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Abstract. Motivated by a measure of predictability, this paper uses
the extracted signal ratio as a measure of the degree of overfitting. With
this measure, we examine the performance of one type of overfitting-
avoidance design frequently used in financial applications of GP. Based
on the simulation results run with the software Simple GP, we find that
this design is not effective in avoiding overfitting. Furthermore, within
the range of search intensity typically considered by these applications,
we find that underfitting, instead of overfitting, is the more prevalent
problem. This problem becomes more serious when the data is gener-
ated by a process that has a high degree of algorithmic complexity. This
paper, therefore, casts doubt on the conclusions made by those early ap-
plications regarding the poor performance of GP, and recommends that
changes be made to ensure progress.

1 Motivation and Introduction

Overfitting is one of the most intensively addressed issues in data mining ([2], [6],
[8], [9], [14]). A great many techniques have been developed over the past decade,
and some of these techniques have also been applied to the financial applications
of genetic programming ([4]). For example, the use of cross-validation now seems
to have become a standard procedure followed by many financial GP users. This
has become particularly so following a series of prestigious journal publications
that have recommended this way of preventing overfitting ([1], [10], [11], and
[16]). By this procedure, one run of GP uses two time periods. The first period
is called the training period and is used to train the genetic programs. The
second period is referred to as the selection period, which is used to select the
best performing programs and decide when to stop the training. For example,
in [10], the termination criterion is achieved if no new best rule appears for 25
generations.

As opposed to the problem of overfitting, poor learning (underfitting) has
received much less attention. The asymmetry seems to be natural. Given the
rich expressive power of the heavy data-mining machinery, people tend to believe
that they may easily abuse the power if caution is not well taken. Validation is
a classical tool for resolving this issue and has also become one of the common
overfitting-avoidance designs ([15]). This validation scheme has been used as if
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it will make learning stop at a right moment, no more (overfitting) and no less
(underfitting). However, is that really so? It may not surprise us if this scheme
fails to avoid overfitting, as already suggested by some empirical studies ([12]).
Nonetheless, it may surprise us if we are told that this design can also result in
underfitting.

In this paper, we shall show that underfitting can occur mainly due to our
ignorance of the extremely large search space extended by the primitives of
GP. Coming with this ignorance is the causal design of search intensity, e.g., a
causal combination of the population size and the number of generations. Little
attention has been paid to whether the resultant search intensity is good enough.
Under such circumstances, worrying about abusing the expressive power of GP
may be a little far-fetched, and adding a validation scheme may make things
even worse.

To show this, we introduce a technical notion of overfitting based on the sig-
nal ratio. Then, by artificially generating time-series data with different signal
ratios and different algorithmic complexity (node complexity), we test how likely
it is that a standard GP may overfit the data. We first start the experiments
(Experiment Series 1) without imposing any overfitting-avoidance design, and
then examine how serious is the overfitting problem that may arise. In this se-
ries of experiments, we find that even with a moderate degree of search intensity,
overfitting is in effect not a serious problem. On the contrary, for most of the
cases, the real concern is underfitting. In another series of experiments (Experi-
ment Series 3), we heighten the search intensity by doubling the population size.
As one may expect, this will result in the problem of overfitting becoming more
likely to appear. That is true. Nevertheless, our results show that what bothers
us more is still the problem of underfitting. Given this situation, introducing
an overfitting-avoidance design can do more harm than good. The last point is
exactly what we show in the other two series of experiments (Experiment Series
2 and 4).

The rest of the paper is organized as follows. Section 2 proposes a technical
and practical notion of overfitting. Section 3 gives the details of the experimental
designs. Section 4 presents the simulation results with accompanying discussions,
and is followed by the concluding remarks in Section 5.

2 Signal Ratio and Overfitting

Motivated by [7], we apply the signal ratio as a measure of overfitting. The idea is
straightforward. Consider a series {yt}. Its signal-noise orthogonal decomposition
can be written as

yt = xt + εt, (1)

where the signal xt follows a deterministic process, whereas the noise εt is an
identically independently distributed process with a mean zero and a variance
σ2

ε . The variance decomposition of yt can then be written as follows.

σ2
y = σ2

x + σ2
ε , (2)
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where σ2
y is the variance of yt. However, rigorously speaking, σ2

x is not the vari-
ance of xt, since by the signal we mean that xt is not random but deterministic.
Therefore, σ2

x should be interpreted as the fluctuation of an ensemble of the
deterministic process of {xt} 1. With the decomposition (2), the signal ratio,
denoted by θ, is defined as

θ =
σ2

x

σ2
y

= 1 − σ2
ε

σ2
y

. (3)

With this definition of the signal ratio, the problem of overfitting can then be
stated as follows. Let ŷt be the signal extracted by a machine learning tool, say,
GP. Then we say that the problem of overfitting is detected if

θ̂ =
σ2

ŷ

σ2
y

> θ. (4)

In other words, overfitting is detected if the information (signal) extracted by
GP is even greater than the maximum information which we actually have from
yt. When Equation (4) is satisfied, this means that GP has learned more than
it should and, as a result, has started to mistake noise as a signal. Similarly, if
the inequality is turned the other way around, i.e. θ̂ < θ, then we say that GP
has not learned enough so that some information is left unexploited. Contrary
to the case of overfitting, here we encounter the problem of underfitting.

3 Experimental Designs

3.1 Data

Based on the notion of overfitting discussed in Section 2, we propose the follow-
ing data-generation mechanism. First, we start with the generation process for
signals, {xt}. [3] examined the predictability of the chaotic time series with GP.
The three chaotic time series considered by them are

xt = f(xt−1) = 4xt−1(1 − xt−1), x0 ∈ [0, 1], (5)

xt = f(xt−1) = 4x3
t−1 − 3xt−1, x0 ∈ [−1, 1], (6)

and
xt = f(xt−1) = 8x4

t−1 − 8x2
t−1 + 1, x0 ∈ [−1, 1]. (7)

We choose these three chaotic time series as the signal generation processes.
Since neither can we control the signal ratio nor can we know the true signal ratio
in real financial time series, the test proposed in this paper will be conducted
by using only these deterministic chaotic series. Certainly, as the title of the
paper suggests, to be a genuine critique of current financial applications, we
shall extend our tests to real financial data in the future.
1 We shall be more specific on this when we come to the design of the experiments.
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These three laws of motion are different in terms of their algorithmic size,
i.e. the length of their symbolic expression. To see this, we rewrite each of the
equations above into the corresponding LISP S-expression:

( ∗ ( 4 ∗ ( xt ( − 1 xt ) ) ) ) (8)

( − ( ∗ 4 ( ∗ xt ( ∗ xt xt ) ) ) ( ∗ 3 xt ) ) (9)

( + ( − ( ∗ 8 ( ∗ xt ( ∗ xt ( ∗ xt xt ) ) ) )
( ∗ 8 ( ∗ xt xt ) ) ) 1 ) (10)

The length of a LISP S–expression is determined by counting from the leftmost to
the rightmost position the number of elements (atoms) in the string that makes
up the S–expression. From Eqs. (8) to (10), the lengths of the LISP S-expression
are 7, 11, and 17, respectively. Therefore, in terms of algorithmic complexity,
Eq. (5) is the simplest, while Eq. (7) is the most complex expression.

In addition to the signal, an i.i.d. noise is added to obscure the observation
series {yt}.

yt = xt + εt = f(xt−1) + εt. (11)

GP is applied to fit the hidden relationship between yt and xt−1, and the pre-
dicted value of yt is

ŷt = f̂(xt−1). (12)

Based on Equation (3), different signal ratios can be derived by manipulating σ2
ε .

In this study, we consider five values of θ, ranging from a very high noise ratio
θ = 0.05, to 0.15, 0.25, and 0.35, and to a high signal ratio of 0.5. Therefore,
a total of 15 different time series of {yt} are generated from the signal series
depicted in Eqs. (5) to (7) with five different values of θ.

3.2 Genetic Programming

The genetic programming software used in this paper is Simple GP, developed
by the AI-ECON Research Center2. All of the main GP control parameters can
be set by directly inputting the values into the main menu, shown in Figure 13.

The validation scheme, used in [1], [10], [11], and [16], is incorporated into
Simple GP. This can be seen from Figure 2. In the top half of the menu,
there is a place for users to indicate whether they wish to impose the validation
scheme as an early termination criterion. This can be done by simply answering
how many pieces of the data are to be divided (the first box, Figure 2) and by
showing how these pieces of data are to be distributed to be used for training,
validating, and testing. In the example in Figure 2, [3]-(1,1,1) states that the
data are to be divided into three equal parts, and that the first part will be used
2 Some detailed descriptions of it can be found in [5].
3 The purpose of indicating this software is mainly for those interested readers who

would like to replicate or validate the results obtained in this paper.



38 Shu-Heng Chen and Tzu-Wen Kuo

Fig. 1. Simple GP: Main Menu 1

for training, the second for validation, and the third for testing. By inserting a
zero number into the validation place, one can in effect turn off the validation
scheme. For example, [1]-(1,0,0) means that there is only one training set. This
specification is exactly what we were faced with when doing the first and the
third series of experiments, while for the second and fourth series of experiments
the validation scheme is added.

The steps involved in Simple GP are detailed as follows:

1. Create an initial generation of Pop random forecasting models using the
ramp-half-and-half method.

2. Measure the fitness of each model over the training set and rank according
to fitness.

3. Select the top-ranked k models and calculate its fitness over the validation
set. Save it as the initial best k models.

4. Implement all genetic operators in the standard way, and a new generation
of models will be born.

5. Measure the fitness of each model in the new generation over the training
set. The best k models are selected, and their fitness over the validation set
is calculated and compared with that of the previously saved best k models.
Then a (k + k)-selection scheme is applied to select the best k models, and
they are saved as the new best k models.

6. Stop if none of these best k models are replaced for g generations, or after
Gen generations. Otherwise, return to step 4.

Step 5 is the validation scheme used in [1], [10], [11], and [16].



Overfitting or Poor Learning 39

 

Fig. 2. Simple GP: Main Menu 2

Four series of experiments were conducted. Experiments 1 and 3 did not
include the validation scheme. They differed in search intensity characterized by
population size. The one set in Experiment Series 1 was 200, and the one set
in Experiment Series 3 was 400. Validation was involved in Experiments 2 and
4. In each series of experiments, a hundred runs of GP were implemented for
each chaotic time series with each of the five signal ratios. In other words, there
were in total 1,500 (=15 × 100) independent runs conducted in each series of
experiments. The values of the control parameters are summarized in Table 1.

4 Results

One interesting thing to observe is whether overfitting can easily appear when
validation is not imposed (Experiment Series 1). To see this we average the θ̂
obtained from 100 runs, called θ̄. They are reported in the first block of Table
2. Since we have 100 runs (a large sample), θ̄ can be regarded as a reasonable
estimate of the corresponding population “signal ratio”, extracted by GP, referred
to as θ∗. Furthermore, by applying the central limit theorem, one can decide
whether there is either overfitting or underfitting by testing the following null
hypothesis:

H0 : θ∗ = θ. (13)

GP correctly extracts what it is supposed to extract if the null fails to be rejected;
otherwise overfitting is found if θ∗ > θ significantly or underfitting is found if
θ∗ < θ significantly. In Table 2, immediately below θ̄, is the test statistic, which
is followed by the p-value.
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Table 1. Control Parameters of GP

Population size (Pop) 200 (Experiment 1, 2), 400 (Experiment 3, 4)
Offspring trees created

by crossover 60%
by point mutation 20%
by tree mutation (grow method) 10%
by elite 0.5% (Exp. 1, 2), 0.25% (Exp. 3, 4)
by reproduction 9.5% (Exp. 1, 2), 9.75% (Exp. 3, 4)

Function set +, −, ×, ÷
Constant 100 numbers in [0, 10)
Replacement scheme Tournament selection (size=2)
Stop criterion

number of generations (Gen) 300
or MSE less than 0.000001

Validation (Experiment 3 only)
number of best models saved (k) 1
number of quiet generations (g) 150

From these results, we can see that the null is rejected in 13 out of the 15
designs. Of the 13 cases, only one design (the design with Eq. 5 and θ = 0.05)
is proved to be an example of overfitting, and all others belong to the case of
underfitting. It is then obvious that overfitting turns out not to be a serious
issue even though the validation design is not imposed. Here, what concerns us
more is just the opposite, i.e. the issue of underfitting. This result is particularly
striking since the search intensity (Pop = 200, Gen = 300) is by no means low
as opposed to most financial applications of GP4.

In this case, if one just follows convention ([1], [10], [11], and [16]) and adds
a validation step (Experiment Series 2), what will happen? Basically, nothing
changes, and we benefit little from this setting. First, the validation step is an
overfitting-avoidance design, and is therefore not supposed to solve the problem
of underfitting. The second block in Table 2 confirms this: those 13 designs that
were shown to be underfitting in Experiment 1, remain the same in Experiment
2. Second, as for the design in which overfitting is detected, imposing validation
does not help either: it remains overfitting, while the over-extracted signal ratio
declines from 0.0849 to 0.0808.

The evidence presented so far raises two questions. First, when shall we
expect the problem of overfitting to appear? Second, is validation an effective
overfitting-avoidance design? The next two series of experiments are designed
to address these two questions. In Experiment 3, search intensity was enhanced
by increasing the population size from 200 to 400 (Table 1). Would this more
intensive search lead to a higher risk of overfitting? The third block in Table
2 seems to suggest so. Out of the 15 designs, which have the same settings

4 For example, the population size set in [10], [11] and [16] is just 100, and the number
of generations is also just 100.
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Table 2. Simulation Results

Exp \ θ 0.05 0.15 0.25 0.35 0.5

1

eq1 θ̄ 0.0849 0.1413 0.2560 0.3091 0.4191
z 11.9532 -1.5340 0.7095 -3.5711 -5.0880
p 0.0000 0.0625 0.2390 0.0002 0.0000

eq2 θ̄ 0.0352 0.1386 0.2323 0.3029 0.3998
z -12.5330 -3.0916 -2.9883 -5.3213 -9.6061
p 0.0000 0.0010 0.0014 0.0000 0.0000

eq3 θ̄ 0.0438 0.0868 0.1760 0.1850 0.2947
z -3.5610 -15.2165 -11.3537 -20.4669 -18.8052
p 0.0002 0.0000 0.0000 0.0000 0.0000

2

eq1 θ̄ 0.0808 0.1411 0.2450 0.2893 0.3821
z 10.1044 -1.5189 -0.4152 -4.9791 -5.7578
p 0.0000 0.0644 0.3390 0.0000 0.0000

eq2 θ̄ 0.0301 0.1348 0.2298 0.3119 0.4156
z -16.4007 -4.0032 -3.5421 -4.5439 -8.7157
p 0.0000 0.0000 0.0002 0.0000 0.0000

eq3 θ̄ 0.0425 0.0853 0.1758 0.1988 0.2866
z -4.1114 -15.5164 -12.7027 -16.9850 -18.7969
p 0.0000 0.0000 0.0002 0.0000 0.0000

3

eq1 θ̄ 0.0944 0.1587 0.2829 0.3332 0.4801
z 20.0965 2.3321 6.4594 -2.2650 -1.5415
p 0.0000 0.0098 0.0000 0.0118 0.0616

eq2 θ̄ 0.0407 0.1476 0.2559 0.3458 0.4317
z -7.7766 -0.7945 1.2601 -0.6809 -7.5529
p 0.0000 0.2134 0.1038 0.2480 0.0000

eq3 θ̄ 0.0520 0.1056 0.1843 0.2346 0.3398
z 1.2838 -10.8656 -10.1204 -14.3101 -14.1068
p 0.0996 0.0000 0.0002 0.0000 0.0000

4

eq1 θ̄ 0.0902 0.1588 0.2758 0.3219 0.4842
z 19.8840 2.2404 4.8728 -3.0996 -1.1045
p 0.0000 0.0125 0.0000 0.0010 0.1347

eq2 θ̄ 0.0345 0.1546 0.2514 0.3388 0.4471
z -11.2780 1.9955 0.2991 -1.6719 -6.1439
p 0.0000 0.0230 0.1912 0.0473 0.0000

eq3 θ̄ 0.0477 0.1053 0.1836 0.2250 0.3267
z -1.2219 -11.0175 -10.0111 -15.6075 -14.7593
p 0.1109 0.0000 0.0000 0.0000 0.0000

θ̄ denotes the sample average of θ̂ (extracted signal ratio) over 100 runs. z refers to the
test statistic derived from the central limit theorem. p is the p-value of the associated
test statistic that is more extreme in the direction of the alternative hypothesis (θ∗ �= θ)
when H0 is true.
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as those in Experiment 1 except for population size, the number of overfitting
cases increases from one to three. The evidence based on the designs that use
Equation (5) and where θ = 0.05, 0.15 and 0.25 is now in favor of overfitting.
Equally interesting is that the null of just fitting (Equation 13) has now failed
to be rejected in five of the designs, a jump from the original two.

Nevertheless, what seems to be most disappointing is that the majority of
them (7 out of 15) still exhibit the feature of underfitting. If we look at the
distribution of these seven designs, most of them, four out of the seven, come
from the one using Equation (7), which is the one with the highest degree of
algorithmic complexity (node complexity) ([3]). This finding is very plausible.
As analyzed by [5], laws of motion with a higher degree of algorithmic complexity
generally require more intensive searches than those with less complexity. As a
result, such a design is less likely to abuse the power of curve fitting when the
data is generated by a process with a high degree of algorithmic complexity.

Since the risk of overfitting increases with search intensity, it is crucial to
know how effectively an overfitting design can ameliorate the situation. There-
fore, in Experiment 4, we add back the validation design as we did in Experiment
2, and test its performance. The results are shown in the last block in Table 2.
Our attention is particularly drawn to the design where the problem of overfit-
ting is found, i.e. the three designs mentioned before. Unfortunately, from Table
2, we can see that the problem of overfitting remains in all of these three designs.
In two of the three cases, we do see the decrease in the extracted signal ratio, one
in its decreasing from 0.0944 to 0.0902, and the other in its falling from 0.2829 to
0.2758. However, these changes are not enough given that the true signal ratios θ
are just only 0.05 and 0.25, respectively. Furthermore, it is interesting to notice
that in one case the problem even gets worse, i.e. the design using Equation (6)
where θ = 0.15. In that case, originally, GP extracted a signal ratio with θ̄ =
0.1476, which is significantly below the threshold θ = 0.15. However, when the
validation design is imposed, the extracted signal ratio goes significantly beyond
0.15 to 0.1546; and hence exhibits the feature of overfitting.

5 Two Further Tests

In addition to the test of the null (13), we also carried out two examinations
pertaining to the effect of search density and validation upon the degree of fitting
(the signal ratio extracted by GP). We first conducted a statistical test for
the hypothesis that intensifying search shall increase the degree of fitting. Let
θ∗

i be the population signal ratio extracted by GP under Experiment Series i
(i = 1, 2, 3, 4). The effect of search density can be analyzed by testing the null

θ∗
1 = θ∗

3 , (14)

and
θ∗
2 = θ∗

4 , (15)

separately. (14) is the null of equal fitting when validation is not imposed,
whereas (15) is the null of equal fitting when validation is imposed. If these
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two null hypotheses fail to be rejected, then intensifying search intensity has lit-
tle effect on the degree of fitting. As before, the large sample theorem is applied
to these two tests. The test results of the null (14) and (15) are shown in the first
and second block of Table 3 respectively. Form the corresponding Z statistics,
the number of rejections is very high for both tests, if one takes the usual critical
region | Z |> Z0.025 = 1.96.

In the first block of Table 3 , θ∗
3 is bigger than θ∗

1 in all of the fifteen cases,
and the null (14) is rejected at a total of twelve times. In the second block of the
Table, θ∗

4 is also bigger than θ∗
2 in all of the fifteen cases, and the null (15) has

failed to be rejected only in one case. As a result, it is quite evident that search
intensity has a positive effect on the degree of fitting, and hence will contribute
to a risk of overfitting.

We then turn to see the effect of validation on the degree of overfitting. The
two null hypotheses to test are

θ∗
1 = θ∗

2 , (16)

and
θ∗
3 = θ∗

4 . (17)

The test results are reported in the third and the fourth block of Table 3. For
both tests, the null of equal fitting has failed to be rejected in only one out of
the fifteen cases, if the same critical region is applied. Therefore, even though
numerically θ1 (θ3) has a larger degree of fitting than θ2 (θ4), the difference is
statistically negligible. This finding may surprise many of us, who believe that
validation shall help to avoid overfitting.

One possible explanation for this seemingly surprising finding is as follows.
When the algorithmic complexity associated with the problem is high, the de-
sired termination point may be farther than what our designated search density
may reach. In this case, the termination condition set by the validation design
will rarely be met. Hence, using or not using the validation design would not
make much difference. This explanation may apply to the cases of Equations (6)
and (7) where the problem of underfitting is severe. However, it remains to be a
puzzle why the design also failed to work for the case of Equation (5)5.

6 Conclusion: Implications for Financial Applications

For most financial engineers, financial data are usually assumed to be highly
complex (nonlinear) but also informative. The first assumption implies that the
algorithmic complexity of the data generation process can be quite high, whereas
the second assumption indicates a moderate level for the signal ratio. If these
two properties are correct, then our simulation results seem to suggest that the
problem of and the caution associated with overfitting may be exaggerated given
the usual search intensity frequently set in many financial applications of GP. In
this case, adding a validation design may actually make the hidden information in
5 One conjecture is that the validation parameter g (see Table 1) may not be set

appropriately. One of our next studies is to examine the role of this parameter.
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Table 3. Significance of Search Intensity and Validation

Null \ θ 0.05 0.15 0.25 0.35 0.5

θ∗
1 = θ∗

3

eq1 θ∗
1 0.0849 0.1413 0.2560 0.3091 0.4191

θ∗
3 0.0944 0.1587 0.2829 0.3332 0.4801
z 2.5983 2.5624 2.7387 1.7624 2.9742

eq2 θ∗
1 0.0352 0.1386 0.2323 0.3029 0.3998

θ∗
3 0.0407 0.1476 0.2559 0.3458 0.4317
z 3.2509 1.8926 3.1265 3.9871 2.3133

eq3 θ∗
1 0.0438 0.0868 0.1760 0.1850 0.2947

θ∗
3 0.0520 0.1056 0.1843 0.2346 0.3398
z 3.5101 3.2295 0.8971 4.3496 2.8683

θ∗
2 = θ∗

4

eq1 θ∗
2 0.0808 0.1411 0.2450 0.2893 0.3821

θ∗
4 0.0902 0.1588 0.2758 0.3219 0.4842
z 2.5599 2.5072 2.3340 2.1508 4.0907

eq2 θ∗
2 0.0301 0.1348 0.2298 0.3119 0.4156

θ∗
4 0.0345 0.1546 0.2514 0.3388 0.4471
z 2.4027 4.4574 2.9530 2.5051 2.4323

eq3 θ∗
2 0.0425 0.0853 0.1758 0.1988 0.2866

θ∗
4 0.0477 0.1053 0.1836 0.2250 0.3267
z 2.0218 3.4492 0.8918 2.1906 2.4568

θ∗
1 = θ∗

2

eq1 θ∗
1 0.0849 0.1413 0.2560 0.3091 0.4191

θ∗
2 0.0808 0.1411 0.2450 0.2893 0.3821
z 0.9647 0.0208 0.7456 1.1840 1.4263

eq2 θ∗
1 0.0352 0.1386 0.2323 0.3029 0.3998

θ∗
2 0.0301 0.1348 0.2298 0.3119 0.4156
z 3.0306 0.7202 0.3008 -0.7408 -1.1133

eq3 θ∗
1 0.0438 0.0868 0.1760 0.1850 0.2947

θ∗
2 0.0425 0.0853 0.1758 0.1988 0.2866
z 0.5065 0.2661 0.0311 -1.1474 0.5112

θ∗
3 = θ∗

4

eq1 θ∗
3 0.0944 0.1587 0.2829 0.3332 0.4801

θ∗
4 0.0902 0.1588 0.2758 0.3219 0.4842
z 1.4089 -0.0094 0.9590 0.9575 -0.2164

eq2 θ∗
3 0.0407 0.1476 0.2559 0.3458 0.4317

θ∗
4 0.0345 0.1546 0.2514 0.3388 0.4471
z 3.3936 -1.8452 0.6938 0.7738 -1.2350

eq3 θ∗
3 0.0520 0.1056 0.1843 0.2346 0.3398

θ∗
4 0.0477 0.1053 0.1836 0.2250 0.3267
z 1.7624 0.0530 0.0693 0.8434 0.8029

The first two blocks are the test results of the null hypotheses (14) and (15), whereas
the last two blocks are the test results of the null hypotheses (16) and (17). The Z
statistic is the corresponding test statistic.



Overfitting or Poor Learning 45

financial data even less exploited. This underfitting may partially be responsible
for the inferior performance observed in [1], [16] and many other studies. This
may also help explain why, in some applications, we found that the post-sample
performance was even better than the in-sample performance ([13]).

On the other hand, the ability to use cross-validation to resolve the problem
of overfitting may be overestimated. As we have seen from our simulations,
the validation design cannot effectively prevent any of the four overfitting cases
detected in the designs without the use of the validation sample. Under these
circumstances, using the validation design may mislead one to believe that the
overfitting problem has been well taken care of, while in fact it has not ([12]).

In conclusion, the essence and the implication of this paper is a call for a
prudent use of the overfitting-avoidance design in financial data mining. Instead
of taking it for granted, this paper provides a thorough analysis of the validation
design frequently used in financial applications of GP. Our results lead us to be
very suspicious of its contribution. Our analysis also points out another weakness
of existing financial applications of GP, i.e. the causal design of search intensity.
So far, few studies have carefully documented the effect of different population
sizes and different numbers of generations on information exploitation. Using
the production theory from economics, [5] showed that what matters is the
combined effect of Pop and Gen. Studies which change only Pop or Gen at one
time may underestimate the significance of search intensity. We believe that a
proper addressing of search intensity with a more effective overfitting-avoidance
design may give rise to another series of interesting financial applications of GP,
which is the direction for the next study.
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