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Abstract� The rectangle number of a graph G is the minimum t such that G
is the intersection graph of sets that are unions of t rectangles in the plane with
vertical and horizontal sides� We prove that complete multipartite graphs have
rectangle number at most two� and that the k�dimensional hypercube has rect�
angle number at most dk��e �except one more when k � ���

�� INTRODUCTION

The intersection graph of a family of sets fS�� � � � � Sng is the graph with vertex set
fv�� � � � � vng de	ned by making vi and vj adjacent precisely when Xi � Sj �� 
� The sets
in the family form an intersection representation of the corresponding graph� The interval
graphs are those having intersection representations in which each set is an interval on the
real line� this special family has been thoroughly studied in hundreds of papers�

Sets generalizing intervals have been used to permit intersection representations of all
graphs� Natural parameters measure how much the sets deviate from being intervals� A
d�box in Rd is a cartesian product of d intervals� A t�interval in R� is a union of t inter�
vals� The boxicity box�G� of a graph G is the minimum d such that G is the intersection
graph of a family of d�boxes� The interval number i�G� is the minimum t such that G is
the intersection graph of a family of t�intervals� Boxicity was introduced by Roberts �
��
interval number by Trotter and Harary ����

The ideas behind these two parameters can be combined� In any 	xed dimension d�
we can seek the minimum t such that G is the intersection graph of at most t d�boxes�
When d � �� the resulting parameter is the rectangle number r�G�� In this paper� we
compute the rectangle number for all complete multipartite graphs �it is always � or ���
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and we derive an upper bound on the rectangle number of the k�dimensional hypercube
�it is at most dk��e� except that it equals � when k � ���

The result for complete multipartite graphs is striking in relation to their interval
number and boxicity� The full spectrum of box intersection parameters starts with the
interval number and ends with � when the dimension equals the boxicity� Trotter and
Harary ��� proved that i�Km�n� � dmn��

m�n
e� Hopkins� Trotter� and West ��� proved that

i�G� � dmn��
m�n

e when G is a complete multipartite graph in which the two largest partite
sets induce Km�n� except in rare special cases where it is larger by ��

Roberts �
� proved that the boxicity of a complete multipartite graph equals the num�
ber of partite sets with size at least �� The boxicity can be interpreted as the number of
dimensions that must be allowed for the �multiplicity� of representation to decline from
dmn��
m�n

e to �� Surprisingly� almost all of the collapse in multiplicity occurs on the 	rst step�
the rectangle number of every complete multipartite graph is at most ��

Best�possible bounds on the full spectrum are known for the family of planar graphs�
For every planar graph� the interval number is at most 
 ���� the rectangle number is at
most � ���� and the boxicity is at most 
 ���� Thus in each dimension� the dimension plus
the multiplicity is at most �� and these bounds are sharp�

For general n�vertex graphs� the interval number is at most d�n � ����e ���� and the
boxicity is at most dn��e �
�� We do not know the maximum rectangle number for n�vertex
graph or any general upper or lower bounds on how the maximum d�box intersection num�
ber for n�vertex graphs declines as d increases from � to dn��e� Even for the hypercubes�
we have not proved a general lower bound� but we believe that the rectangle number of
hypercubes increases linearly with the dimension� and thus that the maximum rectangle
number increases at least logarithmically with the number of vertices�

When we speak of the horizontal projection or vertical projection of a rectangle� we
mean its projection on the horizontal or vertical axis� respectively� In other words� it is
the 	rst or second factor� respectively� in the description of the rectangle as a cartesian
product of intervals�

�� COMPLETE MULTIPARTITE GRAPHS

THEOREM �� If G is a complete multipartite graph� then r�G� � �� with equality if
and only if G has at least three partite sets of size at least ��

Proof� If G does not have at least three partite sets of size at least �� then by Roberts�
result �
� the boxicity of G is at most �� which allows G to be represented using one rect�
angle per vertex� Indeed� the vertices of one nontrivial partite set can be represented by
parallel thin vertical strips� the other vertices by parallel thin horizontal strips� and the
vertices in partite sets of size � by rectangle that intersect everything�

Conversely� suppose that r�G� � �� Let H be an copy of C� � K��� as an induced
subgraph in G� with partite sets X and Y � Since X and Y induce K�� we may assume
by symmetry that the rectangles for X have disjoint horizontal projections� The horizon�
tal projections for Y must both contain the gap between these and therefore intersect�
Thus the rectangles for Y have disjoint vertical projections� and the vertical projections
for X intersect� If G contains K������ then the three pairwise edge�disjoint copies of C� in






this subgraph cannot all satisfy this� Two of the three pairs of independent points have
rectangles with disjoint projections in the same direction� thus these cannot represent C��

Finally� we construct a rectangle representation with two rectangles per vertex for G�
Consider a block adjacency matrix for G with the vertices grouped by partite sets� We
obtain a representation from the portion of this matrix above the diagonal� We view the
ones in each row as a thin horizontal rectangle for that vertex� We view the ones in each
column as a thin vertical rectangle for that vertex� Each partite set is represented by two
families of thin parallel rectangles� The rectangles do not extend as far as the �diagonal��
so they intersect if and only if the corresponding vertices belong to distinct partite sets�
Fig� � illustrates the construction�
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Fig� �� Rectangle representation for complete multipartite graph�

�� HYPERCUBES

The ��dimensional hypercube is an annoying complication in our inductive construc�
tion of rectangle representations for hypercubes� The induction step is quite easy� but
r�Q�� � � requires us to provide explicit representations for Q� and Q��� A t�rectangle
representation is an intersection representation assigning each vertex the union of at most
t rectangles in the plane �with horizontal and vertical sides�� The multiplicity of a vertex
in a representation is the number of rectangles assigned to it�

In the k�dimensional hypercube Qk� we view the vertices as subsets of f�� � � � � kg
adjacent when their subset labels di�er by one element� We begin by analyzing Q��

LEMMA �� In every rectangle representation of Q�� at least two vertices have multi�
plicity at least two�

Proof� Let f be a rectangle representation of Q�� We prove that within distance 
 of
an arbitrary vertex v in Q�� there is a vertex with multiplicity at least two� Hence some
vertex has multiplicity at least two� and applying the argument again to the complement
of that vertex yields a second such vertex�

Without loss of generality� let v � 
� and suppose that every vertex other than
f�� �� 
� �g has multiplicity one� Let Ru denote the unique rectangle assigned to u �dropping
set brackets�� Because Q� is triangle�free� no assigned rectangle is contained in another�
Also� the rectangle R
 for v intersects four pairwise disjoint rectangles R�� R�� R�� R� for
its neighbors� For i� j � f�� �� 
� �g� we claim that Ri and Rj intersect a common side of
R
� If not� then Rij will also intersect R
� as shown in Fig� ��
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Fig� �� Restrictions on neighbors in representation of Q��

Without loss of generality� we may assume that R�� R�� R�� R� intersect the left side
of R
 in that order from top to bottom �they may also extend past the right side of R
��
Since R�� extends vertically from R� to R� but misses R�� it must lie entirely to the left
or right of R
� by symmetry� we may assume that it lies to the left� Now R�� blocks the
leftward advance of R�� and R� extends farther left than R�� Hence R� must be to the
right of R
 and block the rightward advance of R��

Next� R�� must extend across the vertical gap between R� and R� but avoid R
�
Hence R�� is entirely to the left or to the right of R
� we may assume by symmetry that
it lies to the right� Fig� 
 displays the conclusions that will follow from this�
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Fig� 
� Arrangement of singleton rectangles in representation of Q��

Since R�� must meet R� and avoid R��� the horizontal extent of R�� is now con	ned
between R
 and R��� Since R�� must meet R� and avoid R�� the vertical extent of R�� is
bounded below by R�� Since R��� must meet R�� and R�� and avoid R� and since R�� is
bounded below by R�� we conclude that R��� extends from R�� to R�� above R
� Hence
R�� blocks the rightward advance of R��

Since R�� extends vertically from R� to R�� and R� extends past the right end of
R� between them� R�� must lie to the left of R
� Indeed� it must also lie to the left of
R�� Now� R�� must extend vertically from R� to R� and must avoid R�� and R��� Hence
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the horizontal extent of R�� is bounded between R�� and R��� Furthermore� the vertical
extent of R�� is bounded below by R�� Since R�� and R
 each extend vertically between
R� and R�� their horizontal projections are disjoint� either may be leftmost�

Next� R��� must extend horizontally between R�� and R��� meeting R�� and avoiding
R�� and R��� Since R�� lies above R�� we conclude that R��� lies above R���� and that all
of R��� R��� R�� extend up far enough to meet it�

We have now located all regions except those whose indices contain both 
 and ��
Both R�� and R�� lie above R�� Hence R��� and R���� which must avoid R�� also lie above
R�� Since R�� extends vertically between R� and R� and avoids R
� it lies entirely to the
left or to the right of R� If R�� lies to the left �right� of R
� then R��� cannot meet both
R�� and R�� �R��� without crossing R
� since R�� lies below R� �R���

We have proved that there is no rectangle representation of Q� in which every vertex
within distance three of a speci	ed vertex has multiplicity ��

LEMMA �� There is a ��rectangle representation of Q� in which the only vertices with
multiplicity � are two adjacent vertices x� y� also one rectangle for x emerges vertically
in both directions �arbitrarily far� and the other emerges vertically in one direction�
and the rectangles for y satisfy the same behavior horizontally�

Proof� By allowing two rectangles for each of �
� and ��
�� we can complete the repre�
sentation begun in Fig� 
 as indicated in Fig� �� These four rectangles can be extended
so that the rectangles for ��
� both extend upward and one extends downward� and the
rectangles for �
� both extend rightward and one extends leftward�
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Fig� �� The canonical ��rectangle representation of Q��
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By symmetry� we may choose any adjacent pair of vertices to receive two rectangles
each� and we may exchange up�down and right�left at will in this representation� Call this
the canonical representation of Q��

For the main result� we view the vertices of Qk as binary vectors of length k�

THEOREM �� The rectangle number of the k�dimensional cube Qk is at most dk��e�
except that r�Q�� � ��

Proof� We have proved that r�Q�� � �� Since Q� contains a copy of Q� avoiding a pair
of adjacent vertices� the canonical representation contains a ��rectangle representation of
Q�� Since Qk � Qk�� for all k� it therefore su�ces to prove that r�Q�l � l for each l � ��

We use induction on l� For l � �� we view Q�l as Q� Q�l��� where denotes cartesian
product of graphs� For each choice of bits in the last �l� � coordinates of vertices of Q�l�
we have a copy of Q�� If Q� has a ��rectangle representation� then the disjoint union of
��l�� copies of Q� has a ��rectangle representation� Deleting the edges of these copies of
Q� leaves � disjoint copies of Q�l��� If l � �� then the induction hypothesis allows us to
complete the representation using l � � additional rectangles per vertex�

To complete the proof� we provide constructions for r�Q�� � � and r�Q��� � 
� We
use the canonical representation of Q� provided by Lemma 
�

��rectangle representation of Q�
 Express Q� as Q� Q�� View Q� as G 	H� where
each of G�H is the disjoint union of �� copies of Q�� Each vertex appears in one component
in each of G and H� Each component of G �resp�� H� has a 	xed value in the last four �	rst
four� coordinates of its vertex labels� Our representation has eight isomorphic connected
pieces� each of which represents two components of G and two components of H�

Instead of describing an explicit representation� we describe a class of representa�
tions� because we will use eight di�erent ��rectangle representations of Q� to construct a

�rectangle representation of Q��� We parse each ��bit label of a vertex of Q� as a concate�
nation ���	� where �� � are single bits and �� 	 are 
�bit binary vectors� We use vector
addition modulo �� In the ��bit label of v� we refer to the vector in coordinates ��� as ��v�
and the vector in coordinates ��� as 	�v��

Given a 	xed 
�bit vector z� we describe a representation of Q�� the eight choices for
z yield eight di�erent representations� with z as a parameter� Given a 
�bit binary vector
x� let y � x � z �modulo ��� and let a� b� c� d respectively denote the four special vertices
�x�y� �x�y� �x�y� �x�y� The subgraph induced by fa� b� c� dg is a ��cycle consisting of one
edge from each of two components of G and one edge from each of two components of H�
We label these four copies of Q� �components in G and H� as AB�BC�CD�DA such that
ab � AB 
 G� bc � BC 
 H� cd � CD 
 G� and da � DA 
 H�

We represent AB 	 BC 	 CD 	 DA using two rectangles each for a� b� c� d and one
rectangle for the remaining vertices� No vertex outside fa� b� c� dg appears in more than
one of these four subgraphs� We use four copies of the canonical representation of Q��
extending the two rectangles for one of fa� b� c� dg out vertically in one direction and ex�
tending the two rectangles for the appropriate neighbor among fa� b� c� dg out horizontally
in one direction� The two parallel rectangles for a emerging from the representation of DA
serve also as the two parallel rectangles for A emerging from the representation of AB�
and similarly for b� c� d� The resulting representation is illustrated in Fig� ��
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Fig� �� A piece in the representation of Q��

For each of the eight choices for x� we have such a piece in our representation fz� A
vertex v is a special vertex �a� b� c� d� in some piece if and only if 	�v� � ��v� � z �modulo
��� A special vertex v appears only in the piece generated by x � ��v�� and it is assigned
two rectangles in representing that component�

A non�special vertex u appears in the piece generated by x � ��u� and also in the
pieces generated by x � 	�u� � z� assigned one rectangle in each piece� Thus we have
represented the 
� pairwise edge�disjoint copies of Q� in eight disjoint pieces� obtaining a
��rectangle representation of Q��

��rectangle representation of Q��
 Express Q�� as Q� Q�� We represent the �� copies
of Q� in the manner described above� in total we have ��� pieces� These pieces contain
canonical representations of Q� in which we have made extra use of the parallel �tails�
emerging in common directions� To avoiding adding two intervals for vertices in the re�
maining ��� disjoint copies of Q�� we will also make extra use of the third tail emerging
in the opposite direction� Each of the ��� pieces has � tails emerging �we will use one
for each of the four special vertices�� and each of the ��� copies of Q� needs to use � of
these tails� We produce a representation in connected modules� each containing two of the
previously�constructed pieces�

We parse each ���bit vertex label in Q�� as a concatenation ���	
�� where �� �� 
 are
single bits and �� �� � are 
�bit binary vectors� In the ���bit label of v� we refer to the
vector in coordinates ��� as ��v�� in coordinates ��� as 	�v�� and in coordinates ����� as
��v��

Our copies of Q� in Q�� have vertex labels 	xed in the last four coordinates� Using
the ninth coordinate� we view these copies of Q� in eight pairs� In the pair for which the
last three coordinates are 	xed at ��v� � z� we use the representation fz for each of the
two copies of Q�� We combine corresponding pieces of these two representations �and with
the pair pick up four of the remaining copies of Q�� to produce �� � � �� modules for our
full representation�

Let a� b� c� d be the four special vertices in one piece of the representation fz on the
copy of Q� having �z in the last four coordinates� Let a�� b�� c�� d� be the corresponding
vertices having � in the ninth coordinate� Note that w and w� are adjacent� for w �
fa� b� c� dg� Each of these eight special vertices appears in one un�represented copy of Q�
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in which the 	rst eight coordinates are 	xed� Both w and w� appear �and are adjacent� in
a single such subgraph� which we call F �w��

We represent F �w� using the canonical representation� letting w�w� be the adjacent
pair using two rectangles each� Since we already have used two rectangles for each of
w�w� in the pieces of fz� we can a�ord only one additional rectangle� This we achieve for
each of w�w� by extending a rectangle from a piece of fz to become a rectangle in the
representation of F �w� �one horizontal� one vertical�� The explicit geometric arrangement
appears in Fig� �� For 	xed z� let f �z denote the eight modules formed in this way�
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Fig� �� A module in the representation of Q���

We have one pair of Q��s for each choice of z� For each special vertex w in each
module of f �z� we have 	�w� � ��w� � z and ��w� � z� For each non�special vertex v
that belongs to some F �w� in some module of f �z� we have 	�v� � ��v� � z but ��v� �� z�
Thus a vertex v of Q�� occurs as a special vertex in some module of some f �z if and only
if 	�v� � ��v� � ��v��

If 	�v� � ��v� � ��v�� then v occurs as a special vertex in f �
��v�� The edges incident

to v via changes in the 	rst eight coordinates occur in an f��v��piece in an f �
��v��module�

and the edges via changes in the last four coordinates occur in the F �v��portion of the
f �
��v��module �or F �w� if v � w��� which assigns a third rectangle to v� Furthermore� no

rectangles for v appear in f �z with z �� ��v��

If 	�v� �� ��v� � ��v�� then v never occurs as a special vertex� In the pair of Q��s
corresponding to z � 	�v� � ��v� and represented by f �z� there are two intervals assigned
to v� and all edges incident to v via changes in the 	rst eight coordinates are represented�
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Also� v receives one more interval in f �z� taking care of its incident edges via changes in the
last four coordinates� This rectangle appears in F �w� where w agrees with v in the 	rst
eight or nine coordinates and is a special vertex�

We have veri	ed that the union of the eight modules of the form f �z is a 
�rectangle
representation of Q���
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