few of the equations must be solved by the MTSI
stage [5]. Huang et al. [1], however, only employs one
CMTSI to find the final controlled model, which is much
better than the above eight sets of MTSIs required by Li et
al. More MTSI results in more refined controlled model and
hence requires more control arcs. Theoretically, the CMTSI
should employ fewer monitors than the MTSI method. But
both methods employ six monitors. The next subsection
will uncover this mystery.

2.3 Theory

All siphons for the net in Fig. 3 (synthesized from control
circuits c1 ¼ VS2 t11 VS3 t5½ � and c2 ¼ VS4 t11 VS3 t5½ � based
on the theory in [15] in the partial controlled model in
Fig. 3) cannot be emptied based on the theory in [17].
Siphon S8 ¼ p7; p11; p12; p17; p19;VS2;VS3f g (see Table 1 in
[17]) is synthesized from the core subnet obtained by
adding TP-handle HTP1[t11 p17 t10 p19 t7 VS3] with resource
place r=p19 upon c3. S8 is emptiable as explained below.
S8½ � ¼ p3; p5; p6; p9; p10f g, M0(p19)=1, M0(VS3)=3, and
M 0 ( V S 2 ) = 1 . maxM S½ �ð Þ ¼ M0 CSð Þ ¼ 3þ 1 ¼ 4 a s
explained below (CS ¼ VS2;VS3f g is the set of control
places in S). Firing t9 once grabs one token from each of p19
and V3. The other two tokens in V3 go to p10 and p6,

Table 1 Controlled model by Uzam et al. [8] for the benchmark in Fig. 1

S V(M0) V �
S

�VS [VS]

S1 V1 (2) t9, t15 t10, t16 p13, p19
S10 V2 (2) t3, t11 t4, t13 p2, p3, p8
S18 V3 (2) t7, t17 t8, t18 p11, p17
S16 V4 (2) t8, t16 t9, t17 p12, p18
S15 V5 (3) t8, t15 t10, t17 p12, p13, p18, p19
S4 V 1

6 ð5Þ t3, t12, t15 t5, t13, t17 p3, p8, p9, p12, p13, p18, p19
S4 V 2

6 ð5Þ t4, t8, t11, t15 t5, t9, t13, t17 p2, p3, p9, p12, p18, p19
S4 V 3

6 ð5Þ t4, t9, t11, t15 t5, t10, t13, t17 p2, p3, p9, p13, p18, p19
S4 V 4

6 ð5Þ t4, t11, t15 t5, t13, t17 p2, p3, p9, p18, p19
S17 V7 (5) t1, t17 t3, t8, t19 p6, p7, p11, p16, p17
S19 V8 (3) t7, t16 t8, t17 p11, p18
S20 V 1

9 ð4Þ t7, t15 t9, t17 p11, p12, p18, p19
S20 V 2

9 ð4Þ t7, t9, t15 t8, t10, t17 p11, p13, p18, p19
S21 V 1

10ð6Þ t3, t7, t12, t15 t5, t8, t13, t17 p3, p8, p9, p11, p18, p19
S21 V 2

10ð6Þ t4, t7, t11, t15 t5, t8, t13, t17 p2, p3, p9, p11, p18, p19
S22 V11 (9) t1, t9, t15, t18 t5, t8, t10, t17, t19 p6, p7, p8, p9, p11, p13, p16, p18, p19
S22 V12 (9) t1, t4, t9, t15 t3, t5, t8, t10, t18 p6, p7, p9, p11, p13, p17, p18, p19
S22 V13 (9) t1, t4, t15, t18 t3, t5, t9, t17, t19 p6, p7, p9, p11, p12, p16, p18, p19

See Tables 1 and 2 in [15] for S1–S18. S19 ¼ V3;f V4; p12; p17g , S20 ¼ V4;V1; p13; p18f g, S21 ¼ V8; p21; p22;f p24; p17; p10; p12g, and S22 ¼
V6;V7; p2;p3;p10;

�
p15;p20;p22;p23;p25p26g.
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respectively. Now, M p17ð Þ ¼ M p19ð Þ ¼ M V3ð Þ ¼ 0. The
token in VS2 goes to p3 to make M(VS2)=0. The total
number of tokens trapped in [S] is 4 ¼ M0 CSð Þ ¼
P

V 2S M0ðV Þ while M(S)=0. Siphon S10 ¼ p7; p11; p12;f
p17; p19;VS4;VS3g (see Table 1 in [17]) is synthesized from
the core subnet obtained by adding TP-handle HTP2[t11 p17
t10 p19 t7 VS3] with resource place r=p19 upon c3.
S10 S10½ � ¼ p2; p3; p4; p5; p6; p9; p10Þf gð Þ is emptiable for a
similar reason.

For S8, two monitors are added as explained below for the
two FBM: MΨ1 ¼ p3 þ p6 þ p9 þ p10 and MΨ2 ¼ p3 þ p5þ
p9 þ p10, where Ψ1 ¼ p3; p6; p9; p10f g and Ψ2 ¼ p3; p5;f
p9; p10g. Two monitors are added using the FBM method:

V
1

S8 (with V 1
S8

� � ¼ Ψ1, M0ðV Þ ¼ 4� 1 ¼ 3, �V 1
S8 ¼ t5; t7;f

t11g, and V 1�
S8 ¼ t2; t6; t9f g) and V 2

S8 (with V 2
S8

� � ¼ Ψ2,

M0 V 2
S8

� � ¼ 3, �V 2
S8 ¼ t6; t11f g, and V 2�

S8 ¼ t2; t4; t9f g). They
implement the following inequalities:

MðΨ1Þ ¼ Mðp3Þ þMðp6Þ þMðp9Þ þMðp10Þ < 4 ¼ MmaxðΨ1Þ
ð1Þ

and

MðΨ2Þ ¼ Mðp3Þ þMðp5Þ þMðp9Þ þMðp10Þ < 4 ¼ MmaxðΨ2Þ
ð2Þ

Only one monitor (as explained below) is added to the
last emptiable siphon S10 with S10½ � ¼ p2; p3; p4; p5;f
p6; p9; p10g even though it is a mixture siphon with a
non-sharing place p16. The only possible sets of marked

operation places for the unmarked S10 are Ψ1 ¼ p3;f
p4; p5; p9; p10g � S10½ �, Ψ2 ¼ p3; p4; p6; p9; p10f g � S10½ �,
Ψ3 ¼ p2; p3; p6; p9; p10f g � S10½ �, a n d Ψ4 ¼ p2; p4; p6;f
p9; p10g � S10½ � with markings MΨ1 ¼ p3 þ p4 þ p5þ
p9 þ p10, MΨ2 ¼ p3 þ p4 þ p6 þ p9 þ p10, MΨ3 ¼ p2 þ
p3 þ p6þ p9 þ p10, and MΨ4 ¼ p2 þ p4 þ p6 þ p9 þ p10,
respectively; the number of tokens in Ψ1 or Ψ2 or Ψ3

is five.
By theory, four monitors are needed; one for each of

above Ψ. However, only one monitor is needed as explained
in [1] by exploring marking inequalities at the expense of
extra steps. The following theorem helps to eliminate these
extra steps.

Theorem 1 Let S (resp. S′) be a mixture siphon with the set
of marked operation places Ψ (resp. Ψ′) when S (resp. S′) is
unmarked under Ma. VS (resp. VS′) is the monitor added to S
(resp. S′) with M0 VSð Þ ¼ Mmax Ψð Þ � 1 resp:M0 VS0ð Þ ¼ð
Mmax Ψ 0½ �ð Þ � 1Þ and H VSð Þ ¼ Ψ resp:H VS0ð Þ ¼ Ψ 0ð Þ. Ψ⊂Ψ′
and ∀M∈R(N, M0), such that M Ψ 0ð Þ ¼ Mmax Ψ 0ð Þ )
M Ψð Þ ¼ Mmax Ψð Þ. Then VS′ is redundant.

Proof After adding VS, M Ψ 0ð Þ ¼ M Ψð Þþ M Ψ 0nΨð Þ <
Mmax Ψð Þ � 1þM0 R Ψ 0nΨð Þð Þ ¼ Mmax Ψ 0ð Þ � 1; hence, S′
is controlled.

Now apply the developed theory to the example in
Fig. 2. Set ΨS10 of marked operation places for the
unmarked S10 may be a superset of those ΨS8 of S8 and
not emptiable by theorem 1 since M ΨS10ð Þ ¼ M ΨS8ð Þ þ
M p4ð Þ < Mnax ΨS8ð Þ þM0 p14ð Þ ¼ Mnax ΨS10ð Þ (by Eqs. 1
and 2), and S10 cannot become unmarked. For instance,
ΨS8 ¼ p3; p6; p9; p10f g and ΨS10 ¼ p2; p3; p6; p9; p10f g.

Let ΨS stand for Ψ of S. Then Ψ1
S8 � Ψ1

S10, and the
condition in theorem 1 is satisfied; i.e., ∀M∈R(N, M0), such

t h a t M Ψ1
S10

� � ¼ Mmax Ψ1
S10

� � ) M Ψ1
S8

� � ¼ Mmax Ψ1
S8

� �
.

Thus, the monitor for Ψ1
S10 is redundant. Similar conclusion
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Fig. 3 Partial controlled model obtained at the first stage in [1, 5] for
the net in Fig. 1

Table 2 Siphon-based controlled model for the net in Fig. 2.

S V(M0) V �
S

�VS [VS]

S2 VS2 (1) t2, t11 t5, t13 p3, p11, p12
S3 VS3 (3) t4, t5, t9 t7, t11 p5, p6, p9, p10
S4 VS4 (2) t1, t11 t4, t5, t13 p2, p3, p4, p11, p12
S8 V 1

S8 3ð Þ t2, t6, t9 t5, t7, t11 p3, p6, p9, p10
S8 V 2

S8 3ð Þ t2, t4, t9 t6, t11 p3, p5, p9, p10
S10 V 1

S10 4ð Þ t1, t6, t9 t2, t4, t7, t11 p2, p4, p6, p9, p10
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applies to Ψ2
S10. Ψ3

S10 ¼ p2; p4; p6; p9; p10f g is the only
one such that ΨS8⊄ΨS10 with marking MΨS10 ¼ p2þ
p4 þ p6 þ p9 þ p10; the number of tokens in ΨS10 is five.
Add monitor VS10 VS

�¼� Ψ3
� �

= Ψ3
� �� ¼ t1; t6; t9f g�

and
�VS ¼ Ψ3

� ��n� Ψ3
� � ¼ t2; t4; t7; t11f g; S ¼ S10Þ. The final

controlled model is shown in Table 2, the same as that in
[1, 5]. The live controlled model can reach maximally
permissive 205 states without weighted control arcs. Note
that Ψ3

S10 � S10½ � and is more fragmented and hence uses
more control arcs.

Furthermore, one can reduce the number of control
arcs by setting [V]=[S] since only MΨ3 for S10 is
reachable. The rest of unmarked-siphon states (MΨ1,
MΨ2, and MΨ4) have been prevented by the monitors for
S8. This explains why the controlled model by Hwang et
al. employs fewer arcs.

3 Conclusion

Huang et al. [1] propose novel crucial MTSIs (CMTSIs) to
reduce the number of MTSIs and hence the computation
burden. In addition, the number of control arcs is fewer.
Experimental results show that the proposed control policy
is the most efficient algorithm among the closely related
approaches while the resulting model remains maximally
permissive. However, Huang et al. offer no hints on why it
employs fewer control arcs. This paper thus develops a new
theory to uncover the secret.
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