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PARABOLA METHOD IN ORDINARY DIFFERENTIAL EQUATION

Meng-Rong Li, Tzong-Hann Shieh, C. Jack Yue, Pin Lee and Yu-Tso Li

Abstract. In this paper we used the method of parabola approximation to study

some nonlinear differential equations. We derive exact, explicit solutions to

the parabolic equations and use this analytical results in the numerical compu-

tations for the general equations. We then draw the comparison of between the

solutions of original and approximated equations. Moreover, we apply such

method to the population growth problem. The error of the difference between

the solutions of the differential equations and the numerical results caused by

the discrete approximations is reasonable.

1. INTRODUCTION

Consider the general differential equations

du

dt
= f (t, u) , u (0) = u0.

The parabola approximation method is to approximate the function f (t, u) through
the second-order Taylor expansion.

By the Taylor’s theory

f (t, u) ∼
∞∑

n=0

1
n!

(
∂

∂t
t +

∂

∂u
u

)n

f
∣∣
t=t0,u=u0

(t, u)

where
(

∂
∂t t + ∂

∂uu
)n

f |t=t0,u=u0 (t, u) denotes the binomial expansion at t = t0,

u = u0,
n∑

k=0

∂nf (t, u)
∂tk∂un−k

|t=t0,u=u0 (t − t0)
k (u − u0)

n−k .
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We study the second-order approximation of the problem du
dt = f (t, u) as the

following approximation problem

dv (t)
dt

= A (v (t) − u0)
2 + B (t) (v (t) − u0) + C (t) , v (t0) = u (t0) ,

where

A = 1
2fuu (t0, u0) , B (t) = ft,u (t0, u0) (t − t0) + fu (t0, u0) ,

C (t) = 1
2ftt (t0, u0) (t − t0)

2 + ft (t0, u0) (t − t0) + f (t0, u0) .

To illustrate this, we consider in the following examples the cases of f (t, u) is
f (u) ; and f (x) = sinx, tanx, sec x.

Example 1. We consider the problem
dv(t)

dt = sin v, v (0) = v0 having the so-

lution v (t) = cos−1
(

cosv0+1−(1−cosv0)e2t

cosv0+1+(1−cosv0)e2t

)
. The associated approximate equation

dv̄(t)
dt = v̄ (t) − 1

6 v̄ (t)3 , v̄ (0) = v0, has the solution v̄ (t) =
√

6v0et√
6+v2

0(e2t−1)
. The

graphs of v and v̄ are very closed in the neighborhood of (0.1, 0) = (v0, t0) . The
expansion of these two functions in the neighborhood of (0.1, 0) = (v0, t0) , are

v (t) =
1
2
π − sin−1 (cos v0) + |sin v0|

(
t +

t2

2
cos v0

)
+ O

(
t3
)
,

v̄ (t) = v0 + tv0

(
1 − 1

6
v2
0

)
+ t2v0

(
1
2
− 1

3
v2
0 +

1
24

v4
0

)
+ O

(
t3
)
;

it is also clear that v and v̄ are very closed for (t, v0) near (0, 0) .

Example 2. We consider the problem
dv(t)

dt = tan v, v (0) = v0, having

the solution 2v (t) = cos−1
(
1 − (1 − cos 2v0) e2t

)
. We treat the equation dv̄(t)

dt =

v̄ (t)+ 1
3 v̄ (t)3 , v̄ (t) = v0, having the positive solution 2 ln v̄ (t)− ln

(
v̄ (t)2 + 3

)
=

2 ln v0 − ln
(
v2
0 + 3

)
+ 2t. We have seen the graphs of v and v̄ are very closed in

the neighborhood of (0.1, 0) = (v0, t0) , and can see that the expansion of these two
functions in the neighborhood of (0.1, 0) = (v0, t0) ,

t = −1
2 ln (1 − cos 2v0)− 1.9577 + 9.9666 (v (t) − 0.1)

− 50.167 (v (t) − 0.1)2 + O
(
(v (t) − 0.1)3

)
,

t = − ln v0 + 1
2 ln

(
v2
0 + 3

)
− 2.8536 + 9.9668 (v̄ (t) − 0.1)

− 50.165 (v̄ (t) − 0.1)2 + 333.34O (v̄ (t) − 0.1)3 .
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Example 3. We consider the problem
dv(t)

dt = sec v, v (0) = v0,having the

solution sin v (t) = sin v0 + t, v (t) = sin−1 (sin v0 + t) . We treat the equation
dv̄(t)

dt = 1 + 1
2 v̄ (t)2 , v̄ (0) = v0, having the solution

v̄ (t) =
√

2 tan
(
tan−1

(
v0√
2

)
+ t√

2

)
.

We have seen the graphs of v and v̄ are very closed in the neighborhood of (0, 0) =
(v0, t0) , and can see that the expansion of these two functions in the neighborhood
of (0, 0) = (v0, t0) ,

v (t) = v0 + t
cosv0

+ 1
2

sinv0
cos3 v0

t2 + O
(
t3
)
,

v̄ (t) = v0 +
(
1 + 1

2v2
0

)
t + v0

4

(
2 + v2

0

)
t2 + O

(
t3
)
.

In real applications, from the experimental data, the system of t, u (t) and
f (t, u) are usually very dynamic and nonlinear, which make it difficult to understand
the properties of a targetted object. In this article, we try to propose a computational

procedure to estimate the solutions of the population problem.

Our computational procedure depends on the exact solution formula for the

parabolic equations. For this, we will set-up some fundamental lemmas in Section

2. In Section 3, we study a special model equation for population. Concluding
remarks are given in Section 4.

2. FUNDAMENTAL LEMMAS

The following lemmas consider the parabolic differential equation with given

three points values yi at time ti, i = 0, 1, 2,

(2)





dy (t)
dt

= Ay (t)2 + By (t) + C,

y (t0) = y0, y (t1) = y1, y (t2) = y2, t0 < t1 < t2,

Lemma 2.1 The differential equation (2)with y0 ≤ y1 ≤ y2, δ = B2 − 4AC can

be solved as the following:

(I − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1 − y0−x2

y0−x1 e(x2−x1)A(t−t0)
;

(I − ii) for δ = 0,

y (t) = x1 − 1
A

1
t − t0 − A−1 (y0 − x1)−1 ;
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(I − iii) for δ < 0, k =
√
−δ

2A ,

y (t) = − B

2A
+ k tan

(
Ak (t − t0) + tan−1 y (t0) + B

2A

k

)
.

Proof of lemma 2.1.

(I-i) For δ > 0, dy
dt = A

(
y − x1

) (
y − x2

)
, we obtain that

ln
∣∣∣∣
y (t) − x2

y (t) − x1

∣∣∣∣ = ln
∣∣∣∣
y0 − x2

y0 − x1

∣∣∣∣+
√

δ (t − t0) ;

therefore

y (t) = x1 +
(
x2 − x1

) 1

1 − y0−x2

y0−x1 exp
(√

δ (t − t0)
) .

(I-ii) For δ = 0, dy
dt = A

(
y − x1

)2
, we have 1

y(t)−x1 = 1
y0−x1 − A (t − t0) ;

therefore

y (t) = x1 +
1

1
y0−x1 − A (t − t0)

.

And this solution can be obtained by the limiting processing

lim
x2→x1

yx2 (t) = x1 + lim
x2→x1

1(
1

y0−x1 − Ay0−x2

y0−x1 (t − t0)
)

exp (A (x2 − x1) (t − t0))

= x1 +
1

1
y0−x1 − A (t − t0)

.

(I-iii) For δ < 0, dy
dt = A

(
y − x1

) (
y − x2

)
, we conclude that

Ak (t − t0) = tan−1 y (t) + B
2A

k
− tan−1 y0 + B

2A

k
,

y (t) = − B

2A
+ k tan

(
Ak (t − t0) + tan−1 y0 + B

2A

k

)

= − B

2A
+

√
−δ

2A
tan

(√
−δ

2
(t − t0) + tan−1 2Ay0 + B√

−δ

)
.

Remark 2.1. This lemma will be used in Section 3 for the computations of

every three population data obtained from the Ministry of Interior Taiwan between

the following periods
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(i) For female: 1953− 55, 1957− 57, 1967− 69, 1968− 70, 1972− 74, 1973−
75, 1974− 76, 1986− 88, 1989− 91, 1994− 96, 1998− 00;

(ii) For male: 1953− 55, 1954− 56, 1957− 59, 1958− 60, 1967− 69, 1968−
70, 1972− 74, 1973− 75, 1974− 76, 1975− 77, 1978− 80, 1986−88, 1987−
89, 1989−91, 1992−94, 1994−96, 1995−97, 1998−00, 1999−01, 02−04

Lemma 2.2. The differential equation (2) with y0 ≤ y2 ≤ y1 can be solved as

the following

(II − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1 − y0−x2

y0−x1 e(x2−x1)A(t−t0)
for t ∈ [t0, t1] ,

y (t) = x1 +
√

δ

A

1

1 − y1−x2

y1−x1 e−(x2−x1)A(t−t1)
for t ∈ [t1, t2] ;

(II − ii) for δ = 0,

y (t) = x1 − 1
A

1
t−t0−A−1(y0−x1)−1 for t ∈ [t0, t1] ,

y (t) = x1 + 1
A

1
(t−t1)+A−1(y1−x1)−1 for t ∈ [t1, t2] ;

(II − iii) for B2 − 4AC < 0, k =
√
−δ

2A ,

y (t) = − B

2A
+ k tan

(
Ak (t − t0) + tan−1 y (t0) + B

2A

k

)
for t ∈ [t0, t1] ,

y (t) = − B

2A
+ k tan

(
−Ak (t − t1) + tan−1 y1 + B

2A

k

)
for t ∈ [t1, t2] .

Proof of lemma 2.2. (II-i) For δ > 0, dy
dt = A

(
y − x1

) (
y − x2

)
, then we have

for t ∈ [t0, t1] ,

y (t) = x1 +
(
x2 − x1

) 1

1 − y0−x2

y0−x1 exp
(√

δ (t − t0)
) .

Also we obtain

y1 = x1 +
(
x2 − x1

) 1

1 − y0−x2

y0−x1 exp
(√

δ (t1 − t0)
) ,

t1 = t0 +
1√
δ

ln
(

y1 − x2

y1 − x1

y0 − x1

y0 − x2

)
.
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For t ∈ [t1, t2] , we obtain that

y (t) − x2

y (t) − x1
=

y1 − x2

y1 − x1
e−

√
δ(t−t1);

therefore

y (t) = x1 +
(
x2 − x1

) 1

1 − y1−x2

y1−x1 exp
(
−
√

δ (t − t1)
) .

Also,

y2 − x1

x2 − x1
=

1

1 − y1−x2

y1−x1 exp
(
−
√

δ (t2 − t1)
) ,

t2 = t1 −
1√
δ

ln
(

y2 − x2

y2 − x1

y1 − x1

y1 − x2

)
.

(II-ii) For δ = 0, t ∈ [t0, t1] ,
dy
dt = A

(
y − x1

)2
, then we get that

y (t) = x1 +
y0 − x1

1 − A (y0 − x1) (t − t0)
.

Also we have

1
y1 − x1

=
1

y0 − x1
− A (t1 − t0) , t1 = t0 +

y1 − y0

A (y1 − x1) (y0 − x1)
.

For t ∈ [t1, t2] ,

1
y (t) − x1

=
1

y1 − x1
+ A (t − t1) , y (t) = x1 +

1
1

y1−x1 + A (t − t1)
;

therefore

y2 = x1 +
1

1
y1−x1 + A (t2 − t1)

, t2 = t1 +
y1 − y2

A (y2 − x1) (y1 − x1)
.

(II-iii) For δ < 0, t ∈ [t0, t1] , then we conclude that

Ak (t − t0) = tan−1 y (t) + B
2A

k
− tan−1 y (t0) + B

2A

k
,

y (t) = − B

2A
+

√
−δ

2A
tan

(√
−δ

2
(t − t0) + tan−1 2Ay (t0) + B√

−δ

)
.
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And

t1 = t0 +
2√
−δ

(
tan−1 2Ay1 + B√

−δ
− tan−1 2Ay0 + B√

−δ

)
,

y1 = − B

2A
+

√
−δ

2A
tan

(√
−δ

2
(t1 − t0) + tan−1 2Ay0 + B√

−δ

)
.

For t ∈ [t1, t2] , then

∫ y(t)

y(t1)

1
(
r + B

2A

)2 + k2
dr = −A (t − t1) ,

−Ak (t − t1) = tan−1 y (t) + B
2A

k
− tan−1 y1 + B

2A

k
;

therefore

y (t) = − B

2A
+

√
−δ

2A
tan

(
−
√
−δ

2
(t − t1) + tan−1 2Ay1 + B√

−δ

)
.

Also

t2 = t1 −
2√
−δ

(
tan−1 2Ay2 + B√

−δ
− tan−1 2Ay1 + B√

−δ

)
,

y2 = − B

2A
+

√
−δ

2A
tan

(
−
√
−δ

2
(t2 − t1) + tan−1 2Ay1 + B√

−δ

)
.

Remark 2.2. This lemma will be used for the computation of every three

population data obtained from the Ministry of Interior Taiwan between the following

periods

(i) For female: 1958− 60, 1961− 63, 1975− 77, 1978− 80, 1987− 89, 1992−
94, 1995− 97, 1999− 01, 02− 04.

(ii) For male: 1954− 56, 1958− 60, 1968− 70, 1975− 77, 1978− 80, 1987−
89, 1992− 94, 1995− 97, 1999− 01, 02− 04.

Similar to the above proof of Lemma 2.2 we can obtain the following Lemmas;

we omit the similar arguments for their proofs.

Lemma 2.3. The differential equation (2) with y1 ≤ y2 ≤ y0 can be solved as

the following
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(III − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1 − y0−x2

y0−x1 e−(x2−x1)A(t−t0)
for t ∈ [t0, t1] ,

y (t) = x1 +

√
δ

A

1

1 − y1−x2

y1−x1 e(x2−x1)A(t−t1)
for t ∈ [t1, t2] ;

(III − ii) for δ = 0,

y (t) = x1 +
1
A

1
t − t0 + A−1 (y0 − x1)−1

for t ∈ [t0, t1] ,

y (t) = x1 − 1
A

1
t − t0 − A−1 (y1 − x1)−1 for t ∈ [t1, t2] ;

(III − iii) for δ < 0, k =
√
−δ

2A ,

y (t) = − B

2A
+ k tan

(
−Ak (t − t0) + tan−1 y (t0) + B

2A

k

)
for t ∈ [t0, t1] ,

y (t) = − B

2A
+ k tan

(
Ak (t − t1) + tan−1 y (t1) + B

2A

k

)
for t ∈ [t1, t2] .

Remark 2.3. This lemma will be used to compute every three population data

obtained from the Ministry of Interior Taiwan between the following periods

(i) For female: 1952− 54, 1956− 58, 1966− 68, 1971− 73, 1977− 79, 1988−
90, 1991− 93, 1993− 95, 1997− 99, 01− 03.

(ii) For male: 1952− 54, 1956− 58, 1966− 68, 1971− 73, 1977− 79, 1981−
83, 1988− 90, 1991− 93, 1997− 99, 01− 03

Lemma 2.4. The differential equation (2) with y1 ≤ y0 ≤ y2 can be solved as

the following

(IV − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1− y0−x2

y0−x1 e−(x2−x1)A(t−t0)
for t ∈ [t0, t1] ,

y (t) = x1 +

√
δ

A

1

1− y1−x2

y1−x1 e(x2−x1)A(t−t1)
for t ∈ [t1, t2] ;
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(IV − ii) for δ = 0,

y (t) = x1 +
1
A

1
t − t0 + A−1 (y0 − x1)−1

for t ∈ [t0, t1] ,

y (t) = x1 − 1
A

1
t − t1 − A−1 (y1 − x1)−1 for t ∈ [t1, t2] ;

(IV − iii) for δ < 0, k =
√
−δ

2A ,

y (t) = − B

2A
+ k tan

(
−Ak (t − t0) + tan−1 y (t0) + B

2A

k

)
for t ∈ [t0, t1] ,

y (t) = − B

2A
+ k tan

(
Ak (t − t1) + tan−1 y (t1) + B

2A

k

)
for t ∈ [t1, t2] .

Remark 2.4. This lemma will be used for computing every three population

data obtained from the Ministry of Interior Taiwan between the following periods

(i) For female: 1964− 66, 1985− 87, 03− 05.

(ii) For male: 1964− 66, 1985− 87, 1993− 95, 03− 05.

Lemma 2.5. The differential equation (2) with y2 ≤ y1 ≤ y0 can be solved as

the following

(V − i) for δ > 0,

y (t) = x1 +
√

δ

A

1

1 − y0−x2

y0−x1 e−(x2−x1)A(t−t0)
;

(V − ii) for δ = 0,

y (t) = x1 +
1
A

1
t − t0 + A−1 (y0 − x1)−1 ;

(V − iii) for δ < 0, k =
√
−δ

2A ,

y (t) = − B

2A
+ k tan

(
−Ak (t − t0) + tan−1 y (t0) + B

2A

k

)
.

Remark 2.5. This lemma will be used for the computation of every three

population data obtained from the Ministry of Interior Taiwan between the following

periods
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(i) For female: 1955− 57, 1959− 61, 1962− 64, 1963− 65, 1970− 72, 1976−

78, 1979− 81, 1980− 82, 1981− 83, 1982− 84, 1983− 85, 84− 86,

96− 98, 00− 02.

(ii) For male: 1955−57, 59−61, 60−62, 61−63, 62−64, 63−65, 70−72, 76−

78, 79− 81, 80− 82, 82− 84, 83− 85, 84− 86, 96− 98, 00− 02.

Lemma 2.6. The differential equation (2) with y2 ≤ y0 ≤ y1 can be solved as

the following

(V I − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1− y0−x2

y0−x1 e(x2−x1)A(t−t0)
for t ∈ [t0, t1] ,

y (t) = x1 +

√
δ

A

1

1− y1−x2

y1−x1 e−(x2−x1)A(t−t1)
for t ∈ [t1, t2] ;

(V I − ii) for δ = 0,

y (t) = x1 − 1
A

1
t − t0 − A−1 (y0 − x1)−1 for t ∈ [t0, t1] ,

y (t) = x1 +
1
A

1
t − t0 + A−1 (y0 − x1)−1 for t ∈ [t1, t2] ;

(V I − iii) for δ < 0, k =
√
−δ

2A ,

y (t) = − B

2A
+ k tan

(
Ak (t − t0) + tan−1 y (t0) + B

2A

k

)
for t ∈ [t0, t1] ,

y (t) = − B

2A
+ k tan

(
−Ak (t − t1) + tan−1 y (t1) + B

2A

k

)
for t ∈ [t1, t2] .

Remark 2.6. This lemma will be used to compute every three population data

obtained from the Ministry of Interior Taiwan between the following periods

(i) For female: 1965− 67, 1969− 71, 1990− 92.

(ii) For male: 1965− 67, 1969− 71, 1990− 92.
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In the next section we want to discuss some models using the Parabola method.

As mentioned at the beginning, we approximate the differential equation du
dt =

f (t, u) by the following equation

dv (t)
dt

= A (v (t) − u0)
2 + B (t) (v (t) − u0) + C (t) , v (t0) = u (t0) ,

A = 1
2fuu (t0, u0) , B (t) = ft,u (t0, u0) (t − t0) + fu (t0, u0) ,

C (t) = 1
2ftt (t0, u0) (t − t0)

2 + ft (t0, u0) (t − t0) + f (t0, u0) .

3. SPECIAL POPULATION MODEL

We denote by:

b(t) = t − th year birth population,

db (t)
dt

/b (t) := birth rate = bir(t),

dbir(t)/dt := birth speed-up.

For convenience, we denote dbir (t) /dt by dbir (t) in graph. Using the parabolic
approximation curve partition scoring we will study the population growth problem

from 1952 to 2005 in Taiwan and obtain some properties on the birth rate, population
and a model between Birth rate and the Population.

From the population data obtained from the Ministry of Interior Taiwan and

through the following substitution

db (t)
dt

:= b (t + 1)− b (t) ,

dbir (t) :=
dbir (t)

dt
= bir (t + 1)− bir (t)

=
db (t + 1)

dt
/b (t + 1) − db (t)

dt
/b (t)

=
b (t + 2)− b (t + 1)

b (t + 1)
− b (t + 1) − b (t)

b (t)
,

we can make the following graphs through plotting by using Maple shown as Fig.

1.

Consider the relation between
dbir(t)

dt and bir(t) for bir (t) lies on [−0.12,−0.05]
the above graph can be shown as Fig. 2.
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Fig. 1. Graph of dbir(t)-bir(t)-1.

Fig. 2. Graph of dbir(t)-bir(t)-2.

We think that there should exist some reasonable reglues in such a social sciences

and we introduce the method proposed in Section 3 a quadratic model to consist
with the Graph of dbir(t)-bir(t)-2 given above and every three-pointwisely divide

the graph dbir(t)-bir(t)-1 into several subgraphs as follows for v (t) = bir (t) and
a (t) = dv(t)

dt ,

a (t) =
dv (t)

dt
= Ajv (t)2 + Bjv (t) + Cj for v (t) ∈ Ij ,

where Aj , Bj , Cj , j = 0, 1, · · · , 15 are constants and I0 = [−0.12,−0.07] ,

I1 = [−0.072,−0.06] , I2 = [−0.066,−0.052] , I3 = [−0.048,−0.042] ,

I4 = [−0.04,−0.025] , I5 = [−0.0225,−0.02] , I6 = [−0.02,−0.01] ,
I7 = [−0.013,−0.015] , I8 = [−0.015, 0] , I9 = [0, 0.0016] , I10 = [0.0016, 0.005] ,
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I11=[0.005, 0.0133] , I12 =[0.0133, 0.0166] , I13=[0.0166, 0.02] , I14 =[0.02, 0.03] ,
I15 = [0.03, 0.04] . That is,

(3.1) a (t) =





A0v (t)2 + B0v (t) + C0 for v (t) ∈ [−0.12,−0.07] ,

A1v (t)2 + B1v (t) + C1 for v (t) ∈ [−0.072,−0.06] ,

A2v (t)2 + B2v (t) + C2 for v (t) ∈ [−0.066,−0.052] ,

(3.2) a (t) =





A3v (t)2 + B3v (t) + C3 for v (t) ∈ [−0.048,−0.042] ,

A4v (t)2 + B4v (t) + C4 for v (t) ∈ [−0.04,−0.025] ,

A5v (t)2 + B5v (t) + C5 for v (t) ∈ [−0.0225,−0.02] ,

A6v (t)2 + B6v (t) + C6 for v (t) ∈ [−0.02,−0.01] ,

A7v (t)2 + B7v (t) + C7 for v (t) ∈ [−0.013,−0.015] ,

A8v (t)2 + B8v (t) + C8 for v (t) ∈ [−0.015, 0] ,

(4.3) a (t) =





A9v (t)2 + B9v (t) + C9 for v (t) ∈ [0, 0.0016] ,

A10v (t)2 + B10v (t) + C10 for v (t) ∈ [0.0016, 0.005] ,

A11v (t)2 + B11v (t) + C11 for v (t) ∈ [0.005, 0.0133] ,

A12v (t)2 + B12v (t) + C12 for v (t) ∈ [0.0133, 0.0166] ,

A13v (t)2 + B13v (t) + C13 for v (t) ∈ [0.0166, 0.02] ,

A14v (t)2 + B14v (t) + C14 for v (t) ∈ [0.02, 0.03] ,

A15v (t)2 + B15v (t) + C15 for v (t) ∈ [0.03, 0.04] .

Where Aj , Bj , Cj , j = 0, 1, · · · , 15 are constants. From the above equations we
propose a rough approximate model as the following simple continuous type

(3.4)
dv (t)

dt
= a (t) = A (t) v (t)2 + B (t) v (t) + C (t) , v (t0) = v0,

v (t) = db(t)
dt /b (t) , b (t0)=b0, b (t1)=b1, v (t1)=v1, b (t2)=b2, v (t2)=v2,

where b(t) = t − th year birth population, v (t) := bir (t) birth increasing rate,
dbir(t)/dt := birth speed-up. The existence of solution of (3.4) can be got by the
standard arguments.

To study the property of birth population we use the lemmas 2.1 ∼ 2.6 in Section
2 to solve the function v (t) = bir (t) = db(t)

dt /b (t) in those small time intervals
and obtain the population function b (t) ( named ”Estimated number” for forward
difference method and ”theoretical computational results”for backward difference

method) by taking integration on v (t) with respect to t, then take the square mean
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every three points except the first, second, last two and last (2003) years and than
we obtain the results through using the forward difference method, according to the

official Annals
db(t)
dt is instated by b (t + 1)− b (t) , we obtain the result as shown

below

Fig. 3.

with errors

1
54

54∑

i=1

∣∣∣∣
Bi (t) − bi (t)

bi (t)

∣∣∣∣ ∼ 0.04266164∼ 4.3%,

1
54

√
∑(

Bi (t) − bi (t)
bi (t)

)2

∼ 0.007299726∼ 0.73%.

Through the backward difference method, according to the official Annals
db(t)
dt is instated by b (t)− b (t − 1) , and as the same above computation method we
obtain the graph as below

Fig. 4.
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Fig. 5.

where the number 0 in x- axis represents the year 1952,with errors of case 1

1
54

54∑

i=1

∣∣∣∣∣
b̂i (t) − bi (t)

bi (t)

∣∣∣∣∣ ∼ 6.5837381846382%,

1
54

√√√√∑
(

b̂i (t) − bi (t)
bi (t)

)2

∼ 0.0422277256212% .

4. CONCLUSIONS

We compare these two methods-forward and backward differences-together and

it show the results that If we could delete the problematic four data caused by some

unregulated statistical methods on population, then through the forward method we

can obtain better estimate with errors 4.27% and 0.73% in the sense of mean and

square mean respectively; and 6.58% and 0.042% in the same situation through the

backward difference method.

There were historical survey on the related topics, for example, Lee-Carter model

for the rate of Mortality, APC model for ... , etc.

These errors result from

(i) the computational method and

(ii) the large disparity between the difference equation and differential equation

when the dynamics and nonlinearity are strong.

We plan to establish new methodology to deal such nonlinear problem in the

future.

The problem (3.4) for population can not be solved easily, and from the exper-
imental point of view (at least from the data at Ministry of Interior Taiwan)

A (t)∼a1,it
2 + b1,it+ c1,i , B (t)∼a2,it

2 + b2,it+ c2,i, C (t) ∼ a3,it
2 + b3,it+ c3,i,



1856 Meng-Rong Li, Tzong-Hann Shieh, C. Jack Yue, Pin Lee and Yu-Tso Li

for t ∈ Ji, Ji are some time-intervals and aj,ibj,i, cj,i are constants we will compute

these constants later. We have tried to use our methods applied in [1-19] to solve

this equation (3.4) , but till now do not yet have definite results.
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