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Abstract

In this paper, we study a Ck/Cm/1/N open queueing system with finite capacity. We investigate the property which
shows that a product of the Laplace Stieltjes Transforms of interarrival and service times distributions satisfies an equation
of a simple form. According to this equation, we present that the stationary probabilities on the unboundary states can be
written as a linear combination of vector product-forms. Each component of these products is expressed in terms of roots
of an associated characteristic polynomial. As a result, we carry out an algorithm for solving stationary probabilities in
Ck/Cm/1/N systems, which is independent of N, hence greatly reducing the computational complexity.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider a Ck/Cm/1/N open queueing model which restrains a finite number of customers in the system,
assuming that both interarrival and service times are Coxian distributions with k and m phases respectively.
There is only one server in the system. Customers are served under the First-come First-served (FCFS) disci-
pline. In this paper, our goal is to explore an invariant solution structure arising in the model where a vector
expression of stationary probability distributions is apparent in system states by using the matrix analytic
method.

Matrix analytic methods have proved useful in the study of Markov chains of phase-type distributions, pro-
viding a solution tool which is relevant for queueing theory and computing probability distributions in many
applications. A fundamental idea is to substitute independent identical distributions by conditional indepen-
dence and conditional distributions given a Markov process. In a specific example, it can be viewed as a sys-
tematic approach to generalization in modelling of bursty traffic in telecommunication networks. Le Boudec
[1] obtained an expression of the stationary probabilities of PH/PH/1 by using this approach. He showed that
0307-904X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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all the eigenvectors used in the expression of the stationary probabilities of PH/PH/1 system are Kronecker
products and gave a formula for computing eigenvalues by constructing an associated characteristic polyno-
mial. Luh [2] used a similar approach to derive stationary probabilities in terms of linear combinations of
product-forms in studying a system of two stations in tandem. In this paper, we shall prove a general result
of existence of vector product-forms of Ck/Cm/1/N which was provided neither in [1] nor in [2].

This method requires finding all singularities of a given matrix function in the unit disk and then using them
to obtain a set of linear equations in the finite number of unknown boundary probabilities. The remaining
probabilities and other measures of interest are then computed from the boundary probabilities. Based on
our approach, unboundary state probabilities can be written as a linear combination of vector product-forms.
Moreover, the solution procedure is independent of N, explicitly reducing the computational complexity of
solving a complicated problem in quasi-birth–death (QBD) processes. We adopt a popular factorization pro-
cedure in algorithm for solving stationary probabilities and calculating the performance of Ck/Cm/1/N system.

The remainder of this paper is organized as follows. In Section 2, we show that in analysis how the detailed
state transitions are defined. We prove that the Laplace Stieltjes Transforms (LST) of interarrival and service
times distributions may satisfy an equation derived from unboundary states of the state balance equations.
The proof includes derivation of a characteristic polynomial and solutions of unboundary state probabilities.
In Section 3, we present that unboundary state probabilities can be written in vector product-forms and show
that the stationary probabilities on the unboundary states can be written as a linear combination of vector
product-forms. For solving complicated numerical problems, we use the least square approach for solving sta-
tionary probabilities and calculating the performance of a Ck/Cm/1/N system. We give an example to illustrate
our approach in Section 4. In Section 5, we draw some conclusions and make recommendations for further
investigation.

2. Analysis of state balance equations

2.1. Interarrival and service times

We consider a Ck/Cm/1/N open queueing system containing a finite number of customers which is denoted
by N. There is one server and service discipline is First-come-First-served. We assume that both interarrival
and service times are Coxian as defined in the following. Assume that both interarrival and service times are of
phase type with the parameters k and m for the number of phases respectively. The length of phase j is expo-
nentially distributed with a given rate kj. After phase j, j = 1,2, . . . ,k, the interarrival time comes to an end
with probability pj, and it enters the next phase with probability 1 � pj. Obviously, set pk = 1 for the last phase.
The LST of the probability distribution function (DF) of the interarrival times is
f �1 ðxÞ ¼
Xk

j¼1

pjkj

xþ kj

Yj�1

r¼1

ð1� prÞkr

xþ kr
;

where we define
Q0

r¼1ð�Þ ¼ 1. A similar characterization of distribution is defined for the service time, except
that the symbols lj and qj, j = 1,2, . . . ,m take the place of kj and pj. f �2 ðxÞ denotes the LST of the service times
with qm = 1. Denote by q the utilization factor in system which is written as a fraction of derivatives of f �i ðxÞ at
x = 0, namely,
q ¼
_f �2ð0Þ
_f �1ð0Þ

:

The system state is denoted as (n, r, i), where n is the number of customers in service and in the waiting
room, 0 6 n 6 N, and r (resp. i) is the phase of the interarrival time (resp. the service time), 1 6 r 6 k (1 6
i 6 m). If n = 0, a state is denoted by (0, r, 0) since the server is idle. The states with 1 6 n < N are called
unboundary states. The states with n = 0 and n = N are called boundary states. The probabilities of state
(n, r, i) are denoted as yn,r,i.
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2.2. The state balance equations

By considering all possible state transitions in the system, we write the following state balance equations of
the system according to its system states:

1. n = 0, r = 1, . . . ,k, i = 0
y0;r;0fkrg ¼
Xm

j¼1

ljqjy1;r;j þ kr�1ð1� pr�1Þy0;r�1;0;
2. 1 6 n < N

(a) r = 1, i = 1
yn;1;1fk1 þ l1g ¼
Xk

l¼1

klplyn�1;l;1 þ
Xm

j¼1

ljqjynþ1;1;j: ð2:1Þ

(b) r = 1, i = 2, . . . ,m

yn;1;ifk1 þ lig ¼
Xk

l¼1

klplyn�1;l;i þ li�1ð1� qi�1Þyn;1;i�1: ð2:2Þ

(c) r = 2, . . . ,k, i = 1

yn;r;1fkr þ l1g ¼ kr�1ð1� pr�1Þyn;r�1;1 þ
Xm

j¼1

ljqjynþ1;r;j: ð2:3Þ

(d) r = 2, . . . ,k, i = 2, . . . ,m

yn;r;ifkr þ lig ¼ kr�1ð1� pr�1Þyn;r�1;i þ li�1ð1� qi�1Þyn;r;i�1: ð2:4Þ

3. n = N

(a) r = 1, i = 1, . . . ,m
yN ;1;ifð1� p1Þk1 þ lig ¼
Xk

l¼1

klplyN�1;l;i þ li�1ð1� qi�1ÞyN ;1;i�1:

(b) r = 2, . . . ,k � 1, i = 1, . . . ,m

yN ;r;ifð1� prÞkr þ lig ¼ kr�1ð1� pr�1ÞyN ;r�1;i þ li�1ð1� qi�1ÞyN ;r;i�1:

(c) r = k, i = 1, . . . ,m

yN ;k;iflig ¼ kk�1ð1� pk�1ÞyN ;k�1;i þ li�1ð1� qi�1ÞyN ;k;i�1:
We define the values of y0,0,0, y0,0,j and y0,r,i to be 0 for i = 2, . . . ,m as well as yn,r,i = 0, n > N, and yn,r,0 = 0,

n > 0. In addition, we set k0 , 0, and y0,r,1 , y0,r,0.
2.2.1. Separation of variables technique

Initially, we consider the equations of unboundary states from (2.1)–(2.4). We use a familiar technique from
the theory of partial differential equations, the separation of variables technique [3]. We assume that the
unboundary state probabilities are of the form:
yn;r;i ¼ DrRiwn 1 6 n < N :
We need to determine Dr, Ri, and w. There will be several values for w, which lead to different Dr and Ri. These
values can be substituted into (2.1)–(2.4)
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For 1 6 n < N,

(2a) r = 1, i = 1
fk1 þ l1gD1R1wn ¼
Xk

l¼1

klplDlR1wn�1 þ
Xm

j¼1

ljqjD1Rjwnþ1:
(2b) r = 1, i = 2, . . . ,m
fk1 þ ligD1Riwn ¼
Xk

l¼1

klplD1Riwn�1 þ li�1ð1� qi�1ÞD1Ri�1wn: ð2:5Þ
(2c) r = 2, . . . ,k, i = 1
fkr þ l1gDrR1wn ¼ kr�1ð1� pr�1ÞDr�1R1wn þ
Xm

j¼1

ljqjDrRjwnþ1: ð2:6Þ
(2d) r = 2, . . . ,k, i = 2, . . . ,m
fkr þ ligDrRiwn ¼ kr�1ð1� pr�1ÞDr�1Riwn þ li�1ð1� qi�1ÞDrRi�1wn: ð2:7Þ

Therefore, there exists a constant x, which is independent of r and i, such that
krDr � kr�1ð1� pr�1ÞDr�1

Dr
¼ �x ¼ li�1ð1� qi�1ÞRi�1 � liRi

Ri
: ð2:8Þ
By induction of (2.8) on r, we find that
Dr ¼ D1

Yr�1

l¼1

ð1� plÞkl

xþ klþ1

¼ D1uðx; rÞ; r ¼ 1; . . . ; k;
where uðx; rÞ,
Qr�1

l¼1

ð1� plÞkl

xþ klþ1

; and
Ri ¼ R1

Yi�1

j¼1

ð1� qjÞlj

ljþ1 � x
¼ Ri;svðx; iÞ; i ¼ 1; . . . ;m;
where vðx; iÞ,
Qi�1

j¼1

ð1� qjÞlj

ljþ1 � x
.

Lemma 1. The relation between x and w is given by
w ¼
Xk

r¼1

prkr

xþ kr

Yr�1

l¼1

ð1� plÞkl

xþ kl
¼ f �1 ðxÞ:
Proof. Multiplying (2.5) by Dr/D1, we have that
li�1ð1� qi�1ÞDrRi�1wn ¼ k1DrRiwn þ liDrRiwn �
Xk

l¼1

klpl

Dl

D1

DrRiwn�1: ð2:9Þ
Substituting (2.9) to (2.7), and dividing by Riw
n�1Dr, it can be written as
krDr � kr�1ð1� pr�1ÞDr�1

Dr
� k1

� �
w ¼ �

Xk

l¼1

klpl

Dl

D1

:

From (2.8), we have
ð�x� k1Þw ¼ �
Xk

l¼1

klpl

Dl

D1

:
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Dividing by (�x � k1), we obtain
w ¼
Xk

l¼1

klpl

xþ k1

Dl

D1

¼
Xk

r¼1

krpr

xþ kr

xþ kr

xþ k1

Yr�1

l¼1

ð1� plÞkl

xþ klþ1

¼
Xk

r¼1

krpr

xþ kr

Yr�1

l¼1

ð1� plÞkl

xþ kl

xþ kr

xþ kr
¼ f �1 ðxÞ: �
Theorem 1. If f �1 ðxÞ and f �2 ðxÞ are LST of DF of the interarrival times and the service times, then we have the
equation:
f �1 ðxÞf �2 ð�xÞ ¼ 1:
Proof. By having (2.7) divided by wn, we give
li�1ð1� qi�1ÞDrRi�1 � liDrRi ¼ krDrRi � kr�1ð1� pr�1ÞDr�1Ri; i ¼ 2; . . . ;m: ð2:10Þ

Again, by making (2.6) divided by wn, it yields
Xm

j¼1

ljqjDrRjw� l1DrR1 ¼ krDrR1 � kr�1ð1� pr�1ÞDr�1R1: ð2:11Þ
Dividing (2.10) by Ri, we obtain
li�1ð1� qi�1ÞDr
Ri�1

Ri
� liDr ¼ krDr � kr�1ð1� pr�1ÞDr�1: ð2:12Þ
Dividing (2.11) by R1, we find
Xm

j¼1

ljqjDr
Rj

R1

w� l1Dr ¼ krDr � kr�1ð1� pr�1ÞDr�1: ð2:13Þ
Combining (2.12) and (2.13), we find that
li�1ð1� qi�1ÞDr
Ri�1

Ri
� liDr ¼

Xm

j¼1

ljqjDr
Rj

R1

w� l1Dr: ð2:14Þ
Rearranging (2.14) and dividing it by Dr, we have
li�1ð1� qi�1ÞRi�1

1

Ri
� li þ l1 ¼

Xm

j¼1

ljqj

Rj

R1

w:
Therefore it produces
li�1ð1� qi�1ÞRi�1 � liRi

Ri
þ l1 ¼

Xm

j¼1

ljqjRj
1

R1

w:
From (2.8), we have
1 ¼ w

Pm
j¼1ljqjRj

ð�xþ l1ÞR1

;

which implies
1 ¼ w
Xm

i¼1

liqi

�xþ li

Yi�1

j¼1

ð1� qjÞlj

�xþ lj
;

and
f �1 ðxÞf �2 ð�xÞ ¼ 1: �
Now, we need to determine the number of roots that satisfy the equation in Theorem 1. Here, we state the
main theorem.
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Theorem 2. The equation f �1 ðxÞf �2 ð�xÞ ¼ 1 has t roots except x = 0. If q < 1, t equals m and the equation has m

roots with positive real parts. If q > 1, t equals k and the equation has k roots with negative real parts. If q = 1, it

is indeterminate.

In order to prove the theorem, we first state Rouché’s theorem:

Rouché’s theorem: Let C be a ‘‘scroc’’, and let /(z) be a function which is meromorphic in C* where there is

neither zeros nor poles on C. Suppose that /(x) can be written as the sum of two function meromorphic in

C*, /(z) = u(z) + w(z), such that u(z) 5 0. Further, suppose that ju(z)j > jw(z)jon C. Then the change in

the argument of /(z) when z describes C is the same as the change in the argument of u(z), and the difference

between the number of zeros, Z, and the number of pole, P, is the same for both functions: Z/ � P/ = Zu � Pu.

Proof of Theorem 2

Case 1: To show that if q < 1, t equals m and the equation has m solutions with positive real parts.Let
u(x) = 1, wðxÞ ¼ f �1 ðxÞf �2 ð�xÞ, /ðxÞ ¼ 1� wðxÞ ¼ 1� f �1 ðxÞf �2 ð�xÞ, and define X�,r as the path in the
x-plane as shown in Fig. 1. We restrict ourselves to � small enough and r large enough for all roots
of f �1 ðxÞf �2 ð�xÞ ¼ 1 with positive real part of a line segment inside X�,r. If we can prove that jw(z)j < 1
on X�,r, then we have Z/ � P/ = 0, equivalently Z/ = P/. Because /(x) has m poles with positive real
parts, it implies that it also has m zeros with positive real parts.
1. jxj = r, r!1.

Then limjxj!1f �1 ðxÞ ¼ 0 and limjxj!1f �2 ð�xÞ ¼ 0. Thus, for large enough values of r, we have
jwðzÞj ¼ jf �1 ðxÞf �2 ð�xÞj < 1: ð2:15Þ

2. Re{x} = �.

Consider f1(x) and f2(�x), i.e., the probability density functions of the interarrival and service
times. If Re{x} < l = min{l1,l2, . . . ,lm}, then we have
f �2 ð�xÞ ¼
Z þ1

0

extf2ðtÞdt < þ1:
Moreover, we have that
jf �1 ðxÞj ¼
Z þ1

0

e�xtf1ðtÞdt

����
���� 6

Z þ1

0

je�xtjf1ðtÞdt ¼
Z þ1

0

e�stf1ðtÞdt; let Refxg ¼ s ¼ f �1 ðsÞ;
Fig. 1. q < 1.
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and
jf �2 ð�xÞj 6 jf �2 ð�sÞj:

Hence, it implies that
jf �1 ðxÞf �2 ð�xÞj 6 f �1 ðsÞf �2 ð�sÞ: ð2:16Þ

By assumption of the utilization factor q < 1, we have _f �1ð0Þ � _f �2ð0Þ < 0. It is easy to show that the
derivative at s = 0 of f �1 ðsÞf �2 ð�sÞ is given by _f �1ð0Þ � _f �2ð0Þ, whose value is less than 0. Because
w(0) = 1 and w 0(0) < 0, w(x) is a decreasing function and its value is less than 1 when x! 0+.There-
fore, for � small enough and 0 < s < �, we have 0 < f �1 ðsÞf �2 ð�sÞ < 1. By (2.16), we have
Refxg ¼ �! jwðzÞj ¼ jf �1 ðxÞf �2 ð�xÞj < 1 ð2:17Þ

By (2.15) and (2.17), we have prove that jw(z)j < 1 on X�,r. By Rouche’s theorem, it has m zeros with
positive real parts since /(x) has m poles with positive real parts. It completes the first part of the
proof.

Case 2: To show that if q > 1, t equals k and the equation has t solutions with negative real parts.Let u(x) = 1,
wðxÞ ¼ f �1 ðxÞf �2 ð�xÞ, /ðxÞ ¼ 1� wðxÞ ¼ 1� f �1 ðxÞf �2 ð�xÞ, and define X��,r as the path in the x-plane as
shown in Fig. 2. We restrict ourselves to � small enough and r large enough for all roots of
f �1 ðxÞf �2 ð�xÞ ¼ 1 with negative real part of a line segment inside X��,r. If we can prove that jw(z)j < 1
on X��,r, then we have Z/ � P/ = 0, equivalently, Z/ = P/. Because /(x) has k poles with negative
real parts, it implies that it also has k zeros with negative parts.
1. jxj = r, r!1.

Then limjxj!1f �1 ðxÞ ¼ 0 and limjxj!1f �2 ð�xÞ ¼ 0. Thus, for large enough values of r, we have
jwðzÞj ¼ jf �1 ðxÞf �2 ð�xÞj < 1: ð2:18Þ

2. Re{x} = �.

We have that with a similar argument in case 1
jf �1 ðxÞf �2 ð�xÞj 6 f �1 ðsÞf �2 ð�sÞ: ð2:19Þ

Now, by the assumption of the utilization factor q > 1, we have _f �1ð0Þ � _f �2ð0Þ > 0. It is easy to show
that the derivative at s = 0 of f �1 ðsÞf �2 ð�sÞ is given by _f �1ð0Þ � _f �2ð0Þ > 0. Because w(0) = 1 and
w 0(0) > 0, w(x) is increasing function and less than 1 when x! 0�. Therefore, for �� small enough
and �� < s < 0, we have 0 < f �1 ðsÞf �2 ð�sÞ < 1. By (2.19), we have
Refxg ¼ ��! jwðzÞj ¼ jf �1 ðxÞf �2 ð�xÞj < 1: ð2:20Þ
Fig. 2. q > 1.
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By (2.18) and (2.20), we prove that jw(z)j < 1 on X��,r. By Rouche’s theorem and /(x) has k poles with neg-
ative real parts, it also has k zeros with negative real parts. However, when q = 1, the zeros may located at
either the positive side or the negative side of the plane. h
Note that k is the number of phases of the arrival process and m is the number of phases of the service time.
For the finite capacity system, a steady state exists if the utilization factor q > 1. It shows that the solution will
take the positive halfplanes in this case. However, if q = 1, it may take either side of the plane because the
solution alternates.
3. A model with matrix forms

3.1. Assumptions and problem description

Let PH(bi,Si) be a Coxian distribution i = 1 and 2 with respect to interarrival time and service time distri-
butions. They may be presented by an initial probability vector (bi, 0) and transition rate matrix
Si c0i

0 0

� �
:

Denote by e 0 a column vector of all entries equal to 1 with an appropriate dimension of its multiplier. c0i is a
column vector such that Sie

0 þ c0i ¼ 0. Note that the representation (bi,Si) fully characterizes a phase-type dis-
tribution (see [4]).

By a matrix representation, it is well known that f �1 ðxÞ may be written as
f �1 ðxÞ ¼ b1ðxI1 � S1Þ�1
c01;
where Ii, i = 1,2, denote identity matrices with dimension of k and m respectively. Similarly, f �2 ðxÞ is written as
f �2 ðxÞ ¼ b2ðxI2 � S2Þ�1
c02:
Following a similar discussion in Liefvoort [5], we define
E ¼
c01b2 S1

S2 c02b1

� �
:

Assumption 1. c0ibi þ Si is irreducible, or equivalently �biS
�1
i > 0, i = 1,2.

Assumption 2. All eigenvalues of E are simple.

It was proved that a zero of f �1 ðxÞf �2 ð�xÞ ¼ 1 is also an eigenvalue of E in [5]. Those solutions are in term
related to the construction of vector product-forms in stationary distributions of states in system. These
assumptions are necessary to construct the product-form solutions in the model.
3.2. Matrix of transition rates

We arrange the states (n, r, i) in lexicographic order and partition of the state space according to the number
of customers, n. For a fixed n the state can be lexicographically ordered in accord with phase r and i. Let
Ln ¼ fðn; r; iÞj1 6 r 6 k, 1 6 i 6 m}, n = 0,1,2, . . . ,N. Ln is defined as sets of unboundary states, 1 6 n <
N. L0 and LN are defined as sets of boundary states. Denote by y the row-vector of stationary probability
partitioned corresponding to Ln as: y = (y0,y1, . . . ,yN) where yn is a row-vector indicating n customers in
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system. Define Q the transition rate matrix of the chain according to the arrangement of Ln. Then Q is of the
block-tridiagonal form and written as
The submatrices could be written as Kronecker product and Kronecker sum whose operations were defined in
Bellman [6] and denoted by � and �, respectively. They are expressed by
A0 ¼ c01b1 � b2; B0 ¼ S1; C0 ¼ I1 � c02;

A ¼ c01b1 � I2; B ¼ S1 � S2; C ¼ I1 � c02b2;

B1 ¼ ðS1 þ R1Þ � S2;

ð3:1Þ
where R1 is a matrix with diag[c1,c2,c3, . . . ,ck] and cj, j = 1,2, . . . ,k, are elements of �S1e 0.
For the state balance equations yQ = 0 and the normalization condition ye 0 = 1, we give the following

equations:
y0B0 þ y1C0 ¼ 0; ð3:2Þ
y0A0 þ y1Bþ y2C ¼ 0; ð3:3Þ
yn�1Aþ ynBþ ynþ1C ¼ 0; 2 6 n 6 N � 1; ð3:4Þ
yN�1Aþ yN B1 ¼ 0; ð3:5Þ
ye0 ¼ 1: ð3:6Þ
It is easy to rewrite the balance equations by substituting equations in (3.1) into (3.2)–(3.5). It yields
y0S1 þ y1ðI1 � c2Þ ¼ 0; ð3:7Þ
y0ðc1b1 � b2Þ þ y1ðS1 � S2Þ þ y2ðI1 � c2b2Þ ¼ 0; ð3:8Þ
yn�1ðc1b1 � I2Þ þ ynðS1 � S2Þ þ ynþ1ðI1 � c2b2Þ ¼ 0; 2 6 n 6 N � 1; ð3:9Þ
yN�1ðc1b1 � I2Þ þ yN ððS1 þ R1Þ � S2Þ ¼ 0: ð3:10Þ
3.3. Vector product-form solutions

In this section, our intention is to construct a solution basis that will solve the system of general equation
(3.9) for 2 6 n 6 N � 1. With this purpose, we define a vector product-form solution.

According to Assumption 2 and Theorem 2, let xs be a simple root of f �1 ðxÞf �2 ð�xÞ =1, s = 1, . . . , t and set
ws ¼ f �1 ðxsÞ, for ws 5 0. Given xs, we define us and vs as follows:
us ¼ a1ðsÞb1ðS1 � xsI1Þ�1
; ð3:11Þ

vs ¼ a2ðsÞb2ðS2 þ xsI2Þ�1
: ð3:12Þ
where a1(s), a2(s) are constants such that us e 0 = vse
0 = 1. Simply, set
a1ðsÞ ¼
xs

ws � 1
; a2ðsÞ ¼

xsws

ws � 1
for ws 6¼ 1:
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We explain it in the following. For any given s, rewriting (3.11) and multiplying it by e 0, we have
usS1e0 ¼ a1ðsÞb1e0 þ xsuse
0 ) a1ðsÞf �1 ðxsÞ ¼ a1ðsÞ þ xs;
implying a1(s) = xs/(ws � 1).
From (3.11) and (3.12), we can easily derive
usS1e0 ¼ a1ðsÞf �1 ðxsÞ ¼ a1ðsÞws; vsS2e0 ¼ a2ðsÞf �2 ð�xsÞ ¼
a2ðsÞ

ws
:

Since there are t solutions, we define s = 1,2, . . . , t,
ws;n ¼ wn
s ðus � vsÞ; 2 6 n 6 N � 1; ð3:13Þ
where us 2 Ck, vs 2 Cm, and w 2 C.

Lemma 2. Given xs, ws,n satisfies Eq. (3.9).

Proof. Inserting (3.13) into (3.9) divided by wn
s , it becomes
ðus � vsÞðS1 � S2Þ �
1

ws
ðus � vsÞðS1e0b1 � I2Þ þ wsðus � vsÞðI1 � S2e0b2Þ

� �

¼ usS1 � vs þ us � vsS2 �
1

ws
ðus � vsÞðS1e0b1 � I2Þ þ wsðus � vsÞðI1 � S2e0b2Þ

� �

¼ a1ðsÞb1 � vs þ us � a2ðsÞb2 �
1

ws
ðus � vsÞðS1e0b1 � I2Þ þ wsðus � vsÞðI1 � S2e0b2Þ

� �

¼ a1ðsÞb1 � vs þ a2ðsÞus � b2 �
1

ws
ða1ðsÞwsb1 � vsÞ þ wsðus �

a2ðsÞ
ws

b2

� �� �
:

Hence it balances Eq. (3.9). h

Now any linear combination of ws,n, 2 6 n 6 N � 1 obviously satisfies the balance equation (3.9). Let
yn ¼
Xt

s¼1

csws;n; cs 2 C; ð3:14Þ
where cs is the coefficients with respect to ws,n. Since the system is stable, at least one of the coefficient cs must
be nonzero. Thus, for an appropriate choice of cs, yn presents for unboundary state probabilities.

4. The numerical method

4.1. Boundary state probabilities

In this section, we are going to present a numerical method to solve boundary stationary probabilities, i.e.,
y0, yN as well as y1. Note y0 is a k-dimensional vector, y1 and yN are km-dimensional vectors.

Let c = (c1,c2, . . . ,ct) where t depends on the condition of q. If q = 1, we may choose t = max{k,m}. It is
easy to check that S1 and B1 are invertible. Let y0 ¼ �y1C0S�1

1 and yN ¼ �yN�1AB�1
1 derived directly from

(3.2) and (3.5). By adopting (3.14) and rewriting (3.3) and (3.4), we have
y0A0 þ y1B� cG1 ¼ 0; ð4:1Þ
yN�2Aþ yN�1B� yN�1AB�1

1 C ¼ 0; ð4:2Þ
where G1 and G2 are defined in accord with the coefficients derived from Eqs. (3.3) and (3.4) at n = N � 1
respectively.
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G1 ¼

a2ð1Þu1

a2ð2Þu2

..

.

a2ðtÞut

2
666664

3
777775
� b2:
Rewriting (4.1) and (4.2), we have
y1½B� ðe01b1 � S2e02b2Þ� � cG1 ¼ 0; ð4:3Þ
cðG1 þG2B�1

1 CÞ ¼ 0; ð4:4Þ
where
G2 ¼ b1 �

a1ð1Þv1

a1ð2Þv2

..

.

a1ðtÞvt

2
66664

3
77775:
Rewriting (3.6), we give
y1½e0 þ ðS�1
1 e0 � S2e0Þ� þ cG3 þ cWN�1G2B�1

1 e0 ¼ 1; ð4:5Þ

where
G3 ¼

w1
ð1�wN�2

1
Þ

1�w1

w2
ð1�wN�2

2
Þ

1�w2

..

.

wt
ð1�wN�2

t Þ
1�wt

2
66666664

3
77777775
;

and W = diag[w1,w2, . . . ,wt]. Combining with (4.5), (4.3) and (4.4), we build up a nonhomogeneous system of
linear equations.

In addition to c, there are t + km unknowns in the equations. Total number of equations are 2km + 1 which
is greater than number of unknowns. Instead of solving it by Gauss Elimination, the solution of this problem
may be obtained by using some other numerical methods. For example, we introduce the least square algo-
rithm method to find the solution.

4.2. The system of linear equations

Here, we are interested in only finitely many of equations and showing an efficient solution procedure in
this section as a summary of discussion previously. To our best knowledge, most of methods discussed in
the queueing theory focus on solving state-balanced equations with infinite number of variables, such as
matrix–geometric methods in [4] and matrix analytic methods in [1]. For solving a system of finite number
of equations and variables, one may use a popular computing software MATLAB for this purpose since there
is a large class of numerical methods which covers a system of simultaneous equations of this kind. Although a
numerical issue is beyond the scope of this paper, an illustrative example is given in next section to compare
numerical results obtained by our method and MATLAB.

Let g = t + km, h = 2km + 1, and denote by z 2 C1�g a vector consisting of unknowns. Let z = (y1,c).
Denote by T 2 Cg�h the coefficient matrix associated with h equations. Denote by b 2 R1�h the constant vector
which is composed of 2km zeros except the last element, i.e., b = (0, 0, . . . , 0,1). Then we can rewrite these h

equations as the form:
zT ¼ b: ð4:6Þ



H. Luh, H.-Y. Wang / Applied Mathematical Modelling 31 (2007) 920–933 931
We have a system of linear nonhomogeneous equation (4.6) where the number of equations is much greater
than that of unknowns. Obviously, g < h if m P 2 and k P 2. Regarding the solution, the uniqueness property
is guaranteed only when the steady state probability of this system exists although the system of (4.6) overde-
termined. For the present model, there maybe involves a more complicated procedure needed to select the
appropriate solution basis from the class of available solutions. Here, we shall make this system of equations
possible to be solved by a popular numerical method, e.g., the least square algorithm introduced in [7] which
minimizes k zT � bk2. Since T has full row rank of g, there is a unique least square solution z* and it solves the
symmetric positive definite linear system:
zTT0 ¼ bT0;
where T 0 is the transpose of T. Because the most widely used method for solving (4.6) is a method of normal
equations, we make use of a general procedure described in [7] as follows:

1. Compute the upper triangular portion of U = TT 0.
2. Set d = bT 0.
3. Compute the Cholesky factorization U = H 0H.
4. Solve qH = d and zH 0 = q.

This algorithm requires O(k3m3) flops. The compression of the g-by-h data matrix T into the much smaller
g-by-g cross-product matrix U when km	 t is attractive. Normally, QR factorization procedure can be used
to attain more efficiency by taking the advantage of structure of T as well as B�1

1 . But it is beyond our focus in
this paper and it is not discussed here.

We solve boundary stationary probabilities y0, yN and unboundary stationary probabilities yn,
1 6 n 6 N � 1 by this approach. Denote by p(n) the general-time probabilities of n customers in system.
p(n) is the marginal probability of yn,i,r, r = 1, . . . ,k and i = 1, . . . ,m. It is natural to see that
pðnÞ ¼
X

r;i

yn;r;i ¼ yne0;

pð0Þ ¼ y0e0:
It is easy to obtain a probability of idle time p(0), and the blocking probability p(N) in the system. Based on
them, other performance measures, e.g. the LST of waiting time and idle time distributions are derived accord-
ingly. However, we omit their discussion here for focusing on a vector-form solution technique. One may refer
to [4] for detail.
4.3. A summary of the algorithm

We describe the algorithm for solving stationary probabilities of a Ck/Cm/1/N system in the following
steps:

Step 1: Solve equation f �1 ðxÞf �2 ð�xÞ ¼ 1, let xs be a solution , s = 1, . . . , t.
Step 2: Compute ws, us, vs.

1. Compute ws defined in ws ¼ f �1 ðxsÞ.
2. Compute us defined in (3.11), us = a1(s)b1(S1 � xsI1)�1.
3. Compute vs defined in (3.12), vs = a2(s)b2(S2 + xsI2)�1.

Step 3: Compute ws,n defined in (3.13).
Step 4: Let yn be a linear combination of ws,n in (3.14).
Step 5: Set a linear nonhomogeneous system consisting of Eqs. (4.3)–(4.5).
Step 6: Use the least square algorithm to solve the linear nonhomogeneous system and obtain coefficients cs,

s = 1, . . . , t, and y1.
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Step 7: Substituting coefficients cs, i = 1, . . . , t to (3.14) and obtain unboundary stationary probabilities yn,
2 6 n 6 N � 1, and boundary stationary probabilities y0 and yN.

Step 8: Compute the system-size probability p(n), n = 0,1, . . . ,N.

It is important to note that no matter how large N is, we only need to solve coefficients cs,s = 1, . . . , t. Hence
the computational complexity is greatly reduced.

5. An example

We solve the E2/E2/1/4 for illustration of our approach. The system has the following features:
N ¼ 4; b1 ¼ b2 ¼ ð1; 0Þ; k1 ¼ k2 ¼ 4; l1 ¼ l2 ¼ 5:
Step 1: Solve equation f �1 ðxÞf �2 ð�xÞ ¼ 1, let xs be a solution , s = 1,2. We have
f �1 ðxÞ ¼
4

xþ 4

� �2

; f �2 ðxÞ ¼
5

xþ 5

� �2

;

and the solutions of f �1 ðxÞf �2 ð�xÞ ¼ 1 are

x1 ¼ 1:0000; x2 ¼ 6:8443:
Step 2: For solutions ws, us, vs.
1. Compute ws defined in ws ¼ f �1 ðxsÞ.
w1 ¼ f �1 ðx1Þ ¼ 0:64 andw2 ¼ f �1 ðx2Þ ¼ 0:1361:
2. Compute us defined in (3.11), us = a1(s)b1(S1 � xsI1)�1.
u1 ¼ ð0:5555; 0:44445Þ and u2 ¼ ð0:7305; 0:2695Þ:

3. Compute vs defined in (3.12), vs = a2(s)b2(S2 + xsI2)�1.
v1 ¼ ð0:4445; 0:5555Þ and v2 ¼ ð�0:5844; 1:5844Þ:

Step 3: Compute ws,n defined in (3.13), ws;n ¼ wn

s ðus � vsÞ, n = 2,3.
w1;2 ¼ ð0:1011; 0:1264; 0:0809; 0:1011Þ;

w1;3 ¼ ð0:0647; 0:0809; 0:0518; 0:0647Þ;

w2;2 ¼ ð�0:0079; 0:0214;�0:0029; 0:0079Þ;

w2;3 ¼ ð�0:0011; 0:0029;�0:0004; 0:0011Þ:
Step 4: Let yn be a linear combination of ws,n that is yn ¼
P2

s¼1csws;n, cs 2 C.
Step 5: Set a linear nonhomogeneous system consisting of Eqs. (4.3)–(4.5).
Step 6: Use the least square algorithm to solve the linear nonhomogeneous system and obtain coefficients cs,

s = 1, 2, and y1:
c1 ¼ 0:56472; c2 ¼ �0:32645;

y1 ¼ ð0:1073; 0:0596; 0:0778; 0:0697Þ:
Step 7: Substituting coefficients cs, s = 1,2 to (3.14) and obtain stationary probabilities yn, n = 0,2,3,4.
y0 ¼ ð0:0747; 0:1618Þ;

y2 ¼ ð0:0592; 0:0639; 0:0463; 0:0541Þ;

y3 ¼ ð0:0366; 0:0444; 0:0291; 0:0359Þ;

y4 ¼ ð0:0128; 0:0228; 0:0139; 0:0277Þ:
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Step 8: Compute the system-size probability p(n), n = 1, . . . ,N.
pð0Þ ¼ 0:2365; pð1Þ ¼ 0:3144;

pð2Þ ¼ 0:2235; pð3Þ ¼ 0:1460;

pð4Þ ¼ 0:0772:
The numerical results are reconfirmed with an existing model in a textbook [8], of which numerical solu-
tions are obtained by MATLAB and simulation as given in the following table. The maximal absolute error
between each probability value compared with that in our method is within 0.5%.
p(0)
 p(1)
 p(2)
 p(3)
 p(4)
MATLAB
 0.2346
 0.3124
 0.2225
 0.1479
 0.0826

Simulation
 0.2396
 0.3149
 0.2233
 0.1422
 0.0799
6. Conclusions and remarks

In this paper, we have analyzed the Ck/Cm/1/N open queueing system containing finite number of custom-
ers. We have found properties which show that a product of the LST of interarrival and service times distri-
butions satisfies an equation derived from unboundary states of the state balance equations. According to the
state balance equations, we present that the stationary probabilities on the unboundary states can be written
as a linear combination of product-forms. Each component of these products can be expressed in terms of
roots of the system of equations. We introduce the least square algorithm to solve the numerical problem,
which is independent of N, hence greatly reducing the computational complexity. It is observed in practice
that the greater N the better numerical precision of the solution is, although the computational complexity
of the algorithm is independent of the capacity N. We suggest that the methods presented here may be
extended to a multi-server open system containing finite number of customers with phase type interarrival
and service times distributions.
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