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Abstract: We consider a queueing system with two stations in series. Assume the service time 
distributions are general at one station and a finite mixture of Erlang distributions at the other.  
Exogenous customers should snatch tokens at a token buffer of finite capacity in order to enter the system. 
Customers are lost if there are no tokens available in the token buffer while they arrive. To obtain the 
stationary probability distribution of number of customers in the system, we construct an embedded 
Markov chain at the departure times. The solution is solved analytically and its analysis is extended to 
semi-Markovian representation of performance measures in queueing networks. A formula of the loss 
probability is derived to describe the probability of an arriving customer who finds no token in the token 
buffer, by which the throughput and the optimal number of tokens are also studied. 

Keywords: Embedded Markov chains, probability distributions, queueing networks. 
____________________________________________________________________  

1. Introduction   

n this paper we consider an open queueing model of finite capacity. The system consists of  
two stations in series and a token buffer whose size is limited. The simple structure of the 

model is depicted in Figure 1 and explained as follows. There are only one server and one 
queue at each station. Customers arrive from the exterior of the system following a Poisson 
distribution, entering the system at station 1 and departing at station 2. We assume the service 
time follows a finite mixture of Erlang distributions at serve 1 but a general distribution at the 
serve 2. The service discipline is First-Come-First-Served.  

 

Queue 1  

Token Buffer 

Server 1  Server 2  Queue 2  

 
Figure 1. 

Suppose the size of the token buffer is fixed and denoted by N. An arrival may enter 
station 1 if there is at least one token available at the token buffer, or it will be rejected by the 
system, thus resulting in a lost customer. Customers attend stations in sequence to obtain two 
services provided by server 1 and server 2. They leave the system and return tokens to the 
token buffer immediately when they complete their works. When a customer takes a token he 
will join server 1 if the server is idle, but wait for service in queue 1 if server 1 is busy. After 
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finishing service in server 1, he then joins server 2 if the server is idle otherwise he waits in 
queue 2. Each server can serve only one customer at a time. Assume either the capacity of 
queue 1 or queue 2 is at least as big as N. Hence, there is no balking of service at station 1 if 
server 2 is busy. Such a fundamental model can be used for studying the performance on a 
manufacturing line in which tokens may represent workers or kanbans while the customers 
stands for jobs. Buzacott and Shanthikumar [1] have pointed out the number of tokens is an 
important decision that affects jobs’ travel time and throughput. For instance, too many tokens 
can lead to a poor flow time in the system, causing too much cost. To attain analysis of the 
behavior of N, both the joint stationary probabilities and the average number of tokens waiting 
in the token buffer are studied. 

If there is only one server in the network, then the model is the same as the M/G/1/N 
loss system where N is the maximum number of customers in the system. Miller [4] has 
derived a recursive formula of Laplace-Stieltjes transform for the mean value of the 
distribution of the lengths of busy periods for the M/G/1 finite queue. If there is no external 
arrival, and N tokens are replaced by N jobs in the network, the model becomes a closed 
model which has been considered in Daduna [2]. He derived the Laplace-Stieltjes transform of 
the job’s cycle time, given the state of system at the beginning of the cycle. A modification of it 
was made to calculate the departure process by Luh [3]. Based on it, we will calculate a 
probability that an arriving customer finds no token in the token buffer, which is called a loss 
probability. Since the loss probability is a function of the number of tokens, of interest here is 
the study of a loss probability subject to a prescribed level of throughput. It will be carefully 
analyzed and developed in this paper according to the property of the joint stationary 
probability.  

The paper is organized as follows. In Section 2, we give a detailed description of this 
model and construct an embedded Markov chain. In Section 3, by considering the embedded 
Markov chain we obtain the stationary distribution at the system. In Section 4, we present an 
analysis to compute the loss probability. In Section 5, a procedure of choosing an optimal 
number of tokens that minimizes the expected cost is also developed. Numerical examples are 
given for illustrating the property of the loss probability in terms of the number of tokens in 
the system.  

2. Model Description 

Consider a queueing system with Poisson arrivals, which consists of a network including 
two stations in tandem, single-server at each station and a token buffer as introduced in 
Section 1. Assume that the total number of the tokens available in the network is fixed to a 
maximal capacity N. Equivalently, the maximal capacity of each station is no less than N. 

In addition, we have the following assumptions. The customers arrive according to a 
Poisson distribution with parameter λ , and the service times at server 2 have a general 
distribution function ( ),F t  for t ≥ 0, with F (0 )+ <1, and has a finite expectation. The 
service times at server 1 are taken from a finite mixture of Erlang distributions with phase 
parameter M, in which the service time at each phase follows an exponential distribution with 
parameter λ′ . In specific, the finite mixture of Erlang distributions is written as follows,  
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Suppose kZ  and jS  represent the time taken by k arrivals and by j phases in a given 
service interval respectively. Evidently, the conditional probability distributions of kZ  and iS  
are of the Erlang type. Without loss of generality, all service times and the arrival process are 
assumed to be statistically independent. The following notations will be used throughout the 
paper. Additional notations will be introduced when necessary.  

Notations 
 

( )G t  : a finite mixture of Erlang distribution.  
( )F t  : a general distribution function.  
( )F dy  : a density function, i.e. { }Pr | ( , , )d Y y m i j k≤ = . 
( , , )i j kπ  : a steady state probability of state ( , , )i j k . 
, iX X  : the random variable drawn from the stream of ( )G ⋅ . 

Y  : a random variable drawn from the stream of ( )F ⋅ . 
, ( )g tλΓ   : an Erlang distribution with parameters λ  and g,  
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jS  : a random variable of , jλ ′Γ , i.e., time spent in completing j phases. 
kZ  : a random variable of Γ λ , k , for 1 1k N≤ ≤ − . 

Pr{r, r ′ }    : a transition probability from state r to state r ′ . 

Let nt , = 0,1,2,...n , be the times for the customers departing from server 2. Consider 
the process ( ), ,n n ni j k  that embedded at nt , = 0,1,2,...n , where ( )n ni k  is the number of 
the customers presently at station 1( )2 , and nj  is the number of phases left in the current 
service time of server 1 where = 0nj  denotes server 1 is idle. Clearly, the domain of 
( ), ,n n ni j k  is that of ≤ ≤ −0 1ni N , ≤ ≤0 nj M , and ≤ ≤ −0 1nk N . Note that by definition, 
it has ≤ + ≤ −0 1n ni k N  and ni =0 implies nj =0. Let R be the set of states of this system. 
Then the process is modeled as an embedded Markov chain with state space R because the 
Poisson arrivals and the linear combination of exponential distributions of service times are 
assumed. The state space R of this process is composed of the union of the following four 
classes: 

 
{ }1i.  (0,0,0)  : i.e., there are no customer in each station.C =  

{ }2ii. (0,0, ) : 1 1  : i.e., there are only  customers in station 2 , and  the 

              staion 1 is empty.
n n n  C k k N k= ≤ ≤ −

 

{ }3iii. ( , ,0 ) :1 1;1  : i.e., there are  customers in station 1 , and  

                phases left in the current servic time in station 1.
n n n n n

n

 C i j i N j M i

j

= ≤ ≤ − ≤ ≤

{ }4iv. ( , , ) : 1 , 1  and + = -1, 1  : i.e., there are  customers 

               in station 1 and   customers in  station 2 , and   phases left in the current service 

              

n n n n n n n n n

n n

C i j k i k i k N j M i

k j

= ≤ ≤ ≤ ≤

 time of server  1.
Thus 1 2 3 4R C C C C= ∪ ∪ ∪ . 

The total number of the elements in R for each n > 0, is calculated by 

3
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Because transitions in R is complicated, we will not write out the transition probabilities 
in matrix form explicitly. Instead, the transitions of states will be given and the conditions of 
joint probabilities will be discussed and presented in Section 3. Next, we should claim the 
embedded Markov chain at this model is irreducible and aperiodic. 

Lemma 1. The embedded Markov chain { =( , , ),   1,2,3,...n n ni j k n } is irreducible and aperiodic. 

Proof. 

(i) For each n >0, consider three cases according to their classes in R. The following diagrams 
(Figures 2-4) illustrate the irreducible property: First, in each figure, let →( , , ) ( , , )i j k l m n  
denote the transition from state ( , , )i j k  to state ( , , )l m n  with probability greater than 0, for 
every pair ∈( , , ), ( , , )i j k l m n R . In Figure 2 we illustrate the transitions among four different 
classes. In Figure 3 (4) we illustrate the transitions between different states in C3 and C4 
respectively. Therefore all pairs of the states are communicative, which implies the Markov 
chain is irreducible.  
 

 

(  0 ,0 ,0  )  

(  0 , 0 , 1  )  

(  0 , 0 , 2  )  

(  0 ,0 , i  )  

( 0 , 0 , i + k )  

( 0 , 0 , N - 1 ) 

(  1 , 1 , 1  )  

(  i ,  j ,  k  )  

(  1 , 1 , 0  )  

(  i ,  j ,  0  )  

C 1  

C 2  

C 3  C 4  

 
Figure 2. 

 
 

(  i ,  j ,  0  )  

(  i + e , j , 0  )  

(  i + e- 1 , j , 0  ) 

(  i + 1 , j , 0  )  

(  i + l- 2 , j , 0  ) 

. 

. 

C 3  

e  c u s t o m e r s   
e n t e r  t h e   
s y s t e m  

. .
. 
. 

.

. 

. 

. 

 

 

( i, j, k ) 

( i+e-t, j, k+t-1 ) ( i, j, k+e-2 ) 

e customers enter the system 
and t customers  
move from server 1 to  
server 2 

no customers  
enter the  
system C4 

. 

. 

. 

. 

 
Figure 3. Figure 4. 

 
(ii) The probability that each state in R returns to itself is greater than 0 for F(0 + )<1 and 
G(0 + )<1. The greatest common divisor of periods that each state returns to itself is 1.  
Thus this chain is aperiodic. As a result, the Markov chain is irreducible and aperiodic.   
Because the number of states in the embedded Markov chain in this system is finite, all 
states are positive recurrent.     
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3. Equilibrium Distributions of the Embedded Markov Chain  

Since the system is finite, the steady state is achievable as long as the Markov chain is 
aperiodic. Let  

[ ]Pr{ , } , , .P r r r r R′ ′= ∈  

be the transition probability matrix of the embedded Markov chain. We shall determine P, 
and claim the Markov chain is ergodic. For achieving this aim, we define some 
independent random variables and corresponding distributions in the following.   

 Define： 
   { }P rj jS Yσ = < ,                            (1) 

   { }Prj jZ Yγ = < ,                            (2) 

   { }Pri iZ Xα = < ,                            (3) 

   , { }Pri j i jZ Sβ = < ,                           (4) 

,
1

{ }Pr
m

m n i n
i

X S Yυ
=

= + <∑ ,                        (5) 

   1{ }Pr S Yσ = > ,                            (6) 

   1Pr{ }Z Yγ = > ,                            (7) 

   1

_
{ }Prj jZ Sβ = > ,                           (8) 

   1

_
{ }Pr Z Xα = > .                            (9) 

Here we introduce derivation of transition probabilities as follows. 

Lemma 2. By Equations (1)-(9) and assumptions for steady states, we have the following transition 
probabilities: 

(a) Pr{(0,0,0),( ′ ′ ′, ,i j k )} 

 = 1

2
Pr{( , ,1),( , , )} ( ) Pr{(0,0,1),( , , )}

1 1
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(c) Pr{(0,0,k), ′ ′ −( , , 1)i j k }      

=

γ

γ γ σ σ σ

γ σ σ σ

′ ′ ′ ′+ − − +

′ ′− − − +
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Proof. 
(a) Given a state (1, j, 0), it is with probability 1 that the transition from state (0, 0, 0) to 

state (1, j, 0) for some j. Note that server 2 remains idle until an arrival occurs and 
moves to station 2 from station 1. If there are no customers occur during his service 
time at station 1, the probability of reaching state ( ′ ′ ′, ,i j k ) is given by Pr{(0, 0, 
1),( ′ ′ ′, ,i j k )}. Otherwise, it leads to Pr{(i, h, 1),( ′ ′ ′, ,i j k )} when there are exactly i 
arrivals during his service at station 1 and the service time at station 1 is Erlang-h. 

(b) There are two cases to be considered as discussed in (a). If there are no arrivals 
occurring during the service of Erlang-j, the probability of reaching state ( ′ ′ ′, ,i j k ) is 
given by Pr{(0, 0, 1),( ′ ′ ′, ,i j k )} when i = 1, otherwise it is Pr{(i - 1,h,1),( ′ ′ ′, ,i j k )} when 
i  ≥ 2. The similar arguments are applied to the case of more arrivals occurring during 
the service time of Erlang-j. 

(c) If i′ = j′ = 0, then no arrival occurs during the service time at station 2. The probability 
of it is γ . If i′ > 0, then during the service time Y there have arrived i’ customers and 
one of i’ customers moved h − j′ + 1 phases in service given that it requires a service 
time of Erlang-h. If it requires a service time of Erlang-j’ for j’ > 0, then with 
probabilityσ 'jq  it remains in phase j’ when Y is completed. Given the total number of 
tokens available for arrivals, multiplication of the probabilities of number of arrivals 
and number of phases in summing up for all possible h gives the results required. This 
is because of assumption of independence of arrivals and the service times.  

(d) If i’ < N – k – 1, then there have arrived i′ – i + 1 customers during the service time Y 
and no lost customers. Otherwise, the number of arrivals may exceed the number of 
tokens available. Given h in service time, the total of number of phases in service is j 
phases plus h-j phases provided that a current service time is of Erlang-h. Applying the 
independence assumption of service times and arrivals again, the probabilities are 
calculated based on the condition of a number of arrivals. 

(e) If i + k = k′ + 1, then no arrival occurs during the service time Y and i customers 
complete their services at station 1. It includes that the first one of i customers finishes 
j phases and exactly i-1 customers have completed entire services at station 1.  The 
probability of it is 1, 1, 1( )i j i jγ υ υ− − +− . If i – k < k′ + 1, then there are k′ – i – k + 1 
arrivals and there are ′ − +1k k  customers in total move to station 2 during the service 
time at station 2. Notice that exactly ′ −k k  of them have completed entire services. If 
k’ = N – 1, the similar arguments applies. 

(f) There are no arrival and no finishing in service at phase j during the service time Y in 
case of i′ = i. If i ′> i, there are i′ – i arrivals but it does not finish service at phase j 
during Y. If i’ = N – k, the similar arguments applies. 

(g) There are k′ – k + i′– i + 1 customers entering the system. Only k′– k – i + 1 of them 
have reached station 2 from station 1. Thus the same arguments in (e) are applied.  
However, it must take into account all possible service phases h. In the case of 

≠ − −' ' 1i N k , there are h – j′ + 1 phases of service during Y as it has the service time 
of Erlang-h at station 1. The probabilities are computed according to the number of 
tokens available, i.e., the effective arrivals.  

(h) There are no arrivals during the service time Y and it has moved exactly j – j′ + 1 
phases during it.  
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(i) There are no arrivals and exactly one customer moves to station 2 from station 1 
during Y. If i =1, then the customer moving from station 1 to station 2 has finished 
service of j phases; otherwise, after he finishes his service the next customer will move 
to phase j′ given its service time is Erlang-h.        

Lemma 2 defines the transition probabilities within R. From the definition of states in 
the model, the steady-state probabilities π exist. The steady-state balance equations for P 
are given by  

π(r)P = π(r) and ( ) 1r R rπ∈ =∑  where r R∈ .              (10) 

Let π(r) be the steady-state probability of state r in the system where r = (i, j, k).  
Unfortunately it does not posses a formula-type solution of π(i, j, k). Based on Equations 
(1)-(9), it involves multiple integrations in obtaining transition probabilities of entries in P. 
For solving it, numerical solving techniques should be employed with present computing 
facilities. In addition, it would be also desirable to make use of the fact that coefficient 
matrix has a large number of zero entries where a sparse matrix solution procedure is 
appropriate. However, all of these associated with particular numerical solving skills are 
not our goal in this paper and thus are not discussed in detail here.   

In general, π may be considered as a function of N. Given the size of N, in terms of a 
number of tokens available, Procedure 1 in the following determines the joint probabilities. 

Procedure 1. A solution procedure for π 

Step 1: Compute the Probabilities (1)-(9). 

Step 2: Attain π by solving (10). 

In short, after π is solved with a standard solving Procedure 1, several performance 
measures may be derived by using π. For example, the probability of idle of server 2 is  

1

1 1
( , ,0) (0,0,0)

N M

i j
i jπ π

−

= =
+∑ ∑ . 

Similarly, a probability of idle time of server 1 is  

π π
−

=
+∑

1

1
(0,0, ) (0,0,0)

N

k
k . 

Other conventional measurements are easy to obtain by basic queueing formulas.   

However, the loss probability of customers are different from existing formulas since 
the system has general service time.  In the sequel, we shall describe how to derive the loss 
probabilities by π.   

4. Probability of Loss of Arrivals 

The definition of the loss probability in our model is the probability of that an arrival 
who finds the token buffer empty is rejected by the system. From Section 3 we derive the 
joint distribution considered at the departure points. By the definition, state (i, j, k) means 
there are ( − −N i k ) tokens in the token buffer that the departure customer observes 
including the one which was just released. It is clear − −N i k  ≥ 1. Now let , 1n nη ≥  
represent the probability that a departure finds there are n tokens in the token buffer. Thus 
we have the following formulas of , 1n nη ≥ : 
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1

1 , 1
1

( , , ) ( , ,0) (0,0, ) , 1n
j M

i k N n
i k N n

j M

i j k N n j N n nη µ µ µ
≤ ≤

+ = −
≤ ≤ − −
≤ ≤

= + − + − ≥∑ ∑ . 

In particular, when = 1n  we have 

1
1 1

1 , 2
1

( , , ) ( 1, ,0) (0,0, 1)
i k N j M

i k N
j M

i j k N j Nη µ µ µ
+ = − ≤ ≤
≤ ≤ −
≤ ≤

= + − + −∑ ∑ , 

which is the probability of a departing customer observing one token in the token buffer.  
Notice that what we are interested in is the probability an arrival finds no token, i.e., a 
probability of losing customers. Obviously, η1  is not the loss probability. However, this is 
the hint for us to proceed. 

 Notice that when an arrivals finds no token in the token buffer the system must have 
passed through the state where there was only one token in the token buffer. The other fact 
is that there is at least one token seen by a departure whenever it leaves the system. Then 
we divide all states into two parts to study the loss probability: 

(i) Consider state ≥( , , )  , 1i j k k , i.e., there is at least one customer in the station 2. If there 
are more than N – i – k + 1 customers entering the system before a customer in station 2 
completes his service, the probability of losing one or more arrivals occurs. 

(ii) Consider state ( , ,0)i j , i.e., there are no customers in station 2. If there are more than N 
- i customers arrive at the system during the service times of j  phases, then we have a 
probability of losing one or more arrivals. Based on the arguments above, a theorem of 
the loss probability is stated as follows:  

 
Theorem. The loss probability θ  is derived by        

θ π γ π γ
− − −

− + − +
= = = =

= − ⋅ + ⋅∑ ∑ ∑ ∑
1 1 1

1 1
2 1 1 1

( , , ) (0,0, )
N m M N

N m N k
m k j k

m k j k k  

       { } { }π π
−

− + +
= =

+ ⋅ < + + ⋅ < +∑ ∑
1

1 1
1 1

( , ,0) Pr (0,0,0) Pr .
N M

N i j N
i j

i j Z Y S Z Y X  

Proof. The first term of right hand side is written for the case when k ≥ 1 and i ≥ 1. In this 
case the loss probability occurs when there are more than N – i – k customers come to the 
system. The probability of more than N – i – k customers come to the system is 
Pr{Z − − +1N i k <Y}, namely 1N i kγ − − + = 1N mγ − +  as m = i + k. This probability is considered for 
all i + k ≤ N − 1. When i = 0, implying j = 0, it leads to the second term. If k = 0, the 
service time at station 1 should be taken into account. Depending on the service times at 
stations 1 and 2, a lost customer occurs when a number of arrivals during the service time 
exceeds the number of tokens available in the token buffer. According to the initial state, we 
have the third and the fourth term.                     

Notice that the loss probability is a function of N. From the derivation of it in 
Theorem, it decreases as N increases. The existence of such an N is immediately clear since 
the domain of N defined in our paper is not empty and finite. 

The above probability distribution is a function of the decision variable N. The 
distribution exhibits certain monotonicity properties in relation to N. This will play a 
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crucial role in the optimization part of this study. We can now state the basic property of 
monotonicity for the steady state behavior of the system. 

Corollary 1. Let ( )iL N  be the expected number of customers at station i provided there 
are N tokens in the system, where N < ∞ . Then, we have 

(a) ≤ +1 1( ) ( 1)L N L N , 

(b) 2 2( ) ( 1)L N L N≤ + .        

Proof. Because the service times at stations 1 and 2 are independent and nonnegative, we 
discuss (a) only. Since the arrival process is Poisson, the number of arrivals grows 
stochastically nondecreasingly as the system flow time increases; so does the number of 
customers in system. Hence, the expected number of customers in system follows.                       

5. An Optimization Model 

   We are interested in minimizing a cost function, C(N), in term of an expectation of a 
number of customers at each station plus the maintenance cost of N tokens subject to the 
constraint that the loss probability must not exceed a certain number and the throughput 
must cross over above a specified level. Denote by θ(N) and T(N) with respect to the loss 
probability and the mean throughput with N tokens in the system. Then it is 
correspondingly equivalent to develop a procedure of minimizing C(N) subject to θ(N)<ω1 , 
T(N) > ω2 , where ω 1 is the tolerance of loss probability and ω2 is the minimal level of 
throughput. Before considering optimization, we verify the monotonicity of θ(N) and T(N).  

Corollary 2. Under the steady-state assumptions, we have 

 (1)  ( )Nθ  is monotonically nonincreasing of N, i.e., ( ) ( 1)N Nθ θ≥ + . 

(2) T(N) is monotonically nondecreasing of N, i.e., ≤ +( ) ( 1)T N T N . 

Since the expected number of customers during a specified time interval will converge, the 
corollary is clear by using the fact of Theorem and Corollary 1. It shows that the number 
of throughput increases in average when the total number of tokens is increased by one. 
This is easily verified to be true by modeling the system with a closed cyclic model of 
tokens and studying its cycle time. The distribution of the total number of tokens at each 
station will be identical to that of a closed cyclic system with N customers. The work that 
follows is an extension of Luh’s model [3]. The proof is omitted here.     
 In particular, the mean throughput of this system can be written as λ(1 - θ(N)). If 

1 21 /ω ω λ≤ − , let 1ω ω= ; otherwise, let 21 /ω ω λ= − . To determine *N , we begin with 
N = 1. If ( )Nθ ω> , then increasing N by 1 will reduce the value of θ. Checking the value 
of ( 1)Nθ + , it reiterates the procedure until ( 1)Nθ ω+ ≤ . Let = +* 1N N . We propose a 
heuristic method which minimizes C(N)  by taking Theorem into account. Moreover, 
because N * minimizing C(N) may not be an integer, Procedure 2 that searches for an 
integer N  which is suboptimal to N* is described as below.  

Procedure 2. Search for N : 
Step 0:  Let = 1N . 

Step 1:  Compute θ(N). 

Step 2:  If ( )Nθ ω≤ , then go to step 3; else let N  = N +1 and go to step 1. 

Step 3:  Print N = N  and stop. 
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Given the system data, the Procedure 2 is to determine the suboptimal number of 
tokens, although the objective is to minimize the cost function. The proposed method can 
iterate over the different number of tokens starting with the smallest number and 
incrementing by one until it reaches a suboptimal point. Since in practice a domain of  
continuous values of  N is not permitted, the resulting value serves as the least upper bound 
among integers to the optimal value of the original problem. Solving the original problem 
where minimizing the average total cost is replaced by the decision of allocating the 
number of tokens to the system is involving evaluating the probability distributions of the 
system states. The difficulty just indicated and the fact that integer values are required for 
the decision variables, suggest the use of an implicit enumeration scheme for the 
optimization algorithm.     

An Example 

The following problem was run on a PC using Mathematica 4.0 to calculate 
Equations (1)-(9) needed to yield the joint stationary probabilities. Consider the following 
optimization problem: 

Minimize     1 1 2 2c L c L+    
Subject to     θ(N) ω≤ 1 , T(N) ω≥ 2 , N > 0, Integer. 

The optimization aspect of this study is a formidable one because an expression for the 
availability as a function of the decision variable does not exist in closed algebraic form.  
That is, θ(N) that appears in the constraint is determined from Theorem and can only be 
calculated numerically when the value of N is specified. The parameters were set as follows: 

=1 1c , =2 2c , λ = 18 , ω =1 0.1 , ω =2 17 ,  

p
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Consider two different service distributions with common mean service time 0.05 at each 
station. The probability functions at stations 1 and 2 are of the Erlang type with 5 phases 
and lognormal with standard deviation 0.02, respectively. By applying procedure 1 and 2, 
we obtain = 10N .   

For an illustrative purpose, the service time G(t) at station 1 is fixed for all test 
problems. We present numerical experiments describing the various aspects of system 
behavior in different values of arrival rate λ . Alternatively, the service times at station 2 
are assumed to be of the Erlang type with 2 phases and lognormal distributions for 
comparison. According to three arrival rates, λ =18, 22 and 27, the probability of loss of 
arrivals is computed in each example, tested with different token capacities from 5 to 35.  
This is demonstrated in Figure 5. 

In Figure 5, it shows the nonincreasing property of the probability of loss of arrivals 
which is independent of the statistical distributions of the interarrival and service time 
distributions. The solid line represents the case of lognormal distributions while the dot 
lines depict that of the Erlang distributions. Observe that in terms of the loss probability, 
lognormal distributions outperform that of all Erlang distributions statistically. But the 
probability of loss shows steeply dropping before N = 10 and moving down slowly and 
smoothly afterwards regardless of the type of service time distributions. It may be 
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explained in the following. The expected total service time at the network is at least 0.1 
units of time. Equivalently, there are expectedly 10 customers per unit time completing 
services at the network. When the number of tokens is less than 10, the probability of no 
token at token buffer is comparatively high. Conversely, when it exceeds 10, the probability 
of loss approaches to its limit closely, but it converges slowly in distribution. Now, consider 
the effect of the traffic load. Apparently, the heavier the traffic, the higher the probability of 
loss becomes as shown in Figure 5. Notice the average cost of λ = 22 and λ = 27 grows 
almost indifferently since neither of them has reached the limit as shown in Figure 6.  

In Figure 6, we illustrate the average cost behavior which grows nondecreasingly 
versus the number of tokens. Since the probability of loss approaches to zero as N is greater 
than 10 when λ = 18, the expected number of customers at network converges to a constant; 
so does the average cost.   

 
Figure 5. Erlang_2 and Lognormal service time. 

 

Figure 6. Cost versus number of tokens.   

6. Conclusions 

We have extended the closed queueing network in Luh [3] to an open queueing 
system with a token buffer, providing a loss probability. The expressions of our recursion 
scheme can be differentiated readily to obtain all existing moments. Furthermore, the 
expected cost may be minimized subject to constraints on the loss probability and 
throughput. This modeling and analysis has provided a solution to other semi-Markovian 
representation of performance measures of general servers in queueing networks.   
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We have shown in the stochastic process analysis that the monotonicity conditions 
hold. It turns out the probability of loss has a monotonic property. Note that although the 
optimization technique is illustrated with a linear cost function, it appears without 
modification to any cost function that is monotone in the decision variable since ( 1 2,L L ) 
are monotonic functions of N. That suggests the system manager how to provide a method 
to solve a system with tokens that is complicated and cost effective. 
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