PARABOLA METHOD IN ORDINARY DIFFERENTIAL EQUATION

Meng-Rong Li, Tzong-Hann Shieh, C. Jack Yue, Pin Lee and Yu-Tso Li

Abstract

In this paper we used the method of parabola approximation to study some nonlinear differential equations. We derive exact, explicit solutions to the parabolic equations and use this analytical results in the numerical computations for the general equations. We then draw the comparison of between the solutions of original and approximated equations. Moreover, we apply such method to the population growth problem. The error of the difference between the solutions of the differential equations and the numerical results caused by the discrete approximations is reasonable.

1. Introduction

Consider the general differential equations

$$
\frac{d u}{d t}=f(t, u), u(0)=u_{0}
$$

The parabola approximation method is to approximate the function $f(t, u)$ through the second-order Taylor expansion.

By the Taylor's theory

$$
\left.f(t, u) \sim \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{\partial}{\partial t} t+\frac{\partial}{\partial u} u\right)^{n} f\right|_{t=t_{0}, u=u_{0}}(t, u)
$$

where $\left.\left(\frac{\partial}{\partial t} t+\frac{\partial}{\partial u} u\right)^{n} f\right|_{t=t_{0}, u=u_{0}}(t, u)$ denotes the binomial expansion at $t=t_{0}$, $u=u_{0}$,

$$
\left.\sum_{k=0}^{n} \frac{\partial^{n} f(t, u)}{\partial t^{k} \partial u^{n-k}}\right|_{t=t_{0}, u=u_{0}}\left(t-t_{0}\right)^{k}\left(u-u_{0}\right)^{n-k}
$$

Accepted April 14, 2010.
Communicated by Tai-Ping Liu.
2010 Mathematics Subject Classification: 34A09, 34A34, 34A45.
Key words and phrases: Nonlinear differential equation, Approximation, Population growth, Difference equation.

We study the second-order approximation of the problem $\frac{d u}{d t}=f(t, u)$ as the following approximation problem

$$
\frac{d v(t)}{d t}=A\left(v(t)-u_{0}\right)^{2}+B(t)\left(v(t)-u_{0}\right)+C(t), v\left(t_{0}\right)=u\left(t_{0}\right),
$$

where

$$
\begin{aligned}
A & =\frac{1}{2} f_{u u}\left(t_{0}, u_{0}\right), \quad B(t)=f_{t, u}\left(t_{0}, u_{0}\right)\left(t-t_{0}\right)+f_{u}\left(t_{0}, u_{0}\right), \\
C(t) & =\frac{1}{2} f_{t t}\left(t_{0}, u_{0}\right)\left(t-t_{0}\right)^{2}+f_{t}\left(t_{0}, u_{0}\right)\left(t-t_{0}\right)+f\left(t_{0}, u_{0}\right) .
\end{aligned}
$$

To illustrate this, we consider in the following examples the cases of $f(t, u)$ is $f(u) ;$ and $f(x)=\sin x, \tan x, \sec x$.

Example 1. We consider the problem $\frac{d v(t)}{d t}=\sin v, v(0)=v_{0}$ having the solution $v(t)=\cos ^{-1}\left(\frac{\cos v_{0}+1-\left(1-\cos v_{0}\right) e^{2 t}}{\cos v_{0}+1+\left(1-\cos v_{0}\right) e^{2 t}}\right)$. The associated approximate equation $\frac{d \bar{v}(t)}{d t}=\bar{v}(t)-\frac{1}{6} \bar{v}(t)^{3}, \quad \bar{v}(0)=v_{0}$, has the solution $\bar{v}(t)=\frac{\sqrt{6} v_{0} e^{t}}{\sqrt{6+v_{0}^{2}\left(e^{2 t}-1\right)}}$. The graphs of v and \bar{v} are very closed in the neighborhood of $(0.1,0)=\left(v_{0}, t_{0}\right)$. The expansion of these two functions in the neighborhood of $(0.1,0)=\left(v_{0}, t_{0}\right)$, are

$$
\begin{aligned}
& v(t)=\frac{1}{2} \pi-\sin ^{-1}\left(\cos v_{0}\right)+\left|\sin v_{0}\right|\left(t+\frac{t^{2}}{2} \cos v_{0}\right)+O\left(t^{3}\right), \\
& \bar{v}(t)=v_{0}+t v_{0}\left(1-\frac{1}{6} v_{0}^{2}\right)+t^{2} v_{0}\left(\frac{1}{2}-\frac{1}{3} v_{0}^{2}+\frac{1}{24} v_{0}^{4}\right)+O\left(t^{3}\right) ;
\end{aligned}
$$

it is also clear that v and \bar{v} are very closed for $\left(t, v_{0}\right)$ near $(0,0)$.
Example 2. We consider the problem $\frac{d v(t)}{d t}=\tan v, v(0)=v_{0}$, having the solution $2 v(t)=\cos ^{-1}\left(1-\left(1-\cos 2 v_{0}\right) e^{2 t}\right)$. We treat the equation $\frac{d \bar{v}(t)}{d t}=$ $\bar{v}(t)+\frac{1}{3} \bar{v}(t)^{3}, \bar{v}(t)=v_{0}$, having the positive solution $2 \ln \bar{v}(t)-\ln \left(\bar{v}(t)^{2}+3\right)=$ $2 \ln v_{0}-\ln \left(v_{0}^{2}+3\right)+2 t$. We have seen the graphs of v and \bar{v} are very closed in the neighborhood of $(0.1,0)=\left(v_{0}, t_{0}\right)$, and can see that the expansion of these two functions in the neighborhood of $(0.1,0)=\left(v_{0}, t_{0}\right)$,

$$
\begin{aligned}
t= & -\frac{1}{2} \ln \left(1-\cos 2 v_{0}\right)-1.9577+9.9666(v(t)-0.1) \\
& -50.167(v(t)-0.1)^{2}+O\left((v(t)-0.1)^{3}\right) \\
t= & -\ln v_{0}+\frac{1}{2} \ln \left(v_{0}^{2}+3\right)-2.8536+9.9668(\bar{v}(t)-0.1) \\
& -50.165(\bar{v}(t)-0.1)^{2}+333.34 O(\bar{v}(t)-0.1)^{3} .
\end{aligned}
$$

Example 3. We consider the problem $\frac{d v(t)}{d t}=\sec v, v(0)=v_{0}$,having the solution $\sin v(t)=\sin v_{0}+t, v(t)=\sin ^{-1}\left(\sin v_{0}+t\right)$. We treat the equation $\frac{d \bar{v}(t)}{d t}=1+\frac{1}{2} \bar{v}(t)^{2}, \bar{v}(0)=v_{0}$, having the solution

$$
\bar{v}(t)=\sqrt{2} \tan \left(\tan ^{-1}\left(\frac{v_{0}}{\sqrt{2}}\right)+\frac{t}{\sqrt{2}}\right) .
$$

We have seen the graphs of v and \bar{v} are very closed in the neighborhood of $(0,0)=$ $\left(v_{0}, t_{0}\right)$, and can see that the expansion of these two functions in the neighborhood of $(0,0)=\left(v_{0}, t_{0}\right)$,

$$
\begin{aligned}
& v(t)=v_{0}+\frac{t}{\cos v_{0}}+\frac{1}{2} \frac{\sin v_{0}}{\cos ^{3} v_{0}} t^{2}+O\left(t^{3}\right) \\
& \bar{v}(t)=v_{0}+\left(1+\frac{1}{2} v_{0}^{2}\right) t+\frac{v_{0}}{4}\left(2+v_{0}^{2}\right) t^{2}+O\left(t^{3}\right)
\end{aligned}
$$

In real applications, from the experimental data, the system of $t, u(t)$ and $f(t, u)$ are usually very dynamic and nonlinear, which make it difficult to understand the properties of a targetted object. In this article, we try to propose a computational procedure to estimate the solutions of the population problem.

Our computational procedure depends on the exact solution formula for the parabolic equations. For this, we will set-up some fundamental lemmas in Section 2. In Section 3, we study a special model equation for population. Concluding remarks are given in Section 4.

2. Fundamental Lemmas

The following lemmas consider the parabolic differential equation with given three points values y_{i} at time $t_{i}, i=0,1,2$,

$$
\left\{\begin{array}{c}
\frac{d y(t)}{d t}=A y(t)^{2}+B y(t)+C \tag{2}\\
y\left(t_{0}\right)=y_{0}, y\left(t_{1}\right)=y_{1}, y\left(t_{2}\right)=y_{2}, t_{0}<t_{1}<t_{2}
\end{array}\right.
$$

Lemma 2.1 The differential equation (2)with $y_{0} \leq y_{1} \leq y_{2}, \delta=B^{2}-4 A C$ can be solved as the following:

$$
\begin{aligned}
& (I-i) \text { for } \delta>0 \\
& \qquad y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} e^{\left(x^{2}-x^{1}\right) A\left(t-t_{0}\right)}}
\end{aligned}
$$

$(I-i i)$ for $\delta=0$,

$$
y(t)=x^{1}-\frac{1}{A} \frac{1}{t-t_{0}-A^{-1}\left(y_{0}-x^{1}\right)^{-1}}
$$

$\left(I-\right.$ iii) for $\delta<0, k=\frac{\sqrt{-\delta}}{2 A}$,

$$
y(t)=-\frac{B}{2 A}+k \tan \left(A k\left(t-t_{0}\right)+\tan ^{-1} \frac{y\left(t_{0}\right)+\frac{B}{2 A}}{k}\right)
$$

Proof of lemma 2.1.
(I-i) For $\delta>0, \frac{d y}{d t}=A\left(y-x^{1}\right)\left(y-x^{2}\right)$, we obtain that

$$
\ln \left|\frac{y(t)-x^{2}}{y(t)-x^{1}}\right|=\ln \left|\frac{y_{0}-x^{2}}{y_{0}-x^{1}}\right|+\sqrt{\delta}\left(t-t_{0}\right)
$$

therefore

$$
y(t)=x^{1}+\left(x^{2}-x^{1}\right) \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} \exp \left(\sqrt{\delta}\left(t-t_{0}\right)\right)}
$$

(I-ii) For $\delta=0, \frac{d y}{d t}=A\left(y-x^{1}\right)^{2}$, we have $\frac{1}{y(t)-x^{1}}=\frac{1}{y_{0}-x^{1}}-A\left(t-t_{0}\right)$; therefore

$$
y(t)=x^{1}+\frac{1}{\frac{1}{y_{0}-x^{1}}-A\left(t-t_{0}\right)}
$$

And this solution can be obtained by the limiting processing

$$
\begin{aligned}
\lim _{x^{2} \rightarrow x^{1}} y_{x^{2}}(t) & =x^{1}+\lim _{x^{2} \rightarrow x^{1}} \frac{1}{\left(\frac{1}{y_{0}-x^{1}}-A \frac{y_{0}-x^{2}}{y_{0}-x^{1}}\left(t-t_{0}\right)\right) \exp \left(A\left(x^{2}-x^{1}\right)\left(t-t_{0}\right)\right)} \\
& =x^{1}+\frac{1}{\frac{1}{y_{0}-x^{1}}-A\left(t-t_{0}\right)}
\end{aligned}
$$

(I-iii) For $\delta<0, \frac{d y}{d t}=A\left(y-x^{1}\right)\left(y-x^{2}\right)$, we conclude that

$$
\begin{aligned}
& A k\left(t-t_{0}\right)=\tan ^{-1} \frac{y(t)+\frac{B}{2 A}}{k}-\tan ^{-1} \frac{y_{0}+\frac{B}{2 A}}{k} \\
y(t) & =-\frac{B}{2 A}+k \tan \left(A k\left(t-t_{0}\right)+\tan ^{-1} \frac{y_{0}+\frac{B}{2 A}}{k}\right) \\
& =-\frac{B}{2 A}+\frac{\sqrt{-\delta}}{2 A} \tan \left(\frac{\sqrt{-\delta}}{2}\left(t-t_{0}\right)+\tan ^{-1} \frac{2 A y_{0}+B}{\sqrt{-\delta}}\right) .
\end{aligned}
$$

Remark 2.1. This lemma will be used in Section 3 for the computations of every three population data obtained from the Ministry of Interior Taiwan between the following periods
(i) For female: $1953-55,1957-57,1967-69,1968-70,1972-74,1973-$ $75,1974-76,1986-88,1989-91,1994-96,1998-00 ;$
(ii) For male: $1953-55,1954-56,1957-59,1958-60,1967-69,1968-$ $70,1972-74,1973-75,1974-76,1975-77,1978-80,1986-88,1987-$ $89,1989-91,1992-94,1994-96,1995-97,1998-00,1999-01,02-04$

Lemma 2.2. The differential equation (2) with $y_{0} \leq y_{2} \leq y_{1}$ can be solved as the following

$$
\begin{aligned}
& (I I-i) \text { for } \delta>0, \\
& y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} e^{\left(x^{2}-x^{1}\right) A\left(t-t_{0}\right)}} \text { for } \quad t \in\left[t_{0}, t_{1}\right] \\
& y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{1}-x^{2}}{y_{1}-x^{1}} e^{-\left(x^{2}-x^{1}\right) A\left(t-t_{1}\right)}} \text { for } \quad t \in\left[t_{1}, t_{2}\right] ; \\
& (I I-i i) \text { for } \delta=0, \\
& y(t)=x^{1}-\frac{1}{A} \frac{1}{t-t_{0}-A^{-1}\left(y_{0}-x^{1}\right)^{-1}} \quad \text { for } \quad t \in\left[t_{0}, t_{1}\right] \\
& (I I-i i i) \text { for } B^{2}-4 A C<0, k=\frac{\sqrt{-\delta}}{2 A}, \\
& y(t)=x^{1}+\frac{1}{A} \frac{1}{\left(t-t_{1}\right)+A^{-1}\left(y_{1}-x^{1}\right)^{-1}} \quad \text { for } \quad t \in\left[t_{1}, t_{2}\right] ; \\
& y(t)=-\frac{B}{2 A}+k \tan \left(A k\left(t-t_{0}\right)+\tan ^{-1} \frac{y\left(t_{0}\right)+\frac{B}{2 A}}{k}\right) \quad \text { for } t \in\left[t_{0}, t_{1}\right], \\
& y(t)=-\frac{B}{2 A}+k \tan \left(-A k\left(t-t_{1}\right)+\tan ^{-1} \frac{y_{1}+\frac{B}{2 A}}{k}\right) \quad \text { for } t \in\left[t_{1}, t_{2}\right] .
\end{aligned}
$$

Proof of lemma 2.2. (II-i) For $\delta>0, \frac{d y}{d t}=A\left(y-x^{1}\right)\left(y-x^{2}\right)$, then we have for $t \in\left[t_{0}, t_{1}\right]$,

$$
y(t)=x^{1}+\left(x^{2}-x^{1}\right) \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} \exp \left(\sqrt{\delta}\left(t-t_{0}\right)\right)}
$$

Also we obtain

$$
\begin{aligned}
y_{1} & =x^{1}+\left(x^{2}-x^{1}\right) \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} \exp \left(\sqrt{\delta}\left(t_{1}-t_{0}\right)\right)} \\
t_{1} & =t_{0}+\frac{1}{\sqrt{\delta}} \ln \left(\frac{y_{1}-x^{2}}{y_{1}-x^{1}} \frac{y_{0}-x^{1}}{y_{0}-x^{2}}\right)
\end{aligned}
$$

For $t \in\left[t_{1}, t_{2}\right]$, we obtain that

$$
\frac{y(t)-x^{2}}{y(t)-x^{1}}=\frac{y_{1}-x^{2}}{y_{1}-x^{1}} e^{-\sqrt{\delta}\left(t-t_{1}\right)} ;
$$

therefore

$$
y(t)=x^{1}+\left(x^{2}-x^{1}\right) \frac{1}{1-\frac{y_{1}-x^{2}}{y_{1}-x^{1}} \exp \left(-\sqrt{\delta}\left(t-t_{1}\right)\right)} .
$$

Also,

$$
\begin{aligned}
\frac{y_{2}-x^{1}}{x^{2}-x^{1}} & =\frac{1}{1-\frac{y_{1}-x^{2}}{y_{1}-x^{1}} \exp \left(-\sqrt{\delta}\left(t_{2}-t_{1}\right)\right)}, \\
t_{2} & =t_{1}-\frac{1}{\sqrt{\delta}} \ln \left(\frac{y_{2}-x^{2}}{y_{2}-x^{1}} \frac{y_{1}-x^{1}}{y_{1}-x^{2}}\right) .
\end{aligned}
$$

(II-ii) For $\delta=0, t \in\left[t_{0}, t_{1}\right], \frac{d y}{d t}=A\left(y-x^{1}\right)^{2}$, then we get that

$$
y(t)=x^{1}+\frac{y_{0}-x^{1}}{1-A\left(y_{0}-x^{1}\right)\left(t-t_{0}\right)} .
$$

Also we have

$$
\frac{1}{y_{1}-x^{1}}=\frac{1}{y_{0}-x^{1}}-A\left(t_{1}-t_{0}\right), t_{1}=t_{0}+\frac{y_{1}-y_{0}}{A\left(y_{1}-x^{1}\right)\left(y_{0}-x^{1}\right)} .
$$

For $t \in\left[t_{1}, t_{2}\right]$,

$$
\frac{1}{y(t)-x^{1}}=\frac{1}{y_{1}-x^{1}}+A\left(t-t_{1}\right), y(t)=x^{1}+\frac{1}{\frac{1}{y_{1}-x^{1}}+A\left(t-t_{1}\right)} ;
$$

therefore

$$
y_{2}=x^{1}+\frac{1}{\frac{1}{y_{1}-x^{1}}+A\left(t_{2}-t_{1}\right)}, t_{2}=t_{1}+\frac{y_{1}-y_{2}}{A\left(y_{2}-x^{1}\right)\left(y_{1}-x^{1}\right)} .
$$

(II-iii) For $\delta<0, t \in\left[t_{0}, t_{1}\right]$, then we conclude that

$$
\begin{gathered}
A k\left(t-t_{0}\right)=\tan ^{-1} \frac{y(t)+\frac{B}{2 A}}{k}-\tan ^{-1} \frac{y\left(t_{0}\right)+\frac{B}{2 A}}{k}, \\
y(t)=-\frac{B}{2 A}+\frac{\sqrt{-\delta}}{2 A} \tan \left(\frac{\sqrt{-\delta}}{2}\left(t-t_{0}\right)+\tan ^{-1} \frac{2 A y\left(t_{0}\right)+B}{\sqrt{-\delta}}\right) .
\end{gathered}
$$

And

$$
\begin{aligned}
& t_{1}=t_{0}+\frac{2}{\sqrt{-\delta}}\left(\tan ^{-1} \frac{2 A y_{1}+B}{\sqrt{-\delta}}-\tan ^{-1} \frac{2 A y_{0}+B}{\sqrt{-\delta}}\right), \\
& y_{1}=-\frac{B}{2 A}+\frac{\sqrt{-\delta}}{2 A} \tan \left(\frac{\sqrt{-\delta}}{2}\left(t_{1}-t_{0}\right)+\tan ^{-1} \frac{2 A y_{0}+B}{\sqrt{-\delta}}\right) .
\end{aligned}
$$

For $t \in\left[t_{1}, t_{2}\right]$, then

$$
\begin{aligned}
\int_{y\left(t_{1}\right)}^{y(t)} \frac{1}{\left(r+\frac{B}{2 A}\right)^{2}+k^{2}} d r & =-A\left(t-t_{1}\right), \\
-A k\left(t-t_{1}\right) & =\tan ^{-1} \frac{y(t)+\frac{B}{2 A}}{k}-\tan ^{-1} \frac{y_{1}+\frac{B}{2 A}}{k} ;
\end{aligned}
$$

therefore

$$
y(t)=-\frac{B}{2 A}+\frac{\sqrt{-\delta}}{2 A} \tan \left(-\frac{\sqrt{-\delta}}{2}\left(t-t_{1}\right)+\tan ^{-1} \frac{2 A y_{1}+B}{\sqrt{-\delta}}\right) .
$$

Also

$$
\begin{aligned}
& t_{2}=t_{1}-\frac{2}{\sqrt{-\delta}}\left(\tan ^{-1} \frac{2 A y_{2}+B}{\sqrt{-\delta}}-\tan ^{-1} \frac{2 A y_{1}+B}{\sqrt{-\delta}}\right), \\
& y_{2}=-\frac{B}{2 A}+\frac{\sqrt{-\delta}}{2 A} \tan \left(-\frac{\sqrt{-\delta}}{2}\left(t_{2}-t_{1}\right)+\tan ^{-1} \frac{2 A y_{1}+B}{\sqrt{-\delta}}\right) .
\end{aligned}
$$

Remark 2.2. This lemma will be used for the computation of every three population data obtained from the Ministry of Interior Taiwan between the following periods
(i) For female: $1958-60,1961-63,1975-77,1978-80,1987-89,1992-$ 94, 1995-97, 1999-01, $02-04$.
(ii) For male: $1954-56,1958-60,1968-70,1975-77,1978-80,1987-$ 89, $1992-94,1995-97,1999-01,02-04$.

Similar to the above proof of Lemma 2.2 we can obtain the following Lemmas; we omit the similar arguments for their proofs.

Lemma 2.3. The differential equation (2) with $y_{1} \leq y_{2} \leq y_{0}$ can be solved as the following

$$
\begin{aligned}
& (I I I-i) \text { for } \delta>0, \\
& y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} e^{-\left(x^{2}-x^{1}\right) A\left(t-t_{0}\right)}} \quad \text { for } t \in\left[t_{0}, t_{1}\right], \\
& y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{1}-x^{2}}{y_{1}-x^{1}} e^{\left(x^{2}-x^{1}\right) A\left(t-t_{1}\right)}} \quad \text { for } t \in\left[t_{1}, t_{2}\right] ; \\
& (I I I-i i) \text { for } \delta=0, \\
& y(t)=x^{1}+\frac{1}{A} \frac{1}{t-t_{0}+A^{-1}\left(y_{0}-x^{1}\right)^{-1}} \quad \text { for } t \in\left[t_{0}, t_{1}\right], \\
& y(t)=x^{1}-\frac{1}{A} \frac{1}{t-t_{0}-A^{-1}\left(y_{1}-x^{1}\right)^{-1}} \quad \text { for } t \in\left[t_{1}, t_{2}\right] ; \\
& (I I I-i i i) \text { for } \delta<0, k=\frac{\sqrt{-\delta}}{2 A}, \\
& y(t)=-\frac{B}{2 A}+k \tan \left(-A k\left(t-t_{0}\right)+\tan ^{-1} \frac{y\left(t_{0}\right)+\frac{B}{2 A}}{k}\right) \quad \text { for } t \in\left[t_{0}, t_{1}\right], \\
& y(t)=-\frac{B}{2 A}+k \tan \left(A k\left(t-t_{1}\right)+\tan ^{-1} \frac{y\left(t_{1}\right)+\frac{B}{2 A}}{k}\right) \quad \text { for } t \in\left[t_{1}, t_{2}\right] .
\end{aligned}
$$

Remark 2.3. This lemma will be used to compute every three population data obtained from the Ministry of Interior Taiwan between the following periods
(i) For female: $1952-54,1956-58,1966-68,1971-73,1977-79,1988-$ 90, 1991-93, 1993-95, 1997-99, 01-03.
(ii) For male: $1952-54,1956-58,1966-68,1971-73,1977-79,1981-$ $83,1988-90,1991-93,1997-99,01-03$

Lemma 2.4. The differential equation (2) with $y_{1} \leq y_{0} \leq y_{2}$ can be solved as the following
($I V-i$) for $\delta>0$,

$$
\begin{aligned}
& y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} e^{-\left(x^{2}-x^{1}\right) A\left(t-t_{0}\right)}} \text { for } t \in\left[t_{0}, t_{1}\right], \\
& y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{1}-x^{2}}{y_{1}-x^{1}} e^{\left.e x^{2}-x^{1}\right) A\left(t-t_{1}\right)}} \text { for } t \in\left[t_{1}, t_{2}\right] ;
\end{aligned}
$$

$$
\begin{gathered}
(I V-i i) \text { for } \delta=0, \\
y(t)=x^{1}+\frac{1}{A} \frac{1}{t-t_{0}+A^{-1}\left(y_{0}-x^{1}\right)^{-1}} \quad \text { for } \quad t \in\left[t_{0}, t_{1}\right], \\
y(t)=x^{1}-\frac{1}{A} \frac{1}{t-t_{1}-A^{-1}\left(y_{1}-x^{1}\right)^{-1}} \quad \text { for } t \in\left[t_{1}, t_{2}\right] ; \\
(I V-i i i) \text { for } \delta<0, k=\frac{\sqrt{-\delta}}{2 A}, \\
y(t)=-\frac{B}{2 A}+k \tan \left(-A k\left(t-t_{0}\right)+\tan ^{-1} \frac{y\left(t_{0}\right)+\frac{B}{2 A}}{k}\right) \quad \text { for } t \in\left[t_{0}, t_{1}\right], \\
y(t)=-\frac{B}{2 A}+k \tan \left(A k\left(t-t_{1}\right)+\tan ^{-1} \frac{y\left(t_{1}\right)+\frac{B}{2 A}}{k}\right) \quad \text { for } t \in\left[t_{1}, t_{2}\right] .
\end{gathered}
$$

Remark 2.4. This lemma will be used for computing every three population data obtained from the Ministry of Interior Taiwan between the following periods
(i) For female: $1964-66,1985-87,03-05$.
(ii) For male: $1964-66,1985-87,1993-95,03-05$.

Lemma 2.5. The differential equation (2) with $y_{2} \leq y_{1} \leq y_{0}$ can be solved as the following
$(V-i)$ for $\delta>0$,

$$
y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} e^{-\left(x^{2}-x^{1}\right) A\left(t-t_{0}\right)}} ;
$$

$(V-i i)$ for $\delta=0$,

$$
y(t)=x^{1}+\frac{1}{A} \frac{1}{t-t_{0}+A^{-1}\left(y_{0}-x^{1}\right)^{-1}}
$$

$(V-i i i)$ for $\delta<0, k=\frac{\sqrt{-\delta}}{2 A}$,

$$
y(t)=-\frac{B}{2 A}+k \tan \left(-A k\left(t-t_{0}\right)+\tan ^{-1} \frac{y\left(t_{0}\right)+\frac{B}{2 A}}{k}\right) .
$$

Remark 2.5. This lemma will be used for the computation of every three population data obtained from the Ministry of Interior Taiwan between the following periods
(i) For female: $1955-57,1959-61,1962-64,1963-65,1970-72,1976-$ $78,1979-81,1980-82,1981-83,1982-84,1983-85,84-86$, $96-98,00-02$.
(ii) For male: $1955-57,59-61,60-62,61-63,62-64,63-65,70-72,76-$ $78,79-81,80-82,82-84,83-85,84-86,96-98,00-02$.

Lemma 2.6. The differential equation (2) with $y_{2} \leq y_{0} \leq y_{1}$ can be solved as the following
$(V I-i)$ for $\delta>0$,

$$
\begin{array}{ll}
y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{0}-x^{2}}{y_{0}-x^{1}} e^{\left(x^{2}-x^{1}\right) A\left(t-t_{0}\right)}} \quad \text { for } t \in\left[t_{0}, t_{1}\right] \\
y(t)=x^{1}+\frac{\sqrt{\delta}}{A} \frac{1}{1-\frac{y_{1}-x^{2}}{y_{1}-x^{1}} e^{-\left(x^{2}-x^{1}\right) A\left(t-t_{1}\right)}} \quad \text { for } t \in\left[t_{1}, t_{2}\right]
\end{array}
$$

$(V I-i i)$ for $\delta=0$,

$$
\begin{array}{ll}
y(t)=x^{1}-\frac{1}{A} \frac{1}{t-t_{0}-A^{-1}\left(y_{0}-x^{1}\right)^{-1}} \quad \text { for } t \in\left[t_{0}, t_{1}\right] \\
y(t)=x^{1}+\frac{1}{A} \frac{1}{t-t_{0}+A^{-1}\left(y_{0}-x^{1}\right)^{-1}} \quad \text { for } t \in\left[t_{1}, t_{2}\right]
\end{array}
$$

$$
\begin{gathered}
(V I-\text { iii }) \text { for } \delta<0, k=\frac{\sqrt{-\delta}}{2 A} \\
y(t)=-\frac{B}{2 A}+k \tan \left(A k\left(t-t_{0}\right)+\tan ^{-1} \frac{y\left(t_{0}\right)+\frac{B}{2 A}}{k}\right) \quad \text { for } t \in\left[t_{0}, t_{1}\right] \\
y(t)=-\frac{B}{2 A}+k \tan \left(-A k\left(t-t_{1}\right)+\tan ^{-1} \frac{y\left(t_{1}\right)+\frac{B}{2 A}}{k}\right) \quad \text { for } t \in\left[t_{1}, t_{2}\right] .
\end{gathered}
$$

Remark 2.6. This lemma will be used to compute every three population data obtained from the Ministry of Interior Taiwan between the following periods
(i) For female: $1965-67,1969-71,1990-92$.
(ii) For male: $1965-67,1969-71,1990-92$.

In the next section we want to discuss some models using the Parabola method.
As mentioned at the beginning, we approximate the differential equation $\frac{d u}{d t}=$ $f(t, u)$ by the following equation

$$
\begin{aligned}
\frac{d v(t)}{d t} & =A\left(v(t)-u_{0}\right)^{2}+B(t)\left(v(t)-u_{0}\right)+C(t), v\left(t_{0}\right)=u\left(t_{0}\right), \\
A & =\frac{1}{2} f_{u u}\left(t_{0}, u_{0}\right), \quad B(t)=f_{t, u}\left(t_{0}, u_{0}\right)\left(t-t_{0}\right)+f_{u}\left(t_{0}, u_{0}\right) \\
C(t) & =\frac{1}{2} f_{t t}\left(t_{0}, u_{0}\right)\left(t-t_{0}\right)^{2}+f_{t}\left(t_{0}, u_{0}\right)\left(t-t_{0}\right)+f\left(t_{0}, u_{0}\right)
\end{aligned}
$$

3. Special Population Model

We denote by:

$$
\begin{gathered}
b(t)=t-t h \text { year birth population, } \\
\frac{d b(t)}{d t} / b(t):=\text { birth rate }=b i r(t), \\
d b i r(t) / d t:=\text { birth speed-up. }
\end{gathered}
$$

For convenience, we denote $d b i r(t) / d t$ by $d b i r(t)$ in graph. Using the parabolic approximation curve partition scoring we will study the population growth problem from 1952 to 2005 in Taiwan and obtain some properties on the birth rate, population and a model between Birth rate and the Population.

From the population data obtained from the Ministry of Interior Taiwan and through the following substitution

$$
\begin{aligned}
\frac{d b(t)}{d t} & :=b(t+1)-b(t) \\
d b i r(t) & :=\frac{d b i r(t)}{d t}=b i r(t+1)-b i r(t) \\
& =\frac{d b(t+1)}{d t} / b(t+1)-\frac{d b(t)}{d t} / b(t) \\
& =\frac{b(t+2)-b(t+1)}{b(t+1)}-\frac{b(t+1)-b(t)}{b(t)},
\end{aligned}
$$

we can make the following graphs through plotting by using Maple shown as Fig. 1.

Consider the relation between $\frac{\operatorname{dbir}(t)}{d t}$ and $\operatorname{bir}(t)$ for $\operatorname{bir}(t)$ lies on $[-0.12,-0.05]$ the above graph can be shown as Fig. 2.

Fig. 1. Graph of $\operatorname{dbir}(\mathrm{t})-\operatorname{bir}(\mathrm{t})-1$.

Fig. 2. Graph of $\operatorname{dbir}(\mathrm{t})-\operatorname{bir}(\mathrm{t})-2$.

We think that there should exist some reasonable reglues in such a social sciences and we introduce the method proposed in Section 3 a quadratic model to consist with the Graph of $\operatorname{dbir}(\mathrm{t})$-bir(t)-2 given above and every three-pointwisely divide the graph $\operatorname{dbir}(\mathrm{t})-\operatorname{bir}(\mathrm{t})-1$ into several subgraphs as follows for $v(t)=\operatorname{bir}(t)$ and $a(t)=\frac{d v(t)}{d t}$,

$$
a(t)=\frac{d v(t)}{d t}=A_{j} v(t)^{2}+B_{j} v(t)+C_{j} \quad \text { for } \quad v(t) \in I_{j}
$$

where $A_{j}, B_{j}, C_{j}, j=0,1, \cdots, 15$ are constants and $I_{0}=[-0.12,-0.07]$,
$I_{1}=[-0.072,-0.06], I_{2}=[-0.066,-0.052], I_{3}=[-0.048,-0.042]$,
$I_{4}=[-0.04,-0.025], I_{5}=[-0.0225,-0.02], I_{6}=[-0.02,-0.01]$,
$I_{7}=[-0.013,-0.015], I_{8}=[-0.015,0], I_{9}=[0,0.0016], I_{10}=[0.0016,0.005]$,
$I_{11}=[0.005,0.0133], I_{12}=[0.0133,0.0166], I_{13}=[0.0166,0.02], I_{14}=[0.02,0.03]$, $I_{15}=[0.03,0.04]$. That is,

$$
\begin{gather*}
a(t)=\left\{\begin{array}{c}
A_{0} v(t)^{2}+B_{0} v(t)+C_{0} \text { for } v(t) \in[-0.12,-0.07], \\
A_{1} v(t)^{2}+B_{1} v(t)+C_{1} \quad \text { for } v(t) \in[-0.072,-0.06], \\
A_{2} v(t)^{2}+B_{2} v(t)+C_{2} \text { for } v(t) \in[-0.066,-0.052],
\end{array}\right. \tag{3.1}\\
a(t)=\left\{\begin{array}{cc}
A_{3} v(t)^{2}+B_{3} v(t)+C_{3} \quad \text { for } v(t) \in[-0.048,-0.042], \\
A_{4} v(t)^{2}+B_{4} v(t)+C_{4} & \text { for } v(t) \in[-0.04,-0.025], \\
A_{5} v(t)^{2}+B_{5} v(t)+C_{5} & \text { for } v(t) \in[-0.0225,-0.02], \\
A_{6} v(t)^{2}+B_{6} v(t)+C_{6} & \text { for } v(t) \in[-0.02,-0.01], \\
A_{7} v(t)^{2}+B_{7} v(t)+C_{7} & \text { for } v(t) \in[-0.013,-0.015],
\end{array}\right. \tag{3.2}\\
a(t)=\left\{\begin{array}{cc}
A_{8} v(t)^{2}+B_{8} v(t)+C_{8} & \text { for } v(t) \in[-0.015,0], \\
A_{9} v(t)^{2}+B_{9} v(t)+C_{9} & \text { for } v(t) \in[0,0.0016], \\
A_{10} v(t)^{2}+B_{10} v(t)+C_{10} & \text { for } v(t) \in[0.0016,0.005], \\
A_{11} v(t)^{2}+B_{11} v(t)+C_{11} & \text { for } v(t) \in[0.005,0.0133], \\
A_{12} v(t)^{2}+B_{12} v(t)+C_{12} & \text { for } v(t) \in[0.0133,0.0166], \\
A_{13} v(t)^{2}+B_{13} v(t)+C_{13} & \text { for } v(t) \in[0.0166,0.02], \\
A_{14} v(t)^{2}+B_{14} v(t)+C_{14} & \text { for } v(t) \in[0.02,0.03], \\
A_{15} v(t)^{2}+B_{15} v(t)+C_{15} & \text { for } v(t) \in[0.03,0.04] .
\end{array}\right. \tag{4.3}
\end{gather*}
$$

Where $A_{j}, B_{j}, C_{j}, j=0,1, \cdots, 15$ are constants. From the above equations we propose a rough approximate model as the following simple continuous type

$$
\begin{align*}
\frac{d v(t)}{d t} & =a(t)=A(t) v(t)^{2}+B(t) v(t)+C(t), v\left(t_{0}\right)=v_{0} \tag{3.4}\\
v(t) & =\frac{d b(t)}{d t} / b(t), b\left(t_{0}\right)=b_{0}, b\left(t_{1}\right)=b_{1}, v\left(t_{1}\right)=v_{1}, b\left(t_{2}\right)=b_{2}, v\left(t_{2}\right)=v_{2}
\end{align*}
$$

where $b(t)=t-t h$ year birth population, $v(t):=\operatorname{bir}(t)$ birth increasing rate, $d b i r(t) / d t:=$ birth speed-up. The existence of solution of (3.4) can be got by the standard arguments.

To study the property of birth population we use the lemmas $2.1 \sim 2.6$ in Section 2 to solve the function $v(t)=\operatorname{bir}(t)=\frac{d b(t)}{d t} / b(t)$ in those small time intervals and obtain the population function $b(t)$ (named "Estimated number" for forward difference method and "theoretical computational results"for backward difference method) by taking integration on $v(t)$ with respect to t, then take the square mean
every three points except the first, second, last two and last (2003) years and than we obtain the results through using the forward difference method, according to the official Annals $\frac{d b(t)}{d t}$ is instated by $b(t+1)-b(t)$, we obtain the result as shown below

Fig. 3.
with errors

$$
\begin{aligned}
\frac{1}{54} \sum_{i=1}^{54}\left|\frac{B_{i}(t)-b_{i}(t)}{b_{i}(t)}\right| & \sim 0.04266164 \sim 4.3 \% \\
\frac{1}{54} \sqrt{\sum\left(\frac{B_{i}(t)-b_{i}(t)}{b_{i}(t)}\right)^{2}} & \sim 0.007299726 \sim 0.73 \%
\end{aligned}
$$

Through the backward difference method, according to the official Annals $\frac{d b(t)}{d t}$ is instated by $b(t)-b(t-1)$, and as the same above computation method we obtain the graph as below

Fig. 4.

Fig. 5.
where the number 0 in x - axis represents the year 1952 , with errors of case 1

$$
\begin{aligned}
\frac{1}{54} \sum_{i=1}^{54}\left|\frac{\hat{b}_{i}(t)-b_{i}(t)}{b_{i}(t)}\right| & \sim 6.5837381846382 \% \\
\frac{1}{54} \sqrt{\sum\left(\frac{\hat{b}_{i}(t)-b_{i}(t)}{b_{i}(t)}\right)^{2}} & \sim 0.0422277256212 \%
\end{aligned}
$$

4. Conclusions

We compare these two methods-forward and backward differences-together and it show the results that If we could delete the problematic four data caused by some unregulated statistical methods on population, then through the forward method we can obtain better estimate with errors 4.27% and 0.73% in the sense of mean and square mean respectively; and 6.58% and 0.042% in the same situation through the backward difference method.

There were historical survey on the related topics, for example, Lee-Carter model for the rate of Mortality, APC model for ... , etc.

These errors result from
(i) the computational method and
(ii) the large disparity between the difference equation and differential equation when the dynamics and nonlinearity are strong.

We plan to establish new methodology to deal such nonlinear problem in the future.

The problem (3.4) for population can not be solved easily, and from the experimental point of view (at least from the data at Ministry of Interior Taiwan)
$A(t) \sim a_{1, i} t^{2}+b_{1, i} t+c_{1, i}, B(t) \sim a_{2, i} t^{2}+b_{2, i} t+c_{2, i}, C(t) \sim a_{3, i} t^{2}+b_{3, i} t+c_{3, i}$,
for $t \in J_{i}, J_{i}$ are some time-intervals and $a_{j, i} b_{j, i}, c_{j, i}$ are constants we will compute these constants later. We have tried to use our methods applied in [1-19] to solve this equation (3.4), but till now do not yet have definite results.

Acknowledgments

Thanks are due to Professor Long-Yi Tsai, Professor Ton Yang and Professor Shih-Shien Yu for their continuous encouragement and discussions over this work, to Metta Education, Grand Hall and Auria Solarfor for their financial assistance and to the referee for his interest and helpful comments on this paper.

References

1. T. H. Shieh and M. R. Li, Numeric treatment of contact discontinuity with multi gases, Journal of computational and applied mathematics, Journal of computational and applied mathematics (JCAM), August 2009, pp. 656-673.
2. T. H. Shieh, T. M. Liou, M. R. Li, C. H. Liu and W. J. Wu, Analysis on numerical results for stage separation with different exhaust holes, International communications in heat and mass transfer, April 2009, pp. 342-345.
3. Renjun Duan, M. R. Li and T. Yang, Propagation of Singularities in the Solutions to the Boltzmann Equation near Equilibrium, Mathematical Models and Methods in Applied Sciences (M3AS), 18(7) (2008), 1093-1114.
4. M. R. Li, On the blow-up time and blow-up rate of positive solutions of semilinear wave equations $\square u-u^{p}=0$ in 1-dimensional space, Communications on Pure and Applied Analysis, (2011), to appear.
5. M. R. Li, Estimates for the Life-Span of the Solutions for Semilinear Wave Equations, Communications on Pure and Applied Analysis, 7(2) (2008), 417-432.
6. M. R. Li and J. T. Pai, Quenching problem in some semilinear wave equations, $A C T A$ Math. Scientia, 28(3) (2008), 523-529.
7. M. R. Li, On the differential equation $u^{"}-u^{p}=0$, Taiwanese J. Mathematics, 9 (1) (2005), 39-65.
8. M. R. Li and Z. H. Lin, Regularity and blow-up constants of solutions for differential equation, Taiwanese Journal of Mathematics, 10(3) (2006), 777-795.
9. M. R. Li, Blow-up solutions to the nonlinear second order differential equation $u^{\prime \prime}=$ $|u|^{p} \cdot\left(c_{1}+c_{2} u^{\prime}(t)^{q}\right)$, Taiwanese Journal of Mathematics, 12(3) (2008), 599-622.
10. M. R. Li, Existence and nonexistence of global solutions of some sysyems of semilinear wave equations, Nonlinear Analysis, 54 (2003), 1397-1415.
11. M. R. Li and L. Y. Tsai, On a system of nonlinear wave equations, Taiwanese J. Mathematics, 4(7) (2003), 557-573.
12. M. R. Li and X. Z. Lin, The second order differential equation with nonlinear damping $u^{\prime \prime}=u^{\prime q}\left(c_{1}+c_{2} u^{p}\right)$, Bulletin of the Institute of Mathematics Academia Sinica, 32(4) (2004), 229-253.
13. M. R. Li, Existence and uniqueness of solutions of quasilinear wave equations (II), Bulletin Ins. Math. Academia Sinica, 1(2) (2006), 263-279.
14. M. R. Li and Z. H. Lin, Regularity and blow-up constants of solutions for differential equation $u^{\prime \prime}-u p=0$, Taiwanese J. Mathematics, 10(3) (2006), 777-795.
15. M. R. Li and Y. L. Chang, On a particular Emden-Fowler equation $u^{\prime \prime}-u^{3}=$ 0 with non-positive energy-Mathematical model of enterprise competitiveness and performance, Applied Mathematics Letters, 20(9) (2007), 1011-1015.
16. M. R. Li and C. H. Chang, Analysis on the duration of deep earthquakes, Taiwanese J. Mathematics, 12(7) (2008), 1667-1680.
17. M. R. Li, On the fmden-fowler equation $u^{\prime \prime}(t) u(t)=c_{1}+c_{2} u^{\prime}(t)^{2}$ with $c_{1}>0, c_{2}>$ 0, Acta Mathematica Scientia, 30(4) (2010), 1227-1234.
18. M. R. Li, Y. J. Lin and T. H. Shieh, The flux model of the movement of tumor cells and health cells using a system of nonlinear heat equtions, J. Computational Biology, (2011), to appear.

Meng-Rong Li and Yu-Tso Li
Department of Mathematical Sciences
National Chengchi University
Taipei 116, Taiwan
E-mail: liwei@math.nccu.edu.tw

Tzong-Hann Shieh
Department of Aerospace and Systems Engineering
Feng Chia University
Taichung 40724, Taiwan
C. Jack Yue and Pin Lee

Department of Statistics
National Chengchi University
Taipei 116, Taiwan

