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Abstract. The rectangle number of a graph G is the minimum ¢ such that G
is the intersection graph of sets that are unions of ¢ rectangles in the plane with
vertical and horizontal sides. We prove that complete multipartite graphs have
rectangle number at most two, and that the k-dimensional hypercube has rect-
angle number at most [k/4] (except one more when k = 4).

1. INTRODUCTION

The intersection graph of a family of sets {S7,...,5,} is the graph with vertex set
{v1,...,v,} defined by making v; and v; adjacent precisely when X; N .S; # @. The sets
in the family form an intersection representation of the corresponding graph. The interval
graphs are those having intersection representations in which each set is an interval on the
real line; this special family has been thoroughly studied in hundreds of papers.

Sets generalizing intervals have been used to permit intersection representations of all
graphs. Natural parameters measure how much the sets deviate from being intervals. A
d-boz in R? is a cartesian product of d intervals. A t-interval in R! is a union of ¢ inter-
vals. The bozicity box(G) of a graph G is the minimum d such that G is the intersection
graph of a family of d-boxes. The interval number i(G) is the minimum ¢ such that G is
the intersection graph of a family of ¢-intervals. Boxicity was introduced by Roberts [3];
interval number by Trotter and Harary [7].

The ideas behind these two parameters can be combined. In any fixed dimension d,
we can seek the minimum 7 such that G is the intersection graph of at most ¢ d-boxes.
When d = 2, the resulting parameter is the rectangle number r(G). In this paper, we
compute the rectangle number for all complete multipartite graphs (it is always 2 or 1),
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and we derive an upper bound on the rectangle number of the k-dimensional hypercube
(it is at most [k/4], except that it equals 2 when &k = 4).

The result for complete multipartite graphs is striking in relation to their interval
number and boxicity. The full spectrum of box intersection parameters starts with the
interval number and ends with 1 when the dimension equals the boxicity. Trotter and
Harary [7] proved that i(K,, ,) = [22tl]. Hopkins, Trotter, and West [2] proved that

m+n

i(G) = [2t1] when G is a complete multipartite graph in which the two largest partite

m+n
sets induce K, ,, except in rare special cases where it is larger by 1.

Roberts [3] proved that the boxicity of a complete multipartite graph equals the num-
ber of partite sets with size at least 2. The boxicity can be interpreted as the number of
dimensions that must be allowed for the “multiplicity” of representation to decline from
[m2t1] t6 1. Surprisingly, almost all of the collapse in multiplicity occurs on the first step:

m+n
the rectangle number of every complete multipartite graph is at most 2.

Best-possible bounds on the full spectrum are known for the family of planar graphs.
For every planar graph, the interval number is at most 3 [5], the rectangle number is at
most 2 [4], and the boxicity is at most 3 [6]. Thus in each dimension, the dimension plus
the multiplicity is at most 4, and these bounds are sharp.

For general n-vertex graphs, the interval number is at most [(n 4 1)/4] [1], and the
boxicity is at most [n/2] [3]. We do not know the maximum rectangle number for n-vertex
graph or any general upper or lower bounds on how the maximum d-box intersection num-
ber for n-vertex graphs declines as d increases from 1 to [n/2]|. Even for the hypercubes,
we have not proved a general lower bound, but we believe that the rectangle number of
hypercubes increases linearly with the dimension, and thus that the maximum rectangle
number increases at least logarithmically with the number of vertices.

When we speak of the horizontal projection or vertical projection of a rectangle, we
mean its projection on the horizontal or vertical axis, respectively. In other words, it is
the first or second factor, respectively, in the description of the rectangle as a cartesian
product of intervals.

2. COMPLETE MULTIPARTITE GRAPHS

THEOREM 1. If G is a complete multipartite graph, then r(G) < 2, with equality if
and only if G has at least three partite sets of size at least 2.

Proof: If G does not have at least three partite sets of size at least 2, then by Roberts’
result [3] the boxicity of G is at most 2, which allows G to be represented using one rect-
angle per vertex. Indeed, the vertices of one nontrivial partite set can be represented by
parallel thin vertical strips, the other vertices by parallel thin horizontal strips, and the
vertices in partite sets of size 1 by rectangle that intersect everything.

Conversely, suppose that r(G) = 1. Let H be an copy of C4 = K, > as an induced
subgraph in G, with partite sets X and Y. Since X and Y induce K,, we may assume
by symmetry that the rectangles for X have disjoint horizontal projections. The horizon-
tal projections for ¥ must both contain the gap between these and therefore intersect.
Thus the rectangles for Y have disjoint vertical projections, and the vertical projections
for X intersect. If G contains K3 3 o, then the three pairwise edge-disjoint copies of Cy in



this subgraph cannot all satisfy this. Two of the three pairs of independent points have
rectangles with disjoint projections in the same direction; thus these cannot represent Cjy.

Finally, we construct a rectangle representation with two rectangles per vertex for G.
Consider a block adjacency matrix for G with the vertices grouped by partite sets. We
obtain a representation from the portion of this matrix above the diagonal. We view the
ones in each row as a thin horizontal rectangle for that vertex. We view the ones in each
column as a thin vertical rectangle for that vertex. Each partite set is represented by two
families of thin parallel rectangles. The rectangles do not extend as far as the “diagonal”,
so they intersect if and only if the corresponding vertices belong to distinct partite sets.
Fig. 1 illustrates the construction. |

Fig. 1. Rectangle representation for complete multipartite graph.

3. HYPERCUBES

The 4-dimensional hypercube is an annoying complication in our inductive construc-
tion of rectangle representations for hypercubes. The induction step is quite easy, but
r(Qa) = 2 requires us to provide explicit representations for Qs and (Q12. A t-rectangle
representation is an intersection representation assigning each vertex the union of at most
t rectangles in the plane (with horizontal and vertical sides). The multiplicity of a vertex
in a representation is the number of rectangles assigned to it.

In the k-dimensional hypercube @), we view the vertices as subsets of {1,...,k}
adjacent when their subset labels differ by one element. We begin by analyzing (4.

LEMMA 2. In every rectangle representation of ()4, at least two vertices have multi-
plicity at least two.

Proof: Let f be a rectangle representation of (J4. We prove that within distance 3 of
an arbitrary vertex v in (Q4, there is a vertex with multiplicity at least two. Hence some
vertex has multiplicity at least two, and applying the argument again to the complement
of that vertex yields a second such vertex.

Without loss of generality, let v = @, and suppose that every vertex other than
{1,2,3,4} has multiplicity one. Let R, denote the unique rectangle assigned to u (dropping
set brackets). Because ()4 is triangle-free, no assigned rectangle is contained in another.
Also, the rectangle I for v intersects four pairwise disjoint rectangles Ry, Ry, I3, R4 for
its neighbors. For ¢, € {1,2,3,4}, we claim that R, and R; intersect a common side of
Rg. If not, then R;; will also intersect Rg, as shown in Fig. 2.
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Fig. 2. Restrictions on neighbors in representation of (4.

Without loss of generality, we may assume that Ry, Ry, R3, R4 intersect the left side
of R in that order from top to bottom (they may also extend past the right side of R@).
Since Rjp; extends vertically from R; to R; but misses Rj, it must lie entirely to the left
or right of Rgy; by symmetry, we may assume that it lies to the left. Now Ry blocks the
leftward advance of R,, and R3; extends farther left than R;. Hence R4 must be to the
right of R and block the rightward advance of I;.

Next, Rp3 must extend across the vertical gap between R, and Rj3; but avoid R@.
Hence 3 is entirely to the left or to the right of Rgy; we may assume by symmetry that
it lies to the right. Fig. 3 displays the conclusions that will follow from this.
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Fig. 3. Arrangement of singleton rectangles in representation of (4.

Since Ry3 must meet R3 and avoid R4, the horizontal extent of Ry3 is now confined
between R@ and Ry4. Since Ry3 must meet R3 and avoid R4, the vertical extent of Rs3 is
bounded below by R4. Since Ri23 must meet Ry3 and Rs3 and avoid R, and since R3 is
bounded below by R4, we conclude that Rq23 extends from Ri3 to Rs3 above R@. Hence
Ry3 blocks the rightward advance of R;.

Since Rj4 extends vertically from R; to R4, and R, extends past the right end of
R1 between them, Ri4 must lie to the left of RQ. Indeed, it must also lie to the left of
R3;. Now, Ry must extend vertically from R; to R; and must avoid Ry3 and Rz3. Hence



the horizontal extent of Ri3 is bounded between R;3 and R23. Furthermore, the vertical
extent of Ry is bounded below by R;. Since Ry, and R@ each extend vertically between
Ry and R, their horizontal projections are disjoint; either may be leftmost.

Next, R124 must extend horizontally between R14 and R34, meeting Ry, and avoiding
R13 and R33. Since Rj; lies above Rj3, we conclude that Rq24 lies above Rys23, and that all
of Rq4, R12, Ro4 extend up far enough to meet it.

We have now located all regions except those whose indices contain both 3 and 4.
Both R;i; and Ry3 lie above R4. Hence R134 and R334, which must avoid R4, also lie above
R4. Since R34 extends vertically between R3 and R4 and avoids RQ, it lies entirely to the
left or to the right of R. If R34 lies to the left [right] of RQ, then R334 cannot meet both
R34 and Ry3 [Ry3] without crossing Rg, since R4 lies below Ry [Rz].

We have proved that there is no rectangle representation of ()4 in which every vertex
within distance three of a specified vertex has multiplicity 1. |

LEMMA 3. There is a 2-rectangle representation of ()4 in which the only vertices with
multiplicity 2 are two adjacent vertices z,y, also one rectangle for x emerges vertically
in both directions (arbitrarily far) and the other emerges vertically in one direction,
and the rectangles for y satisfy the same behavior horizontally.

Proof: By allowing two rectangles for each of 234 and 1234, we can complete the repre-

sentation begun in Fig. 3 as indicated in Fig. 4. These four rectangles can be extended
so that the rectangles for 1234 both extend upward and one extends downward, and the

rectangles for 234 both extend rightward and one extends leftward. |
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Fig. 4. The canonical 2-rectangle representation of (4.



By symmetry, we may choose any adjacent pair of vertices to receive two rectangles
each, and we may exchange up/down and right /left at will in this representation. Call this
the canonical representation of (Q4.

For the main result, we view the vertices of (J; as binary vectors of length k.

THEOREM 4. The rectangle number of the k-dimensional cube @) is at most [k/4],
except that »(Q4) = 2.

Proof: We have proved that r(Q4) = 2. Since ()4 contains a copy of (J; avoiding a pair
of adjacent vertices, the canonical representation contains a 1-rectangle representation of
Qs. Since Qi C Q41 for all k, it therefore suffices to prove that r(Qq <1 for each [ > 1.

We use induction on [. For [ > 1, we view (Q4; as (Js0(4;—s, where O denotes cartesian
product of graphs. For each choice of bits in the last 4/ — 8 coordinates of vertices of ()4,
we have a copy of (Jg. If (Js has a 2-rectangle representation, then the disjoint union of
241=8 copies of Qg has a 2-rectangle representation. Deleting the edges of these copies of
Qs leaves 8 disjoint copies of (Q4;—s. If [ > 4, then the induction hypothesis allows us to
complete the representation using [ — 2 additional rectangles per vertex.

To complete the proof, we provide constructions for r(Qs) = 2 and r(Q12) < 3. We
use the canonical representation of ()4 provided by Lemma 3.

2-rectangle representation of ()s. Express (Js as Q4 0Q)s. View (s as G U H, where
each of GG, H is the disjoint union of 16 copies of ()4. Each vertex appears in one component
in each of G and H. Each component of G [resp., H] has a fixed value in the last four [first
four] coordinates of its vertex labels. Our representation has eight isomorphic connected
pteces, each of which represents two components of G and two components of H.

Instead of describing an explicit representation, we describe a class of representa-
tions, because we will use eight different 2-rectangle representations of (Js to construct a
3-rectangle representation of ()12. We parse each 8-bit label of a vertex of (Js as a concate-
nation «f3vd, where «,~ are single bits and (3,9 are 3-bit binary vectors. We use vector
addition modulo 2. In the 8-bit label of v, we refer to the vector in coordinates 2-4 as 3(v)
and the vector in coordinates 6-8 as J(v).

Given a fixed 3-bit vector z, we describe a representation of (Jg; the eight choices for
z yield eight different representations, with z as a parameter. Given a 3-bit binary vector
z, let y = 2 + z (modulo 2), and let a,b,c,d respectively denote the four special vertices
020y, 120y, 121y, 021y. The subgraph induced by {«,b, ¢, d} is a 4-cycle consisting of one
edge from each of two components of G and one edge from each of two components of H.
We label these four copies of Q4 (componentsin G and H) as AB, BC,CD, DA such that
abe ABCG,bce BCCH,cdeCD CG,anddae DACH.

We represent AB U BC U CD U DA using two rectangles each for a,b,¢,d and one
rectangle for the remaining vertices. No vertex outside {a, b, c,d} appears in more than
one of these four subgraphs. We use four copies of the canonical representation of ()4,
extending the two rectangles for one of {a,b, ¢,d} out vertically in one direction and ex-
tending the two rectangles for the appropriate neighbor among {a, b, ¢, d} out horizontally
in one direction. The two parallel rectangles for a emerging from the representation of DA
serve also as the two parallel rectangles for A emerging from the representation of AB,
and similarly for b, ¢, d. The resulting representation is illustrated in Fig. 5.
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Fig. 5. A ptece in the representation of ().

For each of the eight choices for =, we have such a piece in our representation f.. A
vertex v is a special vertex («a,b, ¢, d) in some piece if and only if é(v) = 3(v) 4+ z (modulo
2). A special vertex v appears only in the piece generated by x = ((v), and it is assigned
two rectangles in representing that component.

A non-special vertex u appears in the piece generated by » = 3(u) and also in the
pieces generated by @ = d(u) — z, assigned one rectangle in each piece. Thus we have
represented the 32 pairwise edge-disjoint copies of ()4 in eight disjoint pieces, obtaining a
2-rectangle representation of (Js.

3-rectangle representation of (J12. Express (12 as Qs 0Q)4. We represent the 16 copies
of (Js in the manner described above; in total we have 128 pieces. These pieces contain
canonical representations of ()4 in which we have made extra use of the parallel “tails”
emerging in common directions. To avoiding adding two intervals for vertices in the re-
maining 256 disjoint copies of ()4, we will also make extra use of the third tail emerging
in the opposite direction. Each of the 128 pieces has 8 tails emerging (we will use one
for each of the four special vertices), and each of the 256 copies of ()4 needs to use 2 of
these tails. We produce a representation in connected modules, each containing two of the
previously-constructed pieces.

We parse each 12-bit vertex label in ()12 as a concatenation «f3vde(, where «,~, € are
single bits and /,~v,( are 3-bit binary vectors. In the 12-bit label of v, we refer to the
vector in coordinates 2-4 as (v), in coordinates 6-8 as §(v), and in coordinates 10-12 as
¢(v).

Our copies of (Jg in ()12 have vertex labels fixed in the last four coordinates. Using
the ninth coordinate, we view these copies of (Js in eight pairs. In the pair for which the
last three coordinates are fixed at ((v) = z, we use the representation f, for each of the
two copies of 3. We combine corresponding pieces of these two representations (and with
the pair pick up four of the remaining copies of (J4) to produce 8 x 8 = 64 modules for our
full representation.

Let a,b,c,d be the four special vertices in one piece of the representation f, on the
copy of s having 0z in the last four coordinates. Let a',d',¢',d' be the corresponding
vertices having 1 in the ninth coordinate. Note that w and w' are adjacent, for w €
{a,b,c,d}. Each of these eight special vertices appears in one un-represented copy of (4



in which the first eight coordinates are fixed. Both w and w' appear (and are adjacent) in
a single such subgraph, which we call F(w).

We represent F'(w) using the canonical representation, letting w, w' be the adjacent
pair using two rectangles each. Since we already have used two rectangles for each of
w,w' in the pieces of f., we can afford only one additional rectangle. This we achieve for
each of w,w' by extending a rectangle from a piece of f, to become a rectangle in the
representation of F'(w) (one horizontal, one vertical). The explicit geometric arrangement
appears in Fig. 6. For fixed z, let f! denote the eight modules formed in this way.

a a
AB a DA F(a)
b b d |d
BC ¢ CD ¢ F(e) !
C
d c
dl
b F(d) g CcD' g DA'
c c 1 1
F(b) BC! b AB!
b b

Fig. 6. A module in the representation of (}15.

We have one pair of (Jg’s for each choice of z. For each special vertex w in each
module of f!, we have §(w) = f(w) + z and ((w) = z. For each non-special vertex v
that belongs to some F(w) in some module of f!, we have §(v) = f(v) + z but ((v) # =.
Thus a vertex v of ()12 occurs as a special vertex in some module of some f! if and only

if 6(v) = B(v) + ¢(v).

If §(v) = B(v) + ((v), then v occurs as a special vertex in fé(v). The edges incident
to v via changes in the first eight coordinates occur in an f¢(,)-piece in an fé(v)—module,
and the edges via changes in the last four coordinates occur in the F(v)-portion of the
fé(v)—module (or F(w) if v = w'), which assigns a third rectangle to v. Furthermore, no
rectangles for v appear in f! with z # ((v).

If 6(v) # B(v) + ((v), then v never occurs as a special vertex. In the pair of Qg’s
corresponding to z = 6(v) — #(v) and represented by f!, there are two intervals assigned
to v, and all edges incident to v via changes in the first eight coordinates are represented.



Also, v receives one more interval in f!, taking care of its incident edges via changes in the
last four coordinates. This rectangle appears in F'(w) where w agrees with v in the first
eight or nine coordinates and is a special vertex.

We have verified that the union of the eight modules of the form f! is a 3-rectangle

representation of (J12.
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