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ABSTRACT
Assume that N and s are positive integers with 2° < N < 2*+1. It is claimed by
Auletta, Rescigno, and Scarano that the fault diameter of the supercube with N nodes,
is exactly s + 1 if N ¢ {2°+! — 1,221 —2,2% +2°~1 4 1}, and s + 2 otherwise. In this
paper, we will argue that the above claim is not correct. Instead, we will show that the
fault diameter of the supercube with N nodes is s+2if N € {2°+1-2'41]0< i < s-1}.
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1. Introduction and notations

Hypercube topology has been studied extensively as an interconnection network
for parallel machines because of advantages like high bandwidth and low message
latency [6]. One major constraint of the hypercube topology is that the number of
nodes in the network must be 2° for some positive integer s and as such cannot be
defined for any number of nodes. Incomplete hypercube topology proposed in [3]
removed this restriction. However, the incomplete hypercube has serious limitations
from the fault-tolerance perspective. A single node failure may disconnect the
network. In [7], Sen proposed a family of networks, called supercubes and denoted
by Sn. Each Sy contains exactly N nodes. If N satisfies the relation 2° < N <
2¢+1 then Sy is a supergraph of the hypercube with 2* nodes. Later, more studies
has been on the investigation of the topological properties of supercubes extending
results known for the hypercube to the supercube [1,8,9]. This indicates that the
performance of the supercube is almost the same as the hypercube which is of the
approximate size.

The fault diameter [4] is an important measure for interconnection networks.
Due to the non-symmetric property and the variation in the number of vertices,
it is difficult to get the precise value of fault diameter for supercubes. Assume
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that 2° < N < 2**1. In [8], it is proved that the fault diameter of Sy is at most
8+ 3. Later, it is claimed in [1] that the fault diameter of Sy is exactly s + 1 if
N ¢ {2°¥1 —1,2°+1 —2,2¢ + 2~ 1+ 1}, and s + 2 otherwise. In this paper, we will
argue that the above assertion is not correct. Instead, we will show that the fault
diameter of the supercube with N nodeis s+2if N € {2+ -2{+1|0<i < s-1}.

Now, we will formally introduce the definition of supercubes and some graph
terminologies used in this paper. Most of the graph and interconnection network
definitions used in this paper are standard (see e.g., [5]). Let G = (V, E) be a finite,
undirected graph. Throughout this paper, node and vertex are used interchangeably
to represent the element of V. Edge and link are used interchangeably to represent
the element of E. For a vertex u, N(u) denotes the neighborhood of u which is the
set {v | (u,v) € E}. Let u,v be two nodes of G. The distance between u and v,
denoted by dg(u, v), is the length of the shortest path between them. The diameter
of G, denoted by D(G), is the maximum distance between any two nodes in G.
The connectivity of G, denoted by x(G), is the minimum number of nodes whose
removal leaves the remaining graph disconnected or trivial. Let G = (V, E) be a
graph with x(G) = k. It follows from Menger’s theorem that there are k internal
node-disjoint (abbreviated as disjoint) paths joining any two vertices u and v when
k < k. Let F be a subset of V which is referred as a faulty set. G — F denotes
the subgraph induced by V — F. We use di(G) to denote the largest diameter of
G — F for any faulty set F with |F| < k. Obviously, di(G) = oo if k > . The fault
diameter of a graph G is defined as d._,(G). Obviously, we have D(G) < d.—_;(G).

Throughout this paper, we assume that N and s are positive integers with
2° <N < 2'F1, Let u = u(gU(y_y) ... tqyu() and v = Y(s)V(s—1) - - - V(1)¥(0) be two
(s + 1)-bit strings. The Hamming distance between u and v, denoted by h(u,v), is
the number of 4, 0 < i < s, such that u(;) # v(;). The (s + 1)-dimensional hypercube
consists of all the (s + 1)-bit strings as its vertices and two vertices u and v are
adjacent if and only if h(u,v) = 1. Hence each vertex of the (s + 1)-dimensional
hypercube is labelled with a unique integer k with 0 < k < 2%+! — 1. Then the
N-node supercube graph can be constructed from an (s + 1)-dimensional hypercube
as below. For each node u with N < u < 2*+! — 1, merging nodes u and u — 2° in
the (s + 1)-dimensional hypercube into a single node labeled as u — 2 and leaving
other nodes in the (s + 1)-dimensional hypercube unchanged, we obtain an N-node
supercube.

More precisely, let Sy = (V, E) be a supercube. The vertex set V consists of N
vertices which are labeled from 0 to N ~1. Then, each vertex u (0 < u < N—1) can
be expressed as an (s+1)-bit string U(s)U(s~1) - - - U(1)U(0) Such that u = Zf=0 u(¢)2‘.
In other words, an (s + 1)-bit string u(,)t(s—_1) . .. () is a node of Sy if and only if
u < N —1. We use 4 to denote the string U(s)T(g—1) - - - G(1)T(o) and use u* to denote
the string u(5)u-1) - - - U(k+1)U(k)U(k-1) - - - U(0). The vertex set V' is partitioned into
three subsets V1, V;, and V3, where V3 = {u | u € V, ue =1} Vo={ufueV,
ue =0,and u® ¢ V},and V; = {u|u € V, yy, =0, and u® € V}. The edge
set E is the union of E;, E;, F3, and E4, where E; = {(u,v) | u,v € V; UV, and
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Fig.1 The supercube with 12 nodes.

h(u,v) = 1}, By = {(v,v) | u,v € V3 and h(u,v) = 1}, B3 = {(v,v) | u € V3,
v € V, and h(u,v) = 2}, and Eq = {(u,v) | u € V3, v € Vi, and h(u,v) = 1}. Asan
example, a supercube with 12 nodes is shown in Figure 1. In this figure, edges in
E,, E,, and E, are indicated by solid lines and edges in E3 are indicated by dashed
lines. Let Z° = V; UV, and Z! = Vj. Obviously, Z° induces an s-dimensional
hypercube.

It is proved in [7] that k(Sx) is s if 2° < N < 2°+2*~1, and s +1if 2° +2-1 <
N < 2#+1, In [1], it is claimed that the fault diameter dc—,(Sn) of Sy is s +1
if N ¢ {29%1 — 1, 2°*1 — 2, 2° +2°°! + 1} and s + 2 otherwise. However, this
result is not true in some cases. For example, we consider the case Szg shown in
Figure 2. The connectivity of Szg is 5. Let u = 01100 and v = 00011 be two nodes
of Sp9. Assume that the faulty set of Sy is F = {00100, 01000, 01110, 01101}
which is indicated by darkened nodes. Then use breadth first search rooted at u,
dsy —F(u,v) = 6. Thus dsc—1(Sn) > 6 and the result obtained in [1] is incorrect. In
this paper, we will show that dx_(Sn) is s+2if N € {2°+1-2¢4+1|0<i < s—1}.
In the rest of this paper, we assume that N € {2°¥! —2° +1]|0 <4 < s—1}. Note
that 26 + 20! < N < 2°+1,

2. Some basic properties of supercubes

In this section, we present some basic properties of supercubes. For any two
vertices u = U(5)U(s—1) - - - U(o) aNd U = V(5)V(s-1) - - - Y(0)s W€ define h'(u,v) to be
|{é | u@) # v(),0 < i < s~ 1}|. The following properties will be useful in deriving
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o : faulty node

Fig.2 8)y with faulty set F={00100, 01000, 01110, 01101}

de—1(Sn) for N € {2¥1 - 20 +1|0<i<s—1}.

Lemma 1. ds,(u,v) > h'(u,v). Hence dsy(u,v) > h(u,v) — 1. Moreover,
dsy (u,v) > h(u,v) if uVv < N.

Proof. It is observed that any edge (z,y) in E; UE, U E, satisfies h(z,y) =1, and
any edge (z,y) in Ej satisfies (1) h(z,y) = 2, (2) 2(s) # Y(s), and (3) zVy > N,
Hence it is easy to see that we need at least one edge to change the ith bit with
u@) # Y4, 0 <4 < s—1,in any path joining u to v. Hence, dg, (u,v) > h'(u,v).
Thus dsy (u,v) > h(u,v) — 1 for any u, v € Sy.

Now we consider the case that Vv < N. Suppose that ds, (u, v) = h(u,v) - 1.
Thus, there exists a path P in Sy joining u to v of length h(u,v) — 1. Obviously, P
contains an Ej3 edge, denoted by (z,y). Without loss of generality, we may write P
asu—=...— 2,y ... vsuch that (z,y) € E3 and y* ¢ Sy. SinceuVv < N,
there exists some index j, 0 < j < 8 —1, such that u(j) = v(;) and yg;) # u). Thus
the length of P is at least h'(u,v) + 1 > h(u,v). The result is contradictory to the
assumption, hence the lemma is proved. w}

Lemma 2. [6] For any two nodes u and v in the n-dimensional hypercube,
let {a;}h%9)=1 be the decreasing sequence of indices such that ug,) # V()
and {,B,-}::Oh(“"')_1 be the decreasing sequence of indices such that U@y = Y(g,)-
For 0 < i < h(u,v) — 1, we set the sequence P; as u, z;; = u®0+imedh(u,v)
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[+3 i u [+3 - i mo .
xi,2 - zi‘i-h mod h( .v)’ e zi,h(u,v\ = zt,';"((l:;:)'}):-]}.- mod h(u,v) = v; and fol' 0 S j -<_
B Bj 8, )
n — h(u,v) — 1, we set Pjip(u,v) 5 U, ubs To'1s To2r -+ o Toip(u,w)=1 v, v. Then
By, B, ..., P, form n disjoint paths joining u to v.

Lemma 3. Assume that both u and v are in either Z* for i =0, 1. Let {a;}:{5") ™

be the decreasing sequence of indices such that u(q,) # v(a,)- There exist h(u,v)
disjoint paths Py, Py, ..., Py(u,v)-1 in Sy joining u to v with the following properties:
(1) The length of each P; is at most h(u,v); (2) for any node p of these paths,
P() = u(j) = V() where j ¢ {;}2%)=1 and j # s ; and (3) if both u and v are in
Z! then there exists at least one path P; in Z! such that for each internal node ¢
of P; we have ¢* ¢ P; for 0 < j < h(u,v) - 1.

Proof. We are going to construct h(u,v) disjoint paths, Po, Pi, ..., Ph(u,v)-1,
joining u to v such that the length of each path is at most h(u,v). Then the proof
of this lemma follows the construction.

Case 1 Both u and v are in Z°. Since the subgraph of Sy induced by Z° is iso-
morphic to the s-dimensional hypercube, the paths Po, Pi, ..., Pa(u,v)-1 described
in Lemma 2 satisify our requirement.

Case 2 Both u and v are in Z'. Without loss of generality, we assume that
u > v. Then u(s,) = 1, Y(ao) = 0, and ugjy = v(j) for all ap < j < 8. Let Py
be u, o1 = U, Toz = oy, -+ L0,h(uw) = zg,’;l‘(";",)‘il = v. Thus, for any zo,:
with 1 < i < h(u,v), 0,i(ae) < W(ao) and To,ij) = U(j) for ap < j < s. Therefore,
zo; < u for 1 < i < h(u,v). That is, all the internal nodes of Py are less than
u. Thus P, isin Z!. For 1 < i < h(u,v) — 1, let @Q; be the sequence u, ¥y =
uoossmas hnn), gy = A N L = Y M = v, Then
we construct the path P; from Q; by setting P; to be u, z; 1, 4,2, .- .y Tih(u,v) =V
where z;; = y;; if yi; € Sy and z;; = y]; otherwise. Obviously each internal
node q of P, is in Z! and is not in any P; for 1 < j < h(u,v) — 1. Thus these paths,
Py, Py, ..., Py(uw)-1, satisfy our requirement. 0

Lemma 4. Let u and v be two nodes in Sy where u € Z° and v € 2!, Let
S(u,v) denote the set {i | u; = v(;}. Then there exist h(u,v) disjoint paths
Py, Pi,...,Py(uv)-1 in Sy joining u to v with the following properties: (1) The
length of each path is at most h(u,v) +1; (2) q(;) = u;) for each internal node ¢ in
Z9 of these paths where j € S(u,v); (3) exactly one path, go = 4, q1, . - ., Qh(u,v)-2,
v*, v, is of length h(u,v) with all its internal nodes in Z° and (4) if there exists
any internal node q in Z° of Py, Py, ..., Py(u,v)—1 satisfying that p(;) # u(; with
j € S(u,v), then g;, ,_, is not in Py, Py, ..., Phyv)-1-

Proof. We are going to construct h(u,v) disjoint paths, Po, Py, ..., Ph(u,u)-1,
joining u to v such that the length of each path is at most h(u,v) + 1. The proof of
this Lemma can be established as follows.

Because v € Z', we have v* € Z°. Let {a;}1{4")~? be the decreasing sequence
of indices such that u(,,) # Vi) Hence “fa;) # U(q,) for every i. Since Z9 induces
an s-dimensional hypercube, from Lemma 2 there are h(u, v*) internal node disjoint



26 J.-J. Sheu & L.-H. Hsu

paths, Qo, @1, .., Qh(u,v)-2, in Z° joining u to v* such that the length of each Q;
is h(u,v®) = h(u,v) — 1. We mev assume without loss of generality that ¢; = (v*)*
is the last internal node which is adjacent to v* in Q;. Let Q! be the subpath of Q;
joining u to t;. Now we will construct Py, P, ..., Ph(u,v)-1 as follows.

We first set Pj(y,)—2 to be u Q""‘—'")’" v?,v, i.e., appending the edge (v?, v) to the

path Qp(u,v)-2. Thus, the path Py (y,v)—2 satisifies the third requirement (3) in this

lemma. For 0 < i < h(u,v)—3, we let P; beu-—c—)at,,t,,vlft’ G.S'N,andu-i)tl,

otherwise. For 0 < i < h(u,v) — 3, it is obvious that (tp(u,y)—2)* = v*w1-2 ¢ P,
and F; is of length at most h(u,v). And for each internal node ¢ in P;, ai) = ugj)
for j € S(u,v). Then we construct the path Ph(u,v)—1 using the following two cases.

Case 1 u® € Sny: Without loss of generality, we suppose that u* > v. Thus
Ulh) = 1 and v(q,) = 0. Then we set the path Py, )-1 a8 u, 21 = u?, z2 = z{°,

a )-3 Qh(u,v)—2 —_
T3 =230, ..y Th(uw)—1 = zh(u u‘)‘ 2 Thiuw) = zh(u"v) , = v. Because u(ao) =1

and z,(uo) = 0 for 2 < i < h(u,v), 21 > z;. Therefore, all internal node g of
Pi(u,v)-1 are in Z' and q(;y = ug) for j € S(u,v). And Pyy,)-1 is of length
h(u,v). Obviously, these paths, Py, P, ... s Ph(u,v)-1, satisfy our requirement.

Case 2 u® ¢ Sn: In the case, u(,_;) = 1 because u® > N > 2¢ + 271,

We first consider the case that v(,_;y = 0. Obviously, ap = s — 1. Since
U(ao) = 1 and u* ¢ Sn, we have (u®)* < 2* +2°~! < N and (u, (u®)*°) € E(Sn)
by definition of supercube Let Ph(u v)-1 be u, z; = ()%, 25 = 2*, z3 = 37,

2 Th(un)=2 = Tp(us) 3 » Th(u)—1 = Tp(yy 3 = V. SINCE Ti(s_1) = Ti(ag) = 0 for
1 <i < h(u,v) — 1, we have z; < 2° + 2°~! < N. Hence, each internal node q of
Ph(u,v)—l is in Sy and q3j) = U() for Jj€ S(u, ’U). Obviously, Py, Py, .. -yPh(u,u)—l
are disjoint and satisfy our requirement.

Now we consider the case that v(,_;j = 1. Note that Y(s—1) = U(s-1) = 1 and
s —1 € S(u,v). It is observed that p(;) = u(;) with j € S(u,v) for each internal
node p in Py, Py, ..., P(p(u,v)—2). Thus v*~! is not in any P; since s — 1 € S(u,v)
and v*~1(,_1) # v(e1). Since (u®)*~!, (v*)*~1 <2°+ 21 < N -1 and u’ ¢ Sw,
then (u®)*~!,v*~! € Sy and (u,(u*)*"!) € E(Sy). From Lemma 3, there exists
a path W of length h((u®)*~1,v*"!) = h(u,v) — 1 in Z? joining (u*)*~! to v*~!.
Obviously, thiuw)-2 = v""-("-ﬂ-2 ¢ W. Because q(,—1) # u(,~1) for each node ¢ of
path W, W is disjoint from Py, P, ..., Ph(u,vy~2- Then we set the path Py, )1
as u, (u?)*~! 2 v*=1 4. Obviously, the length of Py(y y)—1 is A(u,v) + 1. Since
t;;(u,v)—Z is not in any P, statement (4) holds. Thus, Py, Py, ..., Py(y,v)—1 satisfy
our requirement.

Hence, the theorem is proved. ]

3. Fault diameter of supercubes

In this section, we discuss dx—1(Sn) where N € {2°*! —-2¢ +1|0<i<s—-1}.
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In this case, k(Sy) = = + 1. First, we will prove dx—;(Sn) > s+ 2.
Lemma 5. d._,(Sn) > s+2for N e {2071 -2 +1|0<i<s—1}.

Proof. Let u be the node which is labelled by N~1 and v = @ where h(u,v) = s+1
and h(u®,v) = s. Assume that F = N(u®) N Z° Hence |F| = s and v®,v € 2°.

Let P : u® = z9,2;,...,2; = v be any path in Sy — F joining u® to v. Obviously,
s—i+1 i
. P U
1 = u. Since N € {2°*' -2 +1|0<i < s—-1},u = 11...100...0 and
s—i+1 i

N, .
v = 00...011...1. Obviously, zo = u/ where i < j < s — 1 because u°, u?,

., u*~1 are greater than u and not in Sy. Since 3 Vv < N and h(z3,v) = s,
dsy—r(z2,v) > s derived from Lemma 1. Hence the length of P is at least s + 2.
Therefore d—1(SN) > s + 2. o

Now we will discuss the upper bound of dg,, — r(u,v) for any two vertices u,v €
SN — F in supercubes. We will discuss this problem into three cases depending on
h(u,v). We first consider the case that h(u,v) = s+ 1.

Lemma 6. Let F be any faulty set with |F| < sand N € {2°t1 -2 +1|0<i <
s —1}. Then dgy—r(u,v) < s+ 2 for any u,v € Sy — F with h(u,v) = s+ 1.

Proof.  Since h(u,v) = s + 1, we may assume without loss of generality that

u € Z° and v € Z'. From Lemma 4, there exist s + 1 disjoint paths of length at

most h(u,v) + 1 = s + 2 joining u to v. Thus, dgy_r(u,v) < 8+ 2 can be derived

from the construction. Hence, the lemma is proved. 0
Now we discuss the second case that h(u,v) = s in the following lemma.

Lemma 7. Let F be any faulty set of Sy with |[F| < sand N € {2*+! —2i + 1|
0 <i<s-1}. Let u and v be any two nodes in Sy — F' with h(u,v) = 3. Then
dsN_F(U,‘U) <s+2.

Proof. Let ¢ be the only index such that u(;) = v(¢). We consider the following
three cases.

(1) Both u and v are in Z° From Lemma 3, there exist s disjoint paths,
Py, Py,...,P,_,, of length s joining u to v in Z°. Since k(Sn) = s+1, we may set the
adjacent node of u and v in Z* to be p and q respectively. Then h(p, q) < h(u,v) = s.
By (3) of Lemma 3, there exists one path, denoted by W, of length h(p,q) in Z!
joining p to ¢q. We set P, as u, p Y, g, v. Obviously Py, P, ..., P, are disjoint
and of length no more than s + 2. Since |F| < s, dsy-r(u,v) < 8 + 2 holds true.

(2) Both u and v are in Z!: Without loss of generality, we assume that u > v.
By Lemma 3, there exist s disjoint paths, Py, P, ..., Ps-1, of length s from u to
v such that one of them is in Z!. Let P, : u,z,,%3,...,Z5—1,v be such a path in
Z1. From statement (3) of Lemma 3, z! ¢ P; for 0 < j < s — 1. Then we set P,
as u,u®,z{,z3,...,zJ_,,v*,v. Therefore, Py, Py, ..., P, are 8 + 1 disjoint paths of
length at most s + 2 from u to v. Since | F |< 8, dgy—r(u,v) <8 +2.

(8) uisin Z° and v is in Z*: Let Py, P,, ..., P,—; be the s disjoint paths of
length at most s + 1 claimed in Lemma 4. From statement (2) of Lemma 4, each
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internal node ¢ in Z° of these paths has g = u@y. If any P; is fault-free, then
dsy-r(u,v) < 8+ 1 follows. Hence, we consider the case that each P; contains
exactly one faulty node. Let Py : u = xg, x1, T3, ..., Ts—; = v, T, = v be the
path satisfying statement (3) of Lemma 4 such that z; € Z° for 0 <i < s - 1. Let
the faulty node of Py be =, where 1 < b < s — 1. We will find a fault-free path
depending on the location of ;.

Suppose that z, # z,-,. We construct P§ as u, z, 3, ..., To-1, Th_;, T,
T}, 1) Tot1, Tot2, ... Ts = v. Since zi_l(t) # Uy, zi(t) # u(), and xi+1(t) # (),
all nodes of Py are disjoint from those in P; for 1 < ¢ < s — 1. Thus, Pj forms a
fault-free path of length no more than s + 2. Thus, ds, - r(u,v) < s + 2 follows.

Now we consider that z, = z,-;.

Assume that there exists any internal node p of P;, 0 < i < s — 1, satisfying
Pt) # (). Then we have z5_, ¢ P; for 0 < ¢ < s — 1 by statement (4) of Lemma
4. We modify Py as u = zo, 1, Z2, ..., Ts—2, T5_,, v if °_, € Sn; and as u = zo,
T1, T2, ..., Ts—2, v otherwise. Therefore, we get a fault-free path with length no
more than s.

Now we assume that each internal node p of P; for 0 < i < s — 1 satisfies
P(t) = u(). Obviously, (z_,,z!_,) € E, because (z;-2,7,-1) € E;. We construct
Py as u, 1, T2, ..., o2, T,_g, Th_y, (zt_1)* = v*, v if (z}_,)* € Sy; and u, x;,
T2, ..., Te—2, T:_g, TL_;, v otherwise. Since :c.ﬁ_z(t) # Ue), xﬁ_l(t) # u), and
(zﬁ__l)’(t) # u(y), Py is disjoint from Py, P, ..., P,_;. Therefore, Fy is a fault-free
path of length no more than s + 2.

Thus, dg,—r(u,v) < s+ 2 holds true. ]

Now we discuss the last case that h(u,v) < s ~ 1 in the following lemma.

Lemma 8. Let F be any faulty set of Sy with |F| < s. Let u and v be any
two nodes in Sy — F with h(u,v) < s — 1. Then ds,-r(u,v) < s+2if N €
{2ot1 -2 +1)0<i<s~-1}.

Proof. Without loss of generality, we assume that « > v. Here we consider the
following three conditions.

(1) Both u and v are in Z°. Since the subgraph of Sy induced by Z° is isomor-
phic to the s-diamensional hypercube. According to Lemma 2, in Z° there exist s
disjoint paths, P, P, ..., Ps,_1, of length at most h(u,v) + 2 < s + 1 joining u to
v. All these paths are in Z°. We will propose the (s + 1)-th path P, with length at
most 8 + 2 from u to v such that all internal nodes are in Z!. We first claim that
(u*)*~! is a neighboring node in Z! of u if u* ¢ Sy. Assume that u® ¢ Sy. Since
u* > N > 2° +2°71, we have u’(,_;) = 1. Thus (u*)*"! < 2 +2*~! < N and
hence (u®)*~! € Z'. Moreover, (u, (u°)*~!) € E3 by definition of Sx.

Now we choose one adjacent node in Z! for u and v respectively. We set p to
be u® if u* € Sy, and (u®)*~! otherwise. Similarly, we set ¢ to be v* if v* € Sy,
and (v*)*~! otherwise. We have h(p,q) < h(u,v) +1 < s. By (3) of Lemma 3,
there exists one path, denoted by W, in Z! of length h(p, q) from p to q. We set P,
as u, p A g, v. Obviously P, is of length at most s + 2. Since |F| < s, we have
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dsy-r(u,v) <s+2.

(2) Both u and v are in Z': we let P, P, ..., P,_; be the s sequences of
binary strings defined by Lemma 2. Any P; might not be able to form a path of
Sn~. However, we can modify these sequences to form s disjoint paths, Q:, Q2, ...,
Qs-1, joining u to v.

For 0 <i < h(u,v) — 1, we set Q; as u = 20, 2,1, - - ., %i h(u,v) = ¥ Such that
zij =z, if ;5 € Sy and z;; = 7} ; otherwise with 1 < j < h(u,v) — 1. Similarly,
for h(u,v) < i < 5—1, we set Q; as u = 2,0, Zi,1, -+ Zi,n(uw)+2 = v Such that
zij = i if ;; € Sn and 2;; = z}; otherwise with 1 < j < h(u,v) + 1. By the
definition of supercubes, Qq, @1, ..., @s—; form s disjoint paths of length no more
than hA(u,v) + 2 < s + 1 joining u to v.

Without loss of generality, we assume that u > v. By the same reason as in (3)
of Lemma 3, our construction scheme of Qo demonstrates that (1) Qo is in Z?, (2)
Qo is of length h(u,v), and (3) p* € Z° and p* is not in any Q for 0 < k <s-—1
where p is any node of Q. Then, we construct another path Q, as u, u®, 2§, 2§ 5,
o 28 h(uu) =10 v?, v. Now, Qo, Q1, ..., Qs form s + 1 disjoint paths of length no
more than s + 1. Since | F' |< s, dgy-F(u,v) < 8 + 2 ensues.

(3) uisin Z° and v is in Z!: In this case both u and v* are in Z°. From Lemma
2, there exist s disjoint paths, Py, P, ..., P,—1, of length at most h{u,v*)+2 joining
u to v* in Z° Let P; be the path joining u to v through (v*)* for 0 < i < s -1,
and let P! be the subpath of P; that joining u to (v*)’. Then for 0 <i < s-1,
we set Q; as u i (v*)}, v*, v if v' € Sy, and u £, (v®)?, v otherwise. Obviously,
Qo,Q1,...,Q4s-1 form s disjoint paths of length at most h(u,v*) +3 < s+ 1 from
u to v. Obviously, dsy—r(u,v) < 8+ 1 if any Q; is fauit-free. Hence, we should
concentrate our attention on the case that each Q; has exactly one faulty internal
node.

Suppose that the faulty node of Q; is v* for some i. It is observed from our
construction that v* is not in any Qi for 0 < k < s — 1. We can modify Q; into

uly (v®)?, v*, v and obtain a fault-free path of length at most s + 1.

Now we consider the case that the faulty node of Q; is not v* for every %, that
is, P! is faulty. Note that P! isin Z° for 0 < i < s — 1. Thus F C Z° In the
following, we construct a fault-free path of length less than s+ 2 joining u to v with
all internal nodes in Z!. Then dsy-r(u,v) < s + 2 ensues.

Suppose that u* € Sy. According to Lemma 3, there exists a path R in Z!
joining u® to v of length h(u®,v) = h(u,v) — 1. Hence u, u* £, v is a fault-free
path of length at most h(u,v) <s-1.

Suppose that u® ¢ Sy. Then u(,_;) = 1 because u > N > 2* + 2°-1, We have
(u*~1)* € Sy because (u~!)* < 2° +2°°! < N. And (u,(u®)*"!) € E;. From
Lemma 3, there exists a path S of length no more than h((u®)*~1,v) < h(u,v)
joining (u?)*~! to v. Hence u, (u®)*~! - v is a fault-free path of length at most
h(u,v) +1<s.

Thus, dgy—r(u,v) < s +2. o
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Combining Lemmas 5, 6, 7, and 8, we get the following theorem.

Theorem 1. dx—;(Sy)=s+2if Ne {2°*1 -21 +1|0<i<s~1}.
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