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Summary. As a follow-up to the work of [4] and [5], this paper continues to ex
plore the relationship between wealth share dynamics and risk preferences in the 
context of an agent-based multi-asset artificial stock market. We simulate a multi-
asset agent-based artificial stock market composed of heterogeneous agents with 
different degrees of relative risk aversion (RRA). A wide range of RRA coefficients 
has been found in the literature, and so far no unanimous conclusion has been 
reached. The agent-based computational approach as demonstrated in this paper 
proposes the possibility that in reality there may be such a wide survival range of 
the RRA coefficient. In addition, the time series plot of the wealth share dynamics 
indicates that the higher the risk aversion coefficient, the higher the wealth share. 
This result combined with our earlier result ([5]) well articulates the contribution of 
risk aversion to survivability. 
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1 Motivation and Introduction 

The contribution of risk preference to the survivability (wealth share) of in
vestors has recently received a series of theoretic and simulation studies (e.g., 
[1], [19], [18], [2], [4], [5]). The results are mixed, depending on how we ap
proach this issue. While the s tandard analytic approach proves the irrelevance 
of risk preference to survivabihty ([18], [2]), the agent-based computational 
approach indicates the opposite ([4], [5]). This kind of inconsistency, as quite 
often seen in the agent-based computational economics literature, simply re-
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fleets the sensitivity of the classical (analytical) results to the interacting 
heterogeneous boundedly-rational behavior. 

[4] actually supports an earlier result obtained in [1], which is also known 
as the Kelly criterion in financial economics. This result basically points out 
the optimal type of risk preference, namely, the CRRA (constant relative risk 
aversion coefficient) agent with an RRA coefficient of one. Equivalently, it is 
the log utihty function. [5] reestablishes this result, while in an agent-based 
computational setting. They examine the long-run wealth share dynamics of 
eleven different types of CRRA agents, with RRA coefficients ranging from 
0 to 1 with increments of 0.1. They find that in finite time the wealth share 
is positively related to the CRRA coefficient, and in the long run, only the 
agents with high CRRA coefficients can survive. All others become extinct. 

This paper is an extension of [5] in the sense that we wish to extend the 
earlier testing domain of the CRRA coefficient from [0, 1] to an even larger 
positive domain. In doing so, we are inquiring whether a higher degree of 
risk aversion can actually enhance the survivability of agents. Notice that the 
degree of risk aversion is not the original concern of either the Kelly criterion 
or the Blume-Easley theorem ([1]), both of which are only concerned with the 
dominance of the log-utility type agents. Risk aversion is involved because 
the log-utility agent is also known as a CRRA type of agent with an RRA 
coefficient of one. Now, is this the optimal degree of risk aversion? Will more 
risk-averse agents (i.e. those with RRA coefficients greater than one) be also 
driven out of the market when they are competing with the log-utility agents? 
Or, would higher risk aversion help them survive? These are the questions that 
we try to answer in this paper. 

We consider these questions to be particularly relevant because the em
pirical literature actually suggests a large range of relative risk aversion coef
ficients. Some of them are exactly one or less than one, but many more are 
greater than one. Of course, it is doubtful whether one can directly compare 
our results with those empirical values, since they refer to quite different sto
ries. However, given the prevailing empirical results on high risk aversion, it 
is definitely useful to know what makes them so, and our agent-based com
putational setting can serve as a good starting point. 

The remainder of this paper is organized as follows. Section 2 gives a 
brief introduction to a simple multi-asset model, which is originally used in 
[1] and later extended and modified by [18]. Section 3 presents the artificial 
multi-asset market, which is an agent-based version of the analytical model 
presented in Section 2. Section 4 gives the experimental design. To justify the 
range of the relative risk aversion coefficient considered in this paper, it starts 
with a brief review of the literature on the empirical estimation of the RRA 
coefficient in Section 4.1, followed by the setting of other control parameters in 
Section 4.2. The simulation results are provided in Section 5, and are followed 
by the concluding remarks in Section 6. 
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2 A Simple Multi-Asset Model 

The simulations presented in this paper are based on an agent-based version 
of the multi-asset market as [1] and [18] have studied. The market is complete 
in the sense that the number of states is equal to the number of assets, say 
M. At each date t, the outstanding volume of each asset is exogenously fixed 
at one unit. There are / investors in the market, each indexed by i. At time 
t asset m will pay dividends Wm if the corresponding state m occurs, and 
0 otherwise. The behavior of states follows a finite-state stochastic process, 
which does not have to be stationary. The dividends Wm will be distributed 
among the / investors proportionately according to their owned share of the 
respective asset. The dividends can only be either re-invested or consumed. 
Hoarding is prohibited. If agent i chooses to consume c, her satisfaction is 
measured by her utility function u{c). This simple multi-asset market clearly 
defines an optimization problem for each individual. 

max E{T{t3ru{cUr) I Bl} (1) 

subject to 

M 

Y,<i+r-Si';r-Wl+r-l<Wl+r-l, V r > 0 , ( 2 ) 
m—1 

M 

y ^ (^ln,t+r = 1, « m , t + r > 0, Vr > 0. (3) 

m = l 

In Equation (1), t̂ Ms agent i's temporal utility function, and /3^, also called 
the discount factor, reveals agent i's time preference. The expectation E{ ) is 
taken with respect to the most recent belief 5J, which is a probabilistic model 
used to represent agent i's subjective belief regarding the stochastic nature of 
the state. The maximization problem asks for two sequences of decisions, one 
on saving, and one on portfolios, as denoted by 

where SI is the saving rate at time t, and 

is the portfolio comprising the M assets. 
Equations (2) and (3) are the budget constraints. W^ is the wealth of 

agent i at time t, which is earned from the dividends paid at time t. Notice 
that these budget constraints do not allow agents to consume or invest by 
borrowing. 

The equihbrium price pm,t is determined by equating the demand for asset 
m with the supply of asset m, i.e. 
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/ 

E "̂ '̂  ' - = 1, m = l,2,...,M. (4) 
Pm,t 

Rearranging Equation (4), we obtain the market equilibrium price of asset 

Y^at:fsr-wu (5) 
m: 

I 

pm,t — 

3 The Agent-Based Multi-Asset Artificial Stock Market 

An agent-based computational version of the Blume-Easley-Sandroni standard 
multi-asset model is developed in [4]. One of the mainstays of the agent-based 
computational economics is autonomous agents. ([20]) The idea of autonomous 
agents was initially presented in [12]. Briefly, these agents are able to learn and 
to adapt to the changing environment without too much external intervention, 
say, from the model designer. Their behavior is very much endogenously de
termined by the environment which they are interacting with. Accordingly, it 
can sometimes be very difficult to trace and to predict the resulting outcome, 
known as the emergent behavior. 

In this paper, we follow what was initiated in [12], and equip our agents 
with the genetic algorithm to cope with the finite-horizon stochastic dynamic 
optimization problem, (1) - (3). The GA is applied here at two different 
levels, a high level (learning level) and a low level (optimization level). First, 
at the high level, it is applied as a belief-updating scheme. This is about the 
Bl appearing in (1). Agents start with some initial beliefs regarding state 
uncertainty which are technically characterized by parametric models, say, 
Markov processes. However, agents do not necessarily confine themselves with 
just stationary Markov processes. Actually, they can never be sure whether 
the underlying process will remain unchanged over time. So, they stay alert to 
that possibility, and keep on trying different Markov processes with different 
time frames (time horizons). Specifically, each belief can be described as "a 
fcth order Markov process appearing over the last d days and may continue". 
These two parameters can be represented by a binary string, and a canonical 
GA is applied to evolve a population of these two parameters with a set of 
standard genetic operators.^ 

Once the belief is determined, the low-level GA is applied to solve the 
stochastic dynamic optimization problem defined in (1) - (3). Basically, we 
use Monte Carlo simulation to generate many possible ensembles consistent 
with the given belief and use them to evaluate a population of investment 
plans composed of a saving rate and a portfolio. GA is then applied to evolve 
this population of candidates.^ 

^ Details can be found in [4], Appendix A.2. 
^ Details can be found in [4], Appendix A.l. 
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Fig. 1. Time Series Plot of the Prices of Assets; M =5. 

In sum, the high-level GA finds an appropriate belief, and under that 
belief the low-level GA searches for the best decisions regarding savings and 
portfolios. This style of adaptive design combines learning how to forecast 
with learning how to optimize, a distinction made in [3]. These two levels of 
GA, however, do not repeat themselves with the same frequency. As a matter 
of fact, the belief-updating scheme is somewhat slow, whereas the numerical 
optimization scheme is more frequent. Intuitively, changing our belief in the 
met a-level of the world tends to be slower and less frequent than just fine-
tuning or updating some parameters associated with a given structure. In 
this sense, the idea of incremental learning is also applied to our design of 
autonomous agents. 

To simulate this agent-based multi-asset artificial stock market, a software 
called AIE-ASM Version 5.0 is written using Delphi, Version 7.0. In each 
single run, we generate a series of artificial data. At the micro level, it includes 
the dynamics of agents' beliefs, investment behavior, and the associated wealth 

{Br,S},al,Wi}l% i=l,...,I. 

At the aggregate level, we observe the asset price dynamics 

{Pm,t}l% m = l , . . . ,M. 

Figure 1 displays the time series plot of prices in a five-asset market. In 
this specific simulation, the state follows an i.i.d. process. 
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4 Experimental Design 

4.1 Empirical RRA Coefficients 

This paper and the coming experimental design are both very much motivated 
by the existing intensive empirical studies on the RRA coefficient. Therefore, 
we would like to give a brief survey here to present a general flavor on the 
wide dispersion of various estimates. For convenience we shall denote the RRA 
coefficient by Q. 

Let us look at this from the left extreme, i.e. ^ < 1. While [5] already 
questions the survivabihty of the CRRA agents with Q being less than 1, 
empirical studies supporting small g still exist. The lowest value of g is found 
in [16], which is only 0.3. A little above this is [11]'s estimate, that ranges 
between 0.3502 and 0.9903. The one that seems to best fit our early simulation 
result of [5] is [8], who find values of RRA of around unity. Instead of using 
real economic data, [10] derived their estimate from a laboratory experiment 
with human subjects, which lay between 0.6 and 1.4. At the other extreme, 
there are cases of ^ > 10, such as 18 in [17] and 30 in [14]. These estimates 
are so large and are puzzling to many economists, having become part of the 
very famous equity premium puzzle. Next to those big ones, [13] also find a 
double-digit RRA in their estimates, which is close to 12. Despite these two 
extremes, most estimates suggest a moderate range for ^, and include the [1,3] 
interval ([9]), the [2,3] interval ([15]), [21]), the [2,5] interval ([6]), etc. 

4.2 Control Parameters 

According to the brief review above, we have set g to lie in the [0.5, 5] interval. 
It starts from 0.5 with increments of 0.5 and continues up to 5. In this setting, 
we have a total of 10 types of CRRA agents, and assign 5 market participants 
to each type of agent. Hence, there are fifty agents in the market in total. There 
are also 5 assets available in the market (M = 5), corresponding to 5 states. 
Asset m pays dividends ^ — m {m = 1,2, ...5). Two stochastic processes are 
considered in the experiments, namely, iid and the first-order Markov. Each 
is employed for one half of the total number of runs. The parameters of these 
two stochastic processes are also randomly generated in such a way that the 
axioms of the probability function are satisfied. Parameter values for the low-
level and high-level GA can be found in [4], 4.1. We have 100 independent runs 
of the same experiment, and each run lasts for 100 market periods (T=100). 

5 Simulation Results 

Figure 2 shows the time series of the wealth share among the 10 types of 
agents. Notice that each line is based on an average of 100 simulations. The 
diagram seems to clearly indicate that the higher the RRA coefficient, the 
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Fig. 2. Wealth Share Dynamics 

higher the wealth share. For example, the wealth share of the agents with 
the highest risk aversion coefficient (^ = 5) shows strong growth from 10% in 
the initial period to 35% in the final period. Unlike what the Blume-Easley 
theorem ([!]) predicts, the log-utility agents {g = 1) do not survive well in this 
case. Instead, their wealth share keeps on declining toward zero. Agents with 
lower values of g share the same destiny. They are all dominated by agents 
with high risk aversion coefficient. 

6 Concluding Remarks 

This s tudy can be possibly related to the extensive li terature on the empirical 
estimation of the RRA coefficients. A wide range of RRA coefficients has 
been found in the li terature, and so far no unanimous conclusion has been 
reached. The agent-based computational approach as demonstrated in this 
paper proposes the possibility tha t in reality there may be such a wide survival 
range of the relative risk aversion coefficient. Furthermore, the agents ' wealth 
share is positively related to their RRA coefficients. This result combined 
with our earlier result (Figure 3, [5]) well articulates the contribution of risk 
aversion to survivability. 
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