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Unlike other techniques, Li and Zhou add control nodes and arcs for only elementary siphons greatly
reducing the number of control nodes and arcs (implemented by costly hardware of I/O devices and
memory) required for deadlock control in Petri net supervisors. Li and Zhou propose that the number
of elementary siphons is linear to the size of the net. An elementary siphon can be synthesized from a
resource circuit consisting of a set of connected segments. We show that the total number of elementary
siphons, |OE|, is upper bounded by the total number of resource places |PR| lower than that min(|P|,
|T|) by Li and Zhou where |P| (|T|) is the number of places (transitions) in the net. Also, we claim that
the number of elementary siphons |OE| equals that of independent segments (simple paths) in the
resource subnet of an S3PR (systems of simple sequential processes with resources). Resource circuits
for the elementary siphons can be traced out based on a graph-traversal algorithm. During the
traversal process, we can also identify independent segments (i.e. their characteristic T-vectors are
independent) along with those segments for elementary siphons. This offers us an alternative and yet
deeper understanding of the computation of elementary siphons. Also, it allows us to adapt the
algorithm to compute elementary siphons in [2] for a subclass of S3PR (called S4PR) to more
complicated S3PR that contains weakly dependent siphons.

Keywords: deadlock control; elementary siphons; flexible manufacturing systems; Petri nets; siphons;
S3PR

1. Introduction

Flexible Manufacturing System (FMS) has
emerged over the past 20 years as a new type of
the manufacturing system. An FMS is a computer
controlled configuration to produce different prod-
ucts automatically. Typically an FMS consists of
several machines to process concurrently different
types of raw parts under a preestablished produc-
tion sequence sharing a limited number of resources
such as machines, AGVs, robots, buffers, and
fixtures. The main tasks in designing an FMS
include process routing, the selection of a sequence
of operations, scheduling, and the assignment of
time and resources. To effectively operate an FMS
and meet its production objectives, the use of
limited resources among various competing jobs
has to be carefully controlled or coordinated.
Deadlocks may occur in an FMS during its
operation, which are undesirable phenomena in a
highly automated FMS [20].

There are three approaches [1] to control
deadlocks (1) deadlock detection and recovery, (2)
deadlock avoidance, and (3) deadlock prevention.
Recovery permits the occurrence of deadlocks, and
when deadlocks detected, the system can restore to
a normal state by simply reallocating the resources
[7,19]. Avoidance [10,21] determines possible

system evolutions at each system state using an
on-line control policy and chooses the correct ones
to proceed. Prevention establishes the control
policy in a static way [9,14,16] by building freely
a Petri net model first and then adding necessary
control to it such that the controlled model is
deadlock-free. Control places and related arcs are
often used to achieve such purpose.

Prevention is preferred to avoidance because the
computational effort is carried out once and off-
line. Hence, it runs much faster in real-time cases
compared with deadlock avoidance algorithms
where much time is consumed by doing on-line
each time the system ought to change the state.
Deadlock prevention control policy is essential
when it is unacceptable to have deadlocks and real
time response time is critical. Although the number
of minimum siphons grows exponentially with the
size of the PN, in practical cases, as indicated by [8],
it is not exponential.

A Petri net model is constructed for an FMS.
The analysis of this PN model is conducted and
system properties are claimed. The PN must satisfy
three properties: boundedness, liveness, and revers-
ibility [12]. These properties are critical for an FMS
to operate in a stable, deadlock-free, and
cyclic way.

*Corresponding author. Email: yuhyaw@gmail.com

ISSN 1017–0669 print/ISSN 2151–7606 online

� 2011 Chinese Institute of Industrial Engineers

http://dx.doi.org/10.1080/10170669.2011.646324

http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 0

1:
14

 0
8 

Ju
ly

 2
01

4 



Liveness in FMS modeled by ordinary Petri
nets (OPN) is closely related to emptiable
siphons [9]. A siphon (trap, respectively) is a set
of places where tokens can leak out (inject in,
respectively). Once an emptiable siphon is found,
output transitions of places in the siphon can never
be fired. Hence, the net is not live.

Ezpeleta et al. proposed a class of PN called
systems of simple sequential processes with
resources (S3PR) [9]. Liveness can be enforced by
adding a control place – and associated arcs – to
each emptiable siphon S to prevent S from
becoming empty of tokens. However, this method
generally requires adding too many control places
and arcs to the original Petri net model. Iterative
control methods in [11] find all emptiable siphons
in each iteration step and add control places. The
method becomes very difficult and complex even
for a moderate-size model due to the fact that there
are too many emptiable siphons.

Li and Zhou [13–17] proposed simpler Petri net
controllers based on the concept of elementary
siphons (generally much smaller than the set of all
emptiable siphons in large Petri nets) to minimize
the new addition of places, which incurs costly
hardware of I/O devices and memory [17].
Emptiable siphons can be divided into two
groups: elementary and dependent; characteristic
T-vectors of the latter are linear combinations of
that of the former.

They added a control place for each elementary
siphon Se without generating new emptiable
siphons by the method developed in [9], while
controlling all dependent emptiable siphons S too
so that there is no need to add a control place for S.
This leads to much fewer control places so that the
method is suitable for large-scale Petri nets.

They [13] proved that the total number of
elementary siphons is upper bounded by min(|P|,
|T|) where |P| (|T|) is the total number of places
(transitions) in the net. An elementary siphon can
be synthesized from a resource circuit consisting of
a set of connected segments. We show that the total
number of elementary siphons, |OE|, is upper
bounded by the total number of resource places
|PR| lower than that min(|P|, |T|) by Li and Zhou.
We claim that the number of elementary siphons
|OE| equals that of independent segments (simple
paths) in the resource subnet of an S3PR. Resource
circuits for the elementary siphons can be traced
out based on a graph-traversal algorithm. During
the traversal process, we can also identify indepen-
dent segments (i.e. their characteristic T-vectors are
independent) along with those segments for ele-
mentary siphons.

This offers us an alternative and yet deeper
understanding of the computation of

elementary siphons. Also it allows us to adapt the
algorithm to compute elementary siphons in [2] for
a subclass of S3PR (called S4PR) to more compli-
cated S3PR, where the dependent siphons may be
weakly rather than strongly in [2] for S4PR. Please
refer to [3,4] for the authors’ other works on weakly
dependent siphons.

The rest of this paper is organized as follows.
Section 2 presents the preliminaries about PN and
S3PR nets. Moreover, we show that a siphon can be
synthesized by constructing handles upon a
strongly connected component of the resource
subnet (called sub-SCRC). In this section, we also
define characteristic T-vectors, elementary, and
dependent siphons. Section 3 presents segment
theory as the basis to understand the approach
described in Section 4 under some assumption to
make it easier to understand. Section 5 removes the
assumption by considering some twists. Section 6
applies the theory to a well-known S3PR. Section 7
concludes the paper. To improve the readability,
some proofs are moved to Appendix I.

2. Preliminaries

In this paper, we assume that the reader is familiar
with the PN basis [7]. Here we present only the
definitions that are used in this paper.

Definition 1: An OPN is a 4-tuple
PN¼ (N,M0)¼ (P,T,F,M0), where N¼ (P,T,F)
is a net, P¼ {p1, p2 , . . . , pa} a set of places,
T¼ {t1, t2 , . . . , tb} a set of transitions, with
P[T 6¼1 and P\T¼1, and F: (P�T)[
(T�P)! {0, 1} is the flow relation. A node x in
N¼ (P, T, F) is either a p2P or a t 2 T. The post-
set of node x is x�¼ {y 2 P[T|F(x, y)4 0}, and its
pre-set �x¼ {y 2 P[T|F(y, x)4 0}. An OPN is
called a state machine (SM) if 8t 2 T, |t�|¼ |�t|¼ 1.

Definition 2: A P-vector (denoted by �L(p)p) is a
column vector L: P!Z indexed by P and a
T-vector (�J(t)t) is a column vector J: T!Z
indexed by T, where Z is the set of integers. The
incidence matrix of N is a matrix A: P�T!Z
indexed by P and T such that A(p, t)¼�1, if
p 2 �t\t�; A(p, t)¼ 1, if p2 t�\�t; and otherwise
A(p, t)¼ 0 for all p2P and t2T. N0 ¼ (P0,T 0,F 0) is
called a subnet of N where P0�P,T 0�T, and
F 0 ¼F\ ((P0 �T 0)[ (T 0 �P0)). A net N is strongly
connected iff for every node pair (ni, nj), ni,
nj2P[T, there exists a directed path from ni to nj.
Let N1¼ (P1,T1,F1) and N2¼ (P2,T2,F2), then
N1[N2¼ (P1[P2,T1[T2,F1[F2) and N1\N2¼

(P1\P2,T1\T2,F1\F2). If N3¼N1[N2, then
N1¼N3\N2 denotes the removal of N2 from N3.

Definition 3: �¼ [n1 n2 . . . nk]2 (P[T)* is a path,
iff niþ12 ni

�; I¼ 1, . . . , k�1. Furthermore, a path �
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is characterized as a circuit iff x1¼xn. � is an
elementary directed path in N if 8(i, j), 1� i5 j5 k,
ni 6¼ nj. � is (non) virtual if it is elementary and k¼ 2
(k4 2); i.e. it contains only (more than) two nodes.
8i defined above, |ni

�|¼ |�ni|¼ 1 in N, iff 15 I5 k,
(i.e. ni is an interior node of �), then � is called a
simple path or a segment with terminal nodes n1
and nk. �¼�1�2 indicates that �1 adjoins �2 to
form �; i.e. �¼�1[�2 and �1 intersects �2 at a
single node.

Definition 4: A place vector Y (with components
Y(p), p2P) is called a P-invariant iff Y 6¼ 0 and
YT
�A¼ 0, where A is the incidence matrix.

kYk¼ {p2P|Y(p) 6¼ 0} is the support of Y.
A P-invariant is minimal if there does not exist a
P-invariant Y0 such that kY0k�kYk. A siphon (trap)
D (�) is a non-empty subset of places such that
�D�D� (��� ��), that is, every transition having an
output (input) place in D (�) has an input (output)
place in D (�). A minimal siphon does not contain a
siphon as a proper subset. A minimal siphon is
called a strict minimal siphon (SMS), denoted by S,
if it does not contain a trap.

Definition 5: A subnet Ni¼ (Pi,Ti,Fi) of N is
generated by X¼Pi[Ti, if Fi¼F\ (X�X ). It is an
I–subnet, denoted by I, of N if Ti¼

�Pi. IS is the
I–subnet (the subnet derived from (S, �S)) of an
SMS S. Note that S¼P(IS); S is the set of places
in IS.

2.1 S3PR

We add bold texts for new terms to the following
definitions [9]. The reader is referred to [9] for more
details of the S3PR model.

Definition 6 [9]: A simple sequential process (S2P)
is a net N¼ (P[ {p0},T,F) where: (1) P 6¼1, p0=2P
(p0 is called the process idle or initial or final
operation place); (2) N is strongly connected SM,
and (3) every circuit of N contains the place p0.

Definition 7 [9]: A simple sequential process with
resources (S2PR), also called a working processes

(WP), is a net N¼ (P[ {p0}[PR,T,F) so that (1)
the subnet generated by X¼P[ {p0}[T is an S2P;
(2) PR 6¼1 and P[ {p0}\PR¼1; (3) 8p2P,
8t2 �p, 8t0 2 p�, 9rp2PR,

�t\PR¼ t0� \PR¼ {rp};
(4) The two following statements are verified:
8r2PR, a)

��r\P¼ r�� \P 6¼1; b) �r\ r�¼1. (5)
��(p0)\PR¼(p

0)�� \PR¼1. 8p2P, p is called an
operation place. 8r2PR, r is called a resource place.
H(r)¼��r\P denotes the set of holders of r
(operation places that use r). Any resource r is
associated with a minimal P-invariant whose sup-
port is denoted by �(r)¼ {r}[H(r).

Definition 8 [9]: A system of S2PR (S3PR) is
defined recursively as follows: (1) An S2PR is
defined as an S3PR; (2) let Ni¼ (Pi[P

0
i [

PRi,Ti,Fi), i2 {1, 2} be two S3PR so that
(P1[P

0
1)\ (P2[P

0
2)¼1. PR1

\PR2
¼PC( 6¼1) and

T1\T2¼1. The net N¼ (P[P0
[PR,T,F) result-

ing from the composition of N1 and N2 via PC

(denoted by N1 oN2) defined as follows: (1)
P¼P1[P2; (2) P0

¼P0
1 [P

0
2; (3) PR¼PR1

[PR2
;

(4) T¼T1[T2, and (5) F¼F1[F2 is also an S3PR.
A path (circuit, subnet) � (c, N0) in N is called a
resource path (circuit, subnet) if 8p2� (c,N0),
p2PR. A resource subnet Nu is maximal if 9 a
resource subnet N0 such that Nu is a proper subnet
of N0. A strongly connected resource subnet of N is
briefed as SCRS. An SCRS is called a basic circuit
if it is an elementary circuit.

An example of S3PR and its maximal resource
subnet Nu are shown in Figure 1(a) and (b),
respectively. Note that a resource circuit is also
an SCRS. We construct an SMS based on the
concept of handles.

Definition 9 [5]: Let N¼ (P,T,F ) be a net.
H1¼ [ns n1n2 . . . nk ne] and H2¼ [ns n

0
1 n
0
2 . . . n0h

ne] are elementary directed paths, ni, n0j 2P[T,
I¼ 1, 2, . . . , k, j¼ 1, 2, . . . , h. H1 and H2 are said to
be mutually complementary since H1 and H2 have
the same terminal nodes: start node ns and end
node ne. Each of H1 and H2 is called a handle in N
if ni 6¼ n0j, 8i, j defined above; ns (ne) is called

(a)  (b) 

4

p5 p4

p1

p2p3

p15 p14 p13p16

p8p7
p10p9 p12p11

p6

t1 t2 t3

t4 t5 t6

t7 t8

t9

t10

4

p15 p14 p13p16

t1 t2 t3

t4 t5
t6

t7 t8

Figure 1. (a) Example of an S3PR [16], where c1¼ [p15 t2p14 t6p15] is an elementary circuit and [p15 t5p14] and [p15 t7p14]
are PP0-handles of c1. (b) Maximal resource subnet Nu.
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a terminal node or the start (the end node) of H1

and H2. ni and nj
0 (1� I� k, 1� j� h) are called the

interior nodes of H1 and H2, respectively.
Pin(H1)¼ {p|p2P, p2H1, p 6¼ ns, p 6¼ ne} is the set
of interior (not terminal) places of H1. Note that ns
and ne may be identical. Hxy is a XY-handle where
X and Y can be T or P. X is T (P) if ns2T (ns2P).
Y is T (P) if ne2T (ne2P). H1 is a resource handle
if all places in H1 are resource places. The handle H
to a subnet N0 (similar to the handle of a tea pot) is
an elementary directed path from ns in N0 to
another node ne in N0; any other node in H is not
in N0. H is said to be a handle in N00 ¼N0 [H.
A (non) PP0-handle is a PP-handle (not) of the
form [r t r0], r, r0 2PR. Ne

i denotes an expanded
subnet Ni by adding all PP0-handles to Ni.

In Figure 1, resource handles HPP
1 [p14 t4 p16 t1

p15] and HPP
2 [p14 t6 p15] are mutually complemen-

tary; p14 and p15 are the start node and the end
node, respectively; p16 is the interior node of HPP

1 .
In Figure 1(b), Nu¼N 0 [H, where H¼ [p15 t5p14] is
a PP0-handle. In [2], we construct an SMS of an
arbitrary S3PR by building handles upon an
SCRS �. Two different SCRS with the set of
resource places correspond to the same SMS [2].
PP0-handles does not contain interior places and
hence we have

Property 1: Ni and Ne
i (Definition 9) have the same

set of resource places and correspond to the
same SMS.

Handle-construction procedure [2]: Given an
SCRS �, (1) add all PP0-handles; that is, of the
form [r1 t

0 r2], r12 � and r22 �, to �. The resulting
SCRS is called an expanded SCRS �0; (2) add all
PP-, TP- and, virtual PT-handles (that are part of
an I(�(r)) to �0 to form �00. (3) P(�00) is an SMS if it
does not contain an �(r), r2P(�).

Example: For the net in Figure 1, first find
resource circuit c1¼ [p15 t2p14 t6p15] (a circuit is
strongly connected; hence, it is an SCRS) and
construct S2 on expanded c1 (by adding
PP0-handles [p15 t5p14] and [p15 t7p14]). Second add
TP-handles [t2p4 t1p15] and [t7p11 t8p15] to get IS1

and S1¼P(IS1
)¼ {p4, p11, p14, p15}. The rest SMS of

S2¼ {p4, p12, p13, p14, p15}, S3¼ {p5, p11, p14, p15,p16},
and S4¼ {p5, p12, p13, p14, p15, p16} can be con-
structed similarly.

2.2 Elementary siphons and characteristic
T-vectors

This section defines elementary, dependent
siphons and characteristic T-vectors.

Definition 10 [15]: Let V�P be a subset of places
of N. P–vector �V is called the characteristic
P-vector of V iff 8p2V, �V(p)¼ 1; otherwise

�V(p)¼ 0. � is called the characteristic T-vector of
V, if �T¼ �T��A, where A is the incidence matrix.

Physically, the firing of a transition t where
(�(t)4 0, �(t)¼ 0, and �(t)5 0) increases, main-
tains, and decreases the number of tokens in S.

Definition 11 [13]: Let N¼ (P,T,F) be a net with
|P|¼m, which has k SMS S1, S2 , . . . ,Sk, m, k2 IN,
where IN¼ {0, 1, 2 , . . .}. Define [�]k�m¼

[�1|�2|� � �|�k]
T and [�]k� n¼ [�1|�2|� � �|�k]

T. [�] ([�])
is called the characteristic P(T)-vector matrix [�]
([�]) of the siphons in N. Let �S�, �S� , . . . , and �S	
({�, � , . . . , 	}� {1, 2 , . . . , k}) be a linear indepen-
dent maximal set of matrix [�]. Then OE¼ {S�,
S� , . . . ,S	} is called a set of elementary siphons.
S=2OE is called a strongly dependent siphon if
�S¼

P
Si2�E

ai�Si
where ai� 0. S=2OE is called a

weakly dependent siphon if 9 non-empty A, B	OE,
such that A\B¼1 and �S¼�Si2A

ai�Si
�

�Sj2B
bj�Sj

where ai, bj4 0.

In Figure 1, there are three elementary siphons
S1�S3 and 1 weakly dependent siphon S4; their
characteristic T-vectors � are shown in Table 1.

Li and Zhou [15] proposed to find elementary
siphons based on all SMS. First, they construct the
characteristic P(T)-vector matrix [�] ([�]) of the
siphons in N followed by finding linearly indepen-
dent vectors in [�] ([�]). Note that [�]¼
[�1|�2|� � �|�k]

T and [�]¼ [�1|�2|� � �|�k]
T, k¼ |O|.

Finally, the siphons corresponding to these inde-
pendent vectors are the elementary siphons in the
net system. But they have to look for all SMS, the
number of which grows exponentially.

Similarly, we propose 
R based on the set of
resource places in S.

Definition 12 [2]: Let R�P be a subset of resource
places of N, and �R the characteristic P-vector of R.

R is called the characteristic T-vector for R, if

TR¼ �

T
R � A.

Physically, the sets where 
R4 0, 
R¼ 0, and

R5 0, are the sets of transitions whose firings
increase, maintain and decrease the number of
tokens in R. Note that 
R is a linear sum of all 
r. In
the sequel, all � referred will be for SMS in contrast
to 
 for the set of resource places in the SMS.

Lemma 1 [2]: 
R¼�r2R 
r where R is the set of all
resource places in a resource subnet.

Table 1. Four SMS in Figure 1 and there �.
�4¼ �2þ �3� �1.

SMS � Set of places

S1 [þt2 – t3 – t4þ t7] {p4, p11, p14, p15}
S2 [þt2 – t4þ t8 – t9] {p4, p12, p13, p14, p15}
S3 [þt1 – t3þ t7 – t10] {p5, p11, p14, p15, p16}
S4 [þt1þ t8 – t9 – t10] {p5, p12, p13, p14, p15, p16}
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Thus, it is easy to compute 
 in an algebraic

fashion given a graphic SCRS since 
R is a linear

sum of all 
r. In [2], we proposed an algorithm

based on Lemma 1 to compute SMS from 
R.
It seems that

Observation 1: Given an S3PR, the number of

elementary siphons is upper bounded by |PR|, the

number of resource places in the net.
This is better than that by Li and Zhou as

shown in the following. Note that the computed

siphon from 
R may not be minimal. To simplify

the presentation, we ignore such a twist and assume

that each siphon synthesized is minimal and an

SMS. Afterwards, we will come back to discuss it.

Lemma 2 [13]: The number of elements in any set

of elementary siphons in net N equals rank([�]),
where rank([�]) is the rank of [�].

Theorem 1 [13]: Let |OE| be the number of

elementary siphons in net N¼ (P,T,F). Then we

have |OE|�min{|P|, |T|}.

In the sequel, we will show that |OE| is closely

related to the number of segments.

3. Segment theory

Let S0 be a strongly dependent siphon, S1 , . . . ,Sn

be elementary siphons, and �S0
¼ �S1

þ �S2
þ � � �

þ �Sn
. In [13], we show that the SCRS for S0, NS0

,

is a compound resource circuit containing those

SCRS for NS1
, . . . ,NSn

and the intersection between

any two NSi
and NSj

, I 6¼ j is at most a resource

place. This, as will be shown later (Theorem 3), can

be generalized to resource paths, called segments:

��0
¼ ��1

þ ��2
þ � � � þ ��n

where �0 is a compound

segment containing �1 , . . . ,�n and the intersection

between any two �i and �j, i 6¼ j is at most a

resource place. � of a segment is defined similarly to

that for an SMS. Similar to what we build IS by

constructing handles upon an SCRS, we can build

I� by constructing handles upon �I and find

P(I�)¼ �(�), called a partial siphon since

P(IS)¼S is a siphon. P(I�) is a set of places; we

find its characteristic P-vector and T-vector ��0

based on Def. 10.
Table 2 shows the segments, �(�), segment �,

and the paths for the net in Figure 1. We do not
add PP0-handles (of the form [r t r0]) to � above
because they do not add new places to �(�).

Note that the algorithm in [2] would not work
here since the net in Figure 1 is not an S4PR defined
in [2] due to the presence of weakly dependent
siphons. The segment theory developed here helps
to compute elementary siphons for S3PR that
contains weakly dependent siphons.

Formally, we generalize the definition of the
characteristic T-vector to a partial siphon defined
in the following.

Definition 13: Let � be a segment; that is resource
path. A partial siphon, �(�) built on �, is defined to
be set of places in � plus those in the TP- and PP-
handles to �; i.e. �(�)¼P(�)[ {p|p2 �(r), r2P(�),
p2HPP

[HTP}¼P(I�), where I� is the I-subnet of
�(�). �T(�)¼ �TS�A is the characteristic T-vector of
�(�), �� is the characteristic P-vector of �(�), and A
is the incidence matrix. �(�) is called a segment �.
In contrast, those corresponding to connected-
component as well as that by the sub-SCRS are
called connected-component � (CC �) and SCRS
(or SMS) �, respectively. The set of all SMS
(segment) � is called the SMS (segment) space.

In Figure 1, each resource circuit c is a
compound segment containing �1 , . . . ,�n and the
intersection between any two �i and �j, i 6¼ j is at
most a resource place. We have as shown in
Table 3, �c¼ ��1

þ ��2
þ � � � þ ��n

.

Definition 14: �1, �2 , . . . , �q are mutually indepen-
dent if none can be expressed as linear

Table 2. The segments, �(�), segment �, and the paths for the net in Figure 1.

Sements �(�) � Paths

�1 p4, p8, p9, p10, p11, p14, p15 [þt2� t3] [p15 t2 p14]
�2 p3, p4, p8, p10, p11, p14, p15 [�t5þ t6] [p14 t6 p15]
�3 p3, p4, p9, p10, p11, p14, p15 [�t4þ t5] [p15 t5 p14]
�4 p3, p4, p8, p9, p10, p12, p13, p14, p15 [þt3� t7þ t8� t9] [p14 t3 p13 t8 p15]
�5 p3, p5, p8, p9, p10, p11, p14, p15, p16 [þt1� t2þ t4� t10] [p14 t4 p16 t1 p15]
�6 p3, p4, p8, p9, p11, p14, p15 [�t6þ t7] [p15 t7 p14]

Table 3. The SMS and their � for the net in Figure 1.

SMS �c¼��� Segments

S1 [þt2� t3� t4þ t7] �1, �2, �3, �6

S2 [þt2� t4þ t8� t9] �1, �2, �3, �4, �6

S3 [þt1� t3þ t7� t10] �1, �2, �3, �5, �6

S*4 [þt1þ t8� t9� t10] �1, �2, �3, �4, �5, �6
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combinations of others. The maximum set of
mutually independent � is called a basis. �1,
�2 , . . . ,�q are mutually independent iff their �1,
�2 , . . . , �q are.

It is unclear how to find new independent
segments at each synthesis step. Based on segment
�, we can compute connected-component � (CC �)
and SCRS � using the following theorem.

Theorem 3: For an S3PR, �3¼ �1þ �2 if 9 r2R,
�1\�2¼ {r1}, where �1 and �2 are two directed
resource paths, �1, �2, and �3 are the characteristic
T-vectors of �1, �2, and �3, respectively, and
�3¼�1�2.

The above results can be generalized to cases
where the intersection contains more than one
place, but no common arcs.

Corollary 1: For an S3PR, �3¼ �1þ �2 if 9 r2R,
�1\�2¼ ��PR and �1 and �2 do not have any
common arcs, where �1 and �2 are two directed
resource paths, �1, �2 and �3 are the characteristic
T-vectors of �1, �2, and �3, respectively.

Lemma 3: The � of any segment �1 (which is not a
PP0-handle) in an S3PR is independent w.r.t. those of
all other segments.

Corollary 2: If a new SCRS �1 contains new
segment � not in the SCRS of all old elementary
siphons, then � of the SMS built on �1, �1, is
independent w.r.t those of all old elementary siphons.

4. The approach

We may find the exact number of elementary
siphons by finding the set of independent charac-
teristic T-vectors from that of all SMS. But the time
complexity is exponential as mentioned earlier.
Alternatively, we propose a knitting-technique
approach to incrementally find all SCRS for
elementary siphons. Thus, it is more efficient than
that in [13] where the computation of elementary
siphons cannot be started until all SMS have been
found.

We will find elementary siphons in an incre-
mental fashion. At each step, we show that the
number of new elementary siphons equals that of
new independent segments. It holds till the end and
we thus prove that the exact number of elementary
siphons equals that of independent segments, which
grows linearly w.r.t. |PR|� the number of resource
places in N.

We first find a circuit c1¼ [p15 t2p14 t6p15]
(Figure 1) and construct elementary siphon S1 on
expanded c1 (by adding PP0-handles [p15 t5 p14] and
[p15 t7 p14]), denoted by ce1. Next we add
H1¼ [p14 t3p13 t8p15] (p13 is the only interior node.)
with complementary handle (Definition 9)

Hc
1¼ [p14 t6 p15] which is a PP0-handle with no

interior node (Definition 9). Now we have a new

SCRS c2¼[p15 t2 p14 t3 p13 t8 p15]¼ (c1[H1)\H
c
1

corresponding to new elementary siphon S2. The

new SCRS �*¼ ce1 [ c2 is the net traced (Nt) so far.
Next we add H2¼ [p14 t4 p16 t1 p15] with

Hc
2¼Hc

1¼ [p14 t6 p15] that is a PP0-handle. Now

we have a new SCRS c3¼ [p14 t4 p16 t1 p15 t2 p14]¼

(c1[H2)\H
c
2 and construct elementary siphon S3 on

expanded c3 (by adding PP0-handles [p15 t5 p14],

[p15 t6 p14] and [p15 t7 p14]), denoted by ce3. No more

handles can be added and the only SCRS left is the

whole traced net corresponding to dependent

siphon S4. Table 4 summarizes the above process.
In short, an SCRS can be initiated from a

circuit followed by continuously adding PP-han-

dles Hi. Each time we add a new Hi, we find new

elementary siphons. Note that Hi cannot be a

PP0-handle since a PP0-handle does not add a new

resource place to the traced resource subnet and

based on Property 1, no new SMS is generated.
Hi added at Step I is a new independent

segment. We discuss how new segments can be

generated in addition to Hi. Upon each new handle

Hi ([r7 t11 r10 t12 r5] in Figure 2(b)) with at least one

new place (r10), we build an elementary

siphon based on an elementary circuit

([r1 t7 r7 t11 r10 t12 r5 t5 r6 t6 r1]) that contains Hi.
If both ns(Hi) and ne(Hi) fall on terminal nodes

of segments, based on Corollary 2, � of the new

SMS constructed on an elementary circuit co

containing Hi (a new segment) is independent

w.r.t existing ones. Besides Hi, co contains other

existing segments that can be expressed as linear

combinations of characteristic T-vectors of old

elementary siphons. Thus, there is only one new

independent segment corresponding to one new

elementary siphon.

Lemma 4: If both ns(Hi) and ne(Hi) are on

terminal nodes of segments other than Hi itself,

then Hi is the only one new independent segment.

Proof: Obvious from the above discussion.
On the other hand, if ns(Hi) (ne(Hi)) is in the

middle of an existing segment �s (�e), the presence

of ns(Hi) (ne(Hi)) may break �s (�e) into two

Table 4. Synthesis process for the net in Figure 1 and �
of the new elementary siphon.

Step Characteristic T-vectors � �

1 Expanded c1 c1(¼�1�2)þ
PP0-handles (�3, �6)

�S1

2 H1 �4 �S2
¼ �S1

þ �H1

3 H2 �5 �S1
¼ �S1

þ �H3
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new ones. In Figure 2(c), ns(Hi)¼ r5 (ne(Hi)¼ r8)
breaks the segment [r4 t4 r5 t5 r6 t6 r1] ([r1 t7 r7 t8 r8 t9
r9 t10 r4]) into segments �s

1¼ [r4 t4 r5] and
�s
2¼ [r5 t5 r6 t6 r1] (�e

1¼ [r1 t7 r7 t8 r8] and
�e
2¼ [r8 t9 r9 t10 r4]). Formally, we have

Definition 15: Let Hi be the new handle added at
the ith synthesis step. �s (�e) is called the source
(end) segment of Hi if ns(Hi) (ne(Hi)) is an interior
node of �s (�e); i.e. ns(Hi)2Pin(�

s) (ne(Hi)2
Pin(�

e)). The presence of ns(Hi) (ne(Hi)) breaks �s

(�e) into �s
1 and �s

2 (�
e
1 and �e

2) such that �s
¼�s

1�
s
2

(�e
¼�e

1�
e
2) and ne(�

s
1)¼ ns(Hi)¼ ns(�

s
2)

(ne(�
e
1)¼ ne(Hi)¼ ns(�

e
2)). See Definition 3 for the

meaning of �s
¼�s

1�
s
2.

Lemma 5: If ns(Hi) (ne(Hi)) is an nonterminal
node of any segment other than Hi itself, then (1)
�s¼ �

1
s þ �

2
s (�e¼ �

1
e þ �

2
e). (2) There is only one new

independent segment out of two new segments �s
1 and

�s
2 (�e

1 and �e
2).

This lemma implies that one new elementary
siphon S arises due to nonterminal node of ns(Hi)
(ne(Hi)). Thus, there are at most three new
elementary siphons for the new Hi.

The above cases assume that ns(Hi) and ne(Hi)
are on different segments. In summary, we have the
following observation.

Observation 2:

Case I: ns(Hi) and ne(Hi) are on the same segment

(a) Hc
i is a non PP0-handle

(b) Hc
i is a PP0-handle

Case II: ns(Hi) and ne(Hi) are on different segments
(a) Both ns(Hi) and ne(Hi) are on terminal

nodes

(b) Exactly one of ns(Hi) and ne(Hi) is on a
terminal node

(c) Neither ns(Hi) nor ne(Hi) is on terminal
nodes

We will show that Case I can be reduced to
Case II.

Clearly, the set of � generated by the segment �
covers that generated by the CC (connected-
component) � as well as that by the SCRS �. Also
the basis to generate that corresponding to the
SCRS � may be smaller than that corresponding to
the CC �.

Consider the case where �1 always appear
together with �2 , . . . ,�q (all together called a
composite segment), and they may be disjoint.
Thus, there is only one independent segment out
of q segments.

Definition 16: The set 	 of �1, �2 , . . . ,�q is called
a composite segment if for every SCRS � such that
�g2 �, g2 {1, 2 , . . . , q}, 		 �. �1, �2 , . . . ,�q are
said to be mutually dependent.

For instance, in Figure 3(a), �1 ([r3 t3 r4]) and �2

([r6 t6 r1]) appear in every SCRS. Further, if Hc
2

([r4 t4 r5 t5 r6]) is reduced to a PP0-path [r4 t5 r6]
(Figure 3(c)), then Hc

2, �1 and �2 always appear
together and they are a composite segment. Note
that the SCRS in Figure 3(a)–(c) belongs to
Case I.a (I.b) and can be reduced to that in
Figure 3(b)–(d) which conforms to (equivalent �)
Case II.a (Case II.b) in that both have the same
SMS � in terms of the same segment �. This is true
in general and we will only deal with Case II
(i.e. assuming the absence of composite segments)
in the sequel to simplify the discussion.
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Figure 2. Examples of 2c-system and 3c-systems.

Journal of the Chinese Institute of Industrial Engineers 579

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 0

1:
14

 0
8 

Ju
ly

 2
01

4 



Since the set of SCRS � is a subset of that of CC
�, the number of elementary siphons (|�E|) is no
greater than that of segments, denoted by !. Thus,
we have

Lemma 6: |�E|�!.
We further show that |�E|¼! based on the

following property.

Property 2: For an SCRS �, every segment � can be
expressed as a linear combination of that of
elementary siphons in �.

To prove this property, we first find the number
of new segments followed by showing that a new
segment � can be expressed as linear combinations
of characteristic T-vectors of new and old elemen-
tary siphons.

The following lemma computes the number of
new segments for each case.

Lemma 7: Let u be the number of new segments
generated by adding Hi. (1) u¼ 1 for Case II.a. (2)
u¼ 3 for Case II.b. (3) u¼ 5 for Case II.c.

Note that when ns and ne are the same place,
there is still only one new segment and it remains
true that u¼ 1. It does not change the conclusion.
Upon the first c1 ([r1 t1 r2 t2 r3 t3 r4 t4 r5 t5 r6 t6 r1] in
Figure 2(a)) found, we build the first elementary
siphon. We then add a handle H1 ([r1 t7 r7 t8 r3] in
Figure 2(a)) with at least one new place. This results
in three segments ([r1 t1 r2 t2 r3], [r1 t7 r7 t8 r3], and
[r3 t3 r4 t4 r5 t5 r6 t6 r1]) and two elementary circuits
c1 and c2¼ [r1 t7 r7 t8 r3 t3 r4 t4 r5 t5 r6 t6 r1] (one ele-
mentary siphon for each circuit). Thus, the third
elementary siphon corresponds to the SCRS (the

whole net, called 2c-system in Definition 17)

containing the two elementary circuits.

Definition 17: A 1c-system is a SCRS with only

one elementary circuit c1. A 2c-system forms by

adding a handle H1 upon c1. A 3c-system forms by

adding a handle H2 upon a 2c-system with neither

ns(H2) nor ne(H2) being on terminal nodes.
Figure 2(b)–(d) shows three possible 3c-systems.

The following two lemmas compute new segment

�n in terms of elementary siphon �e in the new

traced net Nt0. Note that if a new segment is part of

a composite one, there is no need to compute the

new segment �n. Hence, we assume in the sequel

that no new segment is part of a composite one.

Lemma 8: For a 2c-system defined above contain-

ing c1 and c2 or 3 segments �1, �2, and �3 (with three

characteristic T-vectors �1� �3, respectively) such

that �1[�2¼ c1, �1[�3¼ c2. There are totally

three elementary siphons (with three characteristic

T-vectors �01� �
0
3, respectively) constructed from c1,

c2, and c1[ c2, respectively. (1) �01¼ �1þ �2,
�02¼ �1þ �3, and �03¼ �1þ �2þ �3, (2) �1¼ �

0
1þ

�02� �
0
3, �2¼ �

0
3� �

0
2, and �3¼ �

0
3� �

0
1.

Note that if �3 is a PP0-handle,

c1[ c2 s¼ ce1¼ c1[�3 implying �03 ¼ �
0
1. And we

have only two new elementary siphon � (�03 and

�02) and two new independent segments �1 and �2.

We can still solve �2¼ �
0
3� �

0
2. Note that �1 and �3

together form a composite segment. However, we

assumed earlier the absence of composite segments

and need not be concerned with such a twist. In the

next lemma, we will apply lemma 8 when we hit a
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Figure 3. Case I: ns(H2) and ne(H2) are on the same segment. (a) Case I.a., (b) �–equivalent Case II.b., (c) Case I.b.,
(d) �–equivalent Case II.a.
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3c-system by decomposing the 3c-system into some
2c-systems. Again, we assume the absence of
composite segments.

We are now ready to prove Property 2.

Lemma 9: Assuming Property 2 holds for the old
traced net Nt, so does it for the new traced net Nt0

where Nt (Nt0) is the net traced right before (after)
the addition of Hi.

Theorem 4: For an SCRS �, every segment � can
be expressed as a linear combination of that of
elementary siphons in �.

We now prove |�E|¼ |!|.

Theorem 5: For an SCRS �, |�E|¼ |!|.
We now formally prove Observation 1.

Theorem 6: Given an S3PR, the number of elemen-
tary siphons is upper bounded by jPRj, the number of
resource places in the net.

One may argue that it is not correct. For
example, if there exists four resource places, and
any two of them can form a resource circuit, then
there may be six elementary siphons. This, how-
ever, ignores the fact that some of the correspond-
ing segments must be PP0-handles. Thus, the
theorem remains valid.

We will find elementary siphons in an incremen-
tal fashion. At each step, we show that the number
of new elementary siphons equals that of new
independent segments. It holds till the end and we
thus prove that |�E|¼ |!| for an arbitrary SCRS.

5. Some twists

If all segments in the resource subnet are mutually
independent, then it is easy to find the total number

of elementary siphons. Unfortunately, some are
dependent segments, some are part of a composite
segment and some produce nonminimal siphons as
shown in Figure 4, where [p11 t11 p12] and [p12 t2 p11]
form a circuit c and a composite segment.
The siphon {p3, p7, p16, p11, p12}, unlike others,
synthesized from c is not minimal since it contains
siphon {p3, p16, p11} as a proper subset. The distinct
feature of this segment is that a holder place (p7) of
a resource (p11) on the segment, unlike others, has
an output transition (t6) not on the segment.
Without (resp. With) t6, the holder place p7 would
be on the sole PT-handle [p11 t1 p7 t2] (resp.
PP-handle [p11 t1 p7 t6 p11]) to the segment. The rest
handles containing p11 are either TP- or
PP-handles. Thus, the synthesized siphon contains
p11 plus all its holder places H(p11); that is �(p11)
(see Definition 7). In summary, we have the
following.

Observation 3: The synthesized siphon from a
segment � is not minimal iff there exists a place p
on � without a PT-handle H to � with ns(H)¼ p.

The time complexity to detect segment with
nonminimal siphons is linear to |P(�)|, the number
of places in �. Now we deal with detecting
composite segments. There are two types of com-
posite segments. The resource subnet (no longer)
stays strongly connected after the deletion of Type-
I (II) segment. In addition, Type-II segment must
be a PP0-segment. In Figure 3(a), �1 ([r3 t3 r4]) and
�2 ([r6 t6 r1]) appear in every SCRS; they together
form a composite segment. The net no longer stays
strongly connected after the deletion of Type-II �1.
In Figure 3(c), PP0- segment �3¼ [r4 t5 r6], the above
�1 and �2 always appear together and they form a
composite segment. The net stays strongly con-
nected after the deletion of Type-I �3. The time
complexity to test strongly connectedness is linear
to the number of places in the resource subnet.
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Figure 4. An example of nonminimal siphon. [p11 t11p12]
and [p12 t2 p11] form a circuit c and a composite segment.
The siphon {p3, p7, p16, p11, p12}, unlike others, synthe-
sized from c is not minimal since it contains siphon
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6. Application

The well-known S3PR example in Figure 5 [9]
consists of three robots (R1,R2,R3) and four
machines (M1–M4). Tables 5 and 6 show all the
elementary and dependent siphons and their � for
the net in Figure 5, respectively. We add handles as
in Table 7 (so that smaller basic circuits are traced
prior to those larger ones), then all elementary
siphons are obtained correctly. Note that for each
Hi, both ns(Hi) and ne(Hi) are on terminal nodes
of segments other than Hi itself. By Lemma 4, Hi is
the only one new independent segment and its � is a
new independent one. There are six elementary
siphons, which is fewer than |PR|¼ 7. The time
complexity is also linear to |PR| much better than
that in [13,15], which takes an exponential amount
of time.

7. Conclusion

In summary, this paper has the following
contributions:

(1) We have shown that |�E|¼ |!|; that is the
number of new elementary siphons equals that of
new independent segments. Thus, one can compute
elementary siphons based on the set of independent
segments from a set of elementary resource circuits
(with little twist) for arbitrary S3PR, S3PMR [18],
and weighted S3PR [6]. Thus, it extends the
elementary-siphons-computation algorithm in [2]
for a simple subclass of S3PR (called S4PR) to more
complicated S3PR and nets more complicated than
S3PR that includes weakly dependent siphons.

(2) It takes polynomial amount of time to find
independent segments from a linear number of
initial segments and from which to compute

Table 7. Hi (handle added at ith step) and new basic siphons (synthesized from basic circuits).

Handle Basic circuits cb PP0-handles Sb Places

c1 [p22 t10 p26 t16 p22] S1 p10, p18, p22, p26
H1¼ c2 [p21 t17 p26 t9 p21] S16 p2, p4, p8, p13, p17, p21, p26
H2¼ c3 [p21 t13 p24 t4 p21] S10 p4, p9, p12, p17, p21, p24
H3¼ c4 [p21 t8 p25 t18 p21] S18 p2, p4, p8, p12, p16, p21, p25
H4 c5¼ [p21 t17 p26 t16 p22 t5 p24 t4 p21] [p21 t13 p24], [p26 t9 p21], [p22 t10 p26] S4 p4, p10, p17, p21, p22, p24, p26
H5¼ c7 [p20 t19 p25 t7 p20] S* Non-minimal
H6 c6¼ [p21 t3 p23 t2 p20 t19 p25 t18 p21] [p25 t7 p20], [p20 t8 p25] S17 p2, p4, p8, p12, p15, p20, p21, p23, p25

H4¼ [p22 t6 p24] and H6¼ [p21 t3 p23 t2 p20].

Table 6. Dependent siphons and their � for the net in Figure 5.

Dependent siphons Places � relationship

S2 p4, p10, p15, p20, p21, p22, p23, p24, p25, p26 �2¼ �4þ �17
S3 p4, p10, p16, p21, p22, p24, p25, p26 �3¼ �4þ �18
S5 p4, p9, p13, p15, p20, p21, p23, p24, p25, p26 �5¼ �10þ �16þ �17
S6 p4, p9, p13, p16, p21, p24, p25, p26 �6¼ �10þ �16þ �18
S7 p4, p9, p13, p17, p21, p24, p26 �7¼ �10þ �16
S8 p4, p9, p12, p15, p20, p21, p23, p24, p25 �8¼ �10þ �17
S9 p4, p9, p12, p16, p21, p24, p25 �9¼ �10þ �18
S11 p2, p4, p8, p10, p15, p20, p21, p22, p23, p25, p26 �11¼ �1þ �16þ �17
S12 p2, p4, p8, p13, p15, p20, p21, p23, p25, p26 �12¼ �16þ �17
S13 p2, p4, p8, p10, p16, p21, p22, p25, p26 �13¼ �1þ �16þ �18
S14 p2, p4, p8, p13, p16, p21, p25, p26 �14¼ �16þ �18
S15 p2, p4, p8, p10, p17, p21, p22, p26 �15¼ �1þ �16

Table 5. Elementary siphons and their � for the net in Figure 5.

Elementary SMS Places �

S1 p10, p18, p22, p26 [� t9þ t10� t15þ t16]
S4 p4, p10, p17, p21, p22, p24, p26 [� t3þ t5� t8þ t10� t11þ t13� t15þ t17]
S10 p4, p, p12, p17, p21, p24 [� t3þ t4� t11þ t13]
S16 p2, p4, p8, p13, p17, p21, p26 [þ t9� t8þ t17� t16]
S17 p2, p4, p8, p12, p15, p20, p21, p23, p25 [� t1þ t3þ t8� t17þ t19]
S18 p2, p4, p8, p12, p16, p21, p25 [� t7þ t8� t17þ t18]
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elementary siphons. This is better than the expo-
nential amount of time required using the approach
by Li et al. [4].

(3) We show (Theorem 6) that the total number
of elementary siphons, |OE|, is upper bounded by
the total number of resource places |PR| lower than
that min(|P|, |T|) by Li and Zhou where |P| (|T|) is
the number of places (transitions) in the net.

Because only one resource is used in each job
stage and the processes are modeled using state
machines in S3PR, its modeling power is limited. It
cannot model iteration statements (loop) in each
sequential process (SP) and the relationships of
synchronization and communication among SP. At
any operation place of a process, it cannot use
multisets of resources. Future work shall extend the
results to more complex nets than S3PR and
S3PMR.
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Appendix I: Some Proofs

Proof of Theorem 3: There are 4 cases for t in c0 ¼ [r1, t2,
p1, t3, r1] of �(r1). (a) t (t2 and t3) is on a PP-circuit c0 to
�1[�2. �3(t)¼ �1(t)þ �2(t)¼ 0þ 0. (b) t (t2 and t3) is on a
TT-handle to �1[�2. Part of c

0 becomes a TT-handle [t2,
p1, t3]. �3(t2)¼ 0¼ �1(t2)þ �2(t2)¼�1þ 1, �3(t3)¼ �1(t3)þ
�2(t3)¼ �1(t3)þ 0. (c) t (t2 and t3) is on a TP-handle to
�1[�2. �3(t2)¼ 1¼ �1(t2)þ �2(t2)¼ 0þ 1, �3(t3)¼ 0¼
�1(t3)þ�2(t3)¼ 0þ 0. (d) t (t2 and t3) is on a PT-handle
to �1[�2. �3(t2)¼�1¼ �1(t2)þ�2(t2)¼� 1þ 0, �3(t3)¼
�1(t3)þ �2(t3)¼ �1(t3)þ 0.

Proof of Corollary 1: This corollary holds by repeated
applying the reasoning shown in the proof of Theorem 3.

Proof of Lemma 3: Let �1 be of the form [r1 t1 r2 � � � rk]
(e.g. H2 [r7, t11, r10, t12, r5] in Figure 2(b)). Then �1(t1)¼ 1
(t1 is on a TP-handle to �1), yet �(t1)¼ 0 (t1 is on a
PP-handle to other segments) for all other segment �.
Thus, �1 cannot be expressed in terms of (hence is
independent to) those of all other segments.

Proof of Corollary 2: Assume contrarily that �1 depends
on those of all old elementary siphons, �1 depends also
on those of old segments, so does �� since �1¼ ��þ � � � –
contradiction to Lemma 3.

Proof of Lemma 5: (1) It follows from the fact that
�s
¼�s

1�
s
2 (�

e
¼�e

1�
s
2) and Theorem 3. (2) It follows from

the expression in 1.

Proof of Lemma 7: Obvious by Definition 15.

Proof of Lemma 8: (1) It follows from Corollary 1. (2) It
follows from algebra manipulations of equations in 1.

Proof of Lemma 9: There are 3 cases.
Case II.a: u¼ 1 with only one new elementary siphon Se1
corresponding to the new circuit c1 (1c-system) contain-
ing Hi. Hence, we can construct an elementary equation:
�Hi
þ �o¼ �e1 where �Hi

, �o and �e1 are the characteristic
T-vectors � for Hi, the directed path c1\Hi on c1 and Se1

,
respectively. c1\Hi is in Nt; hence, by the assumption, �o is
a linear combination of that of elementary siphons in Nt,
so is �Hi

in Nt0 since �Hi
¼ �e1� �

o.

Cases II.b: u¼ 3 with two new elementary siphons Se1
and Se2

corresponding to the new circuit c1 containing Hi

and the new SCRS2 �2¼ c1[ c2 (2c-system) where c2
containsHc

i with only one new segment. By Lemma 8, �Hi

and �cHi
can be expressed as linear combinations of that

of �o, �e1¼ �c1 and �e2¼ �c1[ c2, where �o is the � for
�2\(Hi[H

c
i ) and is a linear combination of that of

elementary siphons (denoted by �e) in Nt, so are �Hi
and

�cHi
(� for Hc

i ) in Nt0. Now Hc
i contains only one new

segment �n¼�s
1 or �s

2 or �e
1 or �e

2 (other than Hi) and it
may contain old segments; thus, �n (as well as �Hi

) can be
solved in terms of �e in Nt0.
Case II.c: u¼ 5 corresponds to a 3c-system. For the
3c-systema shown in Figure 2(b) containing c1
(¼�1[�2; see Lemma 8), c2 (¼�1[�3) and the new
circuit c3 containing Hi with 3 new elementary siphon �:
�c3, �c2[ c3, and �c1[ c3. ns(Hi) divides �3 into two new
segments �1

3 and �2
3; hence �3¼ �

1
3þ �

2
3. ne(Hi) divides �1

into two new segments �1
1 and �2

1; hence �1¼ �
1
1þ �

2
1.

c3¼Hi[�2
1 [�1

3. Consider the 2c-system formed by c2
and c3. By Lemma 8, we have (i) �Hi

¼ �c2[ c3� �c2, and
(ii) �23þ �

1
1¼ �c2[ c3� �c3. Now, for the 2c-system formed

by c1 and c3, We have (iii) �Hi
þ �13¼ �c1[ c3� �c1, and (iv)

�11þ �2¼ �c1[ c3� �c3. Substituting Equation (1) into
Equation (3), we have �13¼ �c1[ c3� �c1� �c2[ c3þ �c2.
From Equation (4), we have �11¼ �c1[ c3� �c3� �2,
which in turn solves �23¼ �c2[ c3� �c3� �c1[ c3þ �c3þ �2
from Equation (2) and �21¼ �1� �

1
1¼ �1�

�c1[ c3þ �c3þ �2.
Since �c1, �c2, �1, �2, and �3 all can be expressed in

terms of old elementary siphons, so do � for all new
segments (Hi, �1

1, �2
1, �1

3, and �2
3). Similarly, for 3c-

systemb and 3c-systemc, we can show that all new
segment �n can also be solved in terms of �e in Nt0.

Proof of Theorem 4: Prove by induction. At first, we
build c1 with �c1¼ �e1. The thesis obviously holds. Next
assume the assertion holds at (i� 1)th step. By Lemma 9,
so does it at ith step. Thus, it holds at the last step.

Proof of Theorem 5: By Theorem 4, � of every
elementary siphon, denoted by �e, can be expressed in
terms of linear combinations of segment �; that is there is
a matrix V such that V�jS¼jE where jS (jE) is a vector
with ! (|�E|) components of segment � (�e). By
Lemma 6, |�E|�!. Assume |�E|5!, then there are
fewer equations than variables to solve; that is, it is
impossible to solve each segment � in terms of linear
combinations of elementary siphons. This implies that
dependent siphons cannot either – contradiction. Hence,
|�E|¼ |!|.

Proof of Theorem 6: Each new handle Hi must
be a non-PP0 handle (each independent segment as
well); hence, it must contain at least a resource place.
Thus, the total number of iteration steps or independent
segments) is at most |PR|. By Theorem 5, |�E|¼ |!| and
the total number of elementary siphons is upper bounded
by |PR|.
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116 64
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|OE| |PR|( ) (|P|, |T|)

|P| |T| (place) (transitions)

|OE|

(S3PR) (graph-traversal)

T-

S3PR ( S4PR)
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