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Summary. This chapter provides an overview of the book.

1 About the CIEF Series

This volume is the continuation of the volume with the same title which was pub-
lished by Springer in 2003 ([18]), and is part of the same series of post-conference
publications of the International Workshop on Computational Intelligence in
Economics and Finance (CIEF, hereafter). The previous volume is mainly a col-
lection of selected papers presented in CIEF 2002 (the 2nd CIEF), whereas this one
is a collection of selected papers in CIEF 2005 (the 4th CIEF).

The idea of the CIEF was first initiated by Paul P. Wang, one of the editors of
this volume. Reference [11] (p. 123) details the historical origin of the CIEF. In-
tellectually, the CIEF carries on the legacy of Herbert Simon, who broke down the
conventional distinctions among economics, computer science and cognitive psy-
chology, and initiated the interdisciplinary research field that we refer to as artificial-
intelligence economics. The later development of CIEF, including not only its depth
of coverage but also its breadth of coverage, are documented in [12].

The fourth CIEF was held as a part of the 8th Joint Conference on Information
Sciences (JCIS 2005) between July 21-26, 2005 in Salt Lake City, Utah. Among the
15 tracks of JCIS 2005, CIEF 2005 is by far the largest one. A total of 18 sessions
with 81 presentations were organized. Authors of the 81 papers were encouraged
to submit their extended versions of the conference papers to the post conference
publications. Twenty-seven submissions were received, and each of them was sent to
at least two referees. In the end, only nine out of 27 submissions plus three additional
invited papers were accepted. These constitute the contents of this volume. 1

1 Seven other papers were published in a special issue of Journal of New Mathematics and
Natural Computation, Vol. 2, No. 3.
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2 About this Volume

2.1 Structure of the Volume

To closely connect this volume with the previous one, we structure the book in a sim-
ilar fashion compared with that of the previous one, i.e., the chapters are grouped and
ordered by means of the computational intelligence tools involved. As the organiza-
tion chart indicated in Fig. 1.1 ([18], p.4), the structure of the book is presented in
the order of fuzzy logic, neural networks (including self-organized maps and support
vector machines) and evolutionary computation. The same order is applied here. In
other words, this volume is also structured by using the same organization chart in
Vol. 1.

However, as a continued volume, this volume does not contain a comprehensive
overview of the entire economic and financial applications of CI as was the case
in the first volume. A number of techniques which can be seen in Vol. 1 are not
presented here, including rough sets, wavelets, swarm intelligence (ant algorithms),
and agent-based modeling. Nonetheless, there are also “new faces” appearing in this
volume, including recursive neural networks, self-associative neural networks, K-
means and instance-based learning.

Given the large degree of similarity to Vol. 1, there is no need for a voluminous
introductory chapter as we saw in Vol. 1 ([18], Chap. 1). However, for the additional
techniques which do not appear in the first volume, a brief introduction is provided.
The brief introduction is not meant to be a tutorial, but mainly to show how this spe-
cific tool is related to some other tools, which we see in Vol. 1. For example, it shows
how the recurrent neural network and the self-associative neural network are related
to the feedforward neural network, how K-means is related to self-organizing maps
and K-nearest neighbors, and how instance-based learning is related to K-nearest
neighbors. In this way, we make an effort to make everything as tight as possible and
leave the audience with a comprehensive understanding of the materials.

2.2 Themes

As the second volume, this volume shares a great many similarities, not only in
techniques but also in terms of themes, with the previous volume.

Efficient Markets Hypothesis

A large part of this volume can be read as a continuous effort to question and to
challenge the efficient markets hypothesis or the random walk hypothesis. Are stock
prices predictable? Are trading strategies profitable? While these issues are old, they
never die and they are still the central themes of these chapters. Even though financial
econometricians nowadays also frequently address these issues, what distinguishes
financial econometricians from CI researchers is the way in which they prove the
answer.
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Financial econometricians test the hypotheses based on data with probabilis-
tic models, whereas CI researchers test the hypotheses based on data with algo-
rithms. By assuming a probabilistic universe, econometricians like to question the
data-generating mechanism and ask whether the data observed are indeed randomly
generated. For CI researchers, we treat computational intelligence as an unbounded
set of algorithms. These algorithms are intelligent in the sense that each of them ar-
ticulates well what the patterns are, and, by applying these algorithms to data, we
inquire of the existence of such kinds of patterns. New algorithms propose new ways
of thinking about patterns and of constructing patterns, and hence new tests for the
hypotheses. Chapters 3, 7, 8, 9, 11 and 12 are studies of this kind.

Nonlinearity

An issue related to the efficient markets hypothesis is nonlinearity. In fact, one funda-
mental question regarding the efficient markets hypothesis is whether financial time
series are linear or nonlinear. Nonlinearity motivates the use of CI tools in many
chapters of this volume. It, in effect, provides the connection between conventional
statistics and CI tools. This point has been well illustrated by many chapters. Exam-
ples include the artificial neural network, particularly the recurrent neural network,
as an extension of linear time series modeling (Chap. 3), the self-associative neural
network as an extension of linear principal components analysis (Chap. 4), and the
support vector machine as an extension of the linear classification model (Chap. 5).
In each of these cases, the central issue is whether one is able to capture the neglected
nonlinearity of the linear models from the proposed nonlinear counterparts.

The artificial neural networks and genetic programming are non-parametric and
hence are quite flexible to different functional forms. This flexibility can be quite cru-
cial because, as pointed out by [7], “...unlike the theory that is available in many nat-
ural sciences, economic theory is not specific about the nonlinear functional forms.
Thus economists rarely have theoretic reasons for expecting to find one form of non-
linearity rather than another.” (Ibid, p.475.)

Statistics and Computational Intelligence

Despite the great flexibility, a repeatedly asked question concerns the superiority of
the non-linear models as opposed to linear models in forecasting (Chap. 3) or clas-
sification (Chap. 5). The performance of CI tools is therefore frequently compared
with conventional statistical models. Chapters 3 and 5 provide two good illustrations.

The remainder of this introductory chapter provides a quick grasp of the 12 chap-
ters included in this volume. As mentioned above, the 12 chapters will be briefly in-
troduced in an order beginning with fuzzy logic (Sect. 3), artificial neural networks
(Sect. 4), and then evolutionary computation (Sect. 5).
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3 Fuzzy Logic

Fuzzy logic interests us because it enhances our flexibility in modeling the human’s
inner world. Quite often, we attempt to model human behavior by “fitting” their ac-
tual decisions to the observed external environment which is frequently characterized
by a large number of features. In this way, a formal decision rule can be explicitly
generated.2 However, humans are not always confident about what they are doing or
choosing. They often make decisions based on fears or skepticism. Without know-
ing this limitation, those decisions rules extracted from the observed data can be
misleading.

While neural scientists, over the last decade, have been trying hard to make us
know more about this process within the “box”, it still largely remains “black” to us.
Therefore, a sensible model of decision rules must, to some extent, respond to this
“softness.” Fuzzy numbers, fuzzy coefficients (in the fuzzy regression models) or
fuzzy decision rules may be read as a way of coping with this reality, and there may
be a neural foundation for fuzzy logic, which is yet to be established. Alternatively,
we may ask: is the brain fuzzy, and in what sense? Or, we may say: fuzziness is
everywhere, because it is in our brain.

For example, in the 1970s, there were some discussions between psycho-linguists
and fuzzy theorists on the use of the adverb very. For an illustration, two different
interpretations of very large arise. In one case, the fuzzy set very large is included in
the fuzzy set large. In the other case, it is not; large and very large denote two differ-
ent categories.3 Perhaps by using the scanning technology of neural sciences, we can
explore the relationship between very large and large, and hence provide a neural-
scientific foundation for the membership function and its associated mathematical
operation.

In Chap. 2, An Overview of Insurance Use of Fuzzy Logic, Arnold F. Shapiro
provides a comprehensive review of the use of fuzzy logic in insurance, or the field
known as fuzzy insurance. The unique writing style of the author makes this chapter
suitable for readers with various levels of intellectual curiosity.

First, it obviously serves the readers who want to know the relevance of fuzzy
logic to insurance. This chapter presents a great number of examples, ranging from
risk classification, underwriting, projected liabilities, rate making and pricing, asset
allocation and investments. Of course, due to the large number of examples, the au-
thors are unable to give enough discussion to each single case. Therefore, for general
audiences, they may experience a little difficulty quickly catching the hard lesson to
be learned from each example. Nevertheless, a small taste of each dish in such a rich
buffet does, at least, help us get the message that fuzzy logic is indispensable for
insurance enterprises.

Secondly, in addition to application per se, the author has carefully further cat-
egorized the applications into groups from the perspectives of fuzzy logic. Starting

2 This is how software agents are connected to human agents. For more details, see [12].
3 When a listener hears that x is large, he assumes that x is not very large, because in the

latter case the speaker would have used the more informative utterance x is very large. See
[29] and [22].
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from fuzzy sets and fuzzy numbers, the author concisely goes through fuzzy arith-
metic, fuzzy inference systems, fuzzy clustering, fuzzy programming, and fuzzy re-
gression. This, therefore, enables us to ask a more fundamental question: Why fuzzy?
What is the nature and the significance of fuzzy logic? Certainly, we are not the first
to ask and address the question, but the question is so deep and so important that
it is worth our asking it and addressing the issue over and over again. This chapter
places us in a specific daily life situation, i.e., a risky life, enabling us to revisit the
issue. It drives us to think of the value of fuzzy logic while acting as if we are making
insurance decisions in dealing with various risky real-life events, such as earthquake
damage, health forecasts, etc.

4 Artificial Neural Networks

Among all the economic and financial applications, the artificial neural network
(ANN) is probably the most frequently used tool. It has been shown in a great num-
ber of studies that artificial neural networks, as representative of a more general class
of non-linear models, can outperform many linear models and can sometimes also
outperform some other non-linear models. 4

4.1 Recurrent Neural Networks

Three classes of artificial neural networks have been most frequently used in eco-
nomics and finance. These are multilayer perceptron neural networks, radial basis
neural networks, and recurrent neural networks. The first two classes were intro-
duced in Vol. 1,5 whereas the last one is introduced in this volume.

In Vol. 1, we discussed the relationship between time series models and artificial
neural networks. Information transmission in the usual multilayer perceptron neural
network is feedforward in the sense that information is transmitted forward from the
input layer to the output layer, via all hidden layers in between, as shown in Fig. 1.
The reverse direction between any two layers is not allowed.

This specific architecture makes the multilayer perceptron neural network unable
to deal with the moving-average series, MA(q), effectively. To see this, consider an
MA(1) series as follows.

xt = εt − θ1εt−1. (1)

It is well-known that if | θ1 |< 1, then the above MA(1) series can also be written
as an AR(∞) series.

xt = −
∞∑

i=1

θixt−i + εt (2)

4 This is not a good place to provide a long list, but interested readers can find some examples
from [4], [24], [28], [43], [44], [45], and [47].

5 See [18], pp. 14–18.
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Fig. 1. The multilayer perceptron neural network of a nonlinear AR process

In using the multilayer perceptron neural network to represent (2), one needs to
have an input layer with an infinite number of neurons (infinite memory of the past),
namely, xt−1, xt−2, ..., which in practice is impossible. Although, from the view-
point of approximation, an exact representation is not required and a compromise
with a finite number of neurons (finite memory) is acceptable, in general quite a few
inputs are still required, which inevitably increases the complexity of the network,
leads to an unnecessary large number of parameters, and hence slows down the esti-
mation and training process ([38]).

This explains why the multilayer perceptron neural net can only be regarded as
the nonlinear extension of autoregressive (AR) time series models

xt = f(xt−1, ..., xt−p) + εt, (3)

but not the nonlinear extension of the autoregressive moving-average (ARMA) mod-
els

xt = f(xt−1, ..., xt−p, εt−1, ...εt−q) + εt

= f(xt−1, ..., xt−p, xt−p−1, ...) + εt (4)

The finite memory problem of the multilayer perceptron neural net is well noticed
by ANN researchers. In his celebrated article ([23]), Jeffrey Elman stated

...the question of how to represent time in connection models is very impor-
tant. One approach is to represent time implicitly by its effects on process-
ing rather than explicitly (as in a spatial representation). (Ibid, p.179. Italics
added.)

The multilayer perceptron neural net tries to model time by giving it a spatial rep-
resentation, i.e., an explicit representation. What Elman suggests is to let time have
an effect on the network response rather than represent time by an additional input
dimension. Using an idea initiated by Michael Jordan ([31]), Elman proposes an in-
ternal representation of memory by allowing the hidden unit patterns being to be fed
back to themselves. In this way, the network becomes recurrent.
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The difference between the multilayer perceptron neural network (the feedfor-
ward neural network) and the recurrent neural network can be shown as follows. In
terms of a multilayer perceptron neural network, (3) can be represented as

xt = h2(w0 +
l∑

j=1

wjh1(w0j +
p∑

i=1

wijxt−i)) + εt. (5)

Equation (5) is a three-layer neural network (Fig. 1). The input layer has p inputs:
xt−1, ..., xt−p. The hidden layer has l hidden nodes, and there is a single output for
the output layer x̂t. Layers are fully connected by weights: wij is the weight assigned
to the ith input for the jth node in the hidden layer, whereas w j is the weight assigned
to the jth node (in the hidden layer) for the output. w 0 and w0j are constants, also
called biases. h1 and h2 are transfer functions.

In terms of a recurrent neural network, (4) can then be represented as

xt = h2(w0 +
l∑

j=1

wjh1(w0j +
p∑

i=1

wijxt−i +
l∑

m=1

�mjzm,t−1)) + εt, (6)

where

zm,t = w0m +
p∑

i=1

wimxt−i +
l∑

k=1

�kjzk,t−1, m = 1, ..., l. (7)

In the recurrent neural network, positive feedback is used to construct memory in the
network as shown in Fig. 2. Special units called context units save previous output
values of hidden layer neurons (Eq. 7). Context unit values are then fed back fully
connected to hidden layer neurons and serve as additional inputs in the network
(Eq. 6).

Compared to the multilayer perceptron neural network and the radial basis func-
tion neural network, the recurrent neural network is much less explored in the eco-
nomic and financial domain.6 This is, indeed, a little surprising, considering the great
exposure of its linear counterpart ARMA to economists.

Chapter 3, Forecasting Agricultural Commodity Prices using Hybrid Neural
Networks, authored by Tamer Shahwan and Martin Odening, uses recurrent neural
networks to forecast the prices of hogs and canolas. The performances of recurrent
neural networks are compared with those of ARIMA models, which are frequently
used as the benchmark for time series prediction competitions. The authors consider
two kinds of recurrent neural networks: the one which works alone, and the one
which is hybridized with the ARIMA model. Two empirical issues are, therefore,
addressed in this chapter: first, whether the recurrent neural network can outperform
the ARIMA model; second, whether the hybrid model can make a further improve-
ment.

The idea of hybridizing the two models is very similar to the familiar two-stage
least squares method. In the first stage, the ARIMA model serves as a filter to filter
out the linear signal. The residuals are then used to feed the recurrent neural network
in the second stage.
6 Some early applications can be found in [35] and [9].



8 S.-H. Chen et al.

Xt-1

Xt-2

Xt-p

Input Hidden
Layer

Output

Lag

Context
Layer

Lag

Lag

...
...

...
...

...
...

...
...

...
...

Fig. 2. The recurrent neural network of a nonlinear ARMA process

4.2 Auto-associative Neural Networks

While most economic and financial applications of the neural network consider its
capability to develop non-linear forecasting models, as seen in Chap. 3 of the volume,
there is one important branch using artificial neural networks to engage in dimension
reduction or feature extraction. In this application, ANN can provide a nonlinear gen-
eralization of the conventional principal components analysis (PCA). The specific
kind of ANN for this application is referred to as the auto-associative neural network
(AANN).

The fundamental idea of principal components analysis is dimensional reduction,
which is a quite general problem when we are presented with a large number of
correlated attributes, and hence a large number of redundancies. It is, therefore, a
natural attempt to compress or store this original large dataset into a more economical
space by getting rid of these redundancies. So, on the one hand, we want to have a
reduced space that is as small as possible; on the other hand, we still want to keep the
original information. These two objectives are, however, in conflict when attributes
with complicated relations are presented. Therefore, techniques to make the least
compromise between the two become important.
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Fig. 3. The Auto-associative Neural Networks

To introduce AANN and its relationship with principal components analysis, let
us consider the following two mappings,

G : Rm → Rf (8)

and
H : Rf → Rm (9)

where G and H are, in general, non-linear vector functions with the components
indicated as G = {G1, G2, ..., Gf} and H = {H1, H2, ..., Hm}. To represent these
functions with multilayer perceptron neural nets, let us rewrite (5) as follows,

yk = Gk(x1, ..., xm)

= h2(w0k +
l1∑

j=1

wjkh1(we
0j +

m∑
i=1

we
ijxi)), k = 1, 2, ..., f, (10)

and

x̂i = Hi(y1, ..., yf)

= h4(w0i +
l2∑

j=1

wjih3(wd
0j +

f∑
k=1

wd
kjyk)), i = 1, 2, ..., m. (11)

All the notations used in (10) and (11) share the same interpretation as those in
(5), except superscripts e and d standing for the encoding and decoding maps, re-
spectively. By combining the two mappings together, we have a mapping from
X = {x1, ..., xm} to its own reconstruction X̂ = {x̂1, ..., x̂m}. Let Xn be the nth
observation of X , and

Xn = {xn,1, ..., xn,m}.
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Accordingly,
X̂n = {x̂n,1, ..., x̂n,m}.

Then minimizing the difference between the observation Xn and its reconstruction
X̂n over the entire set of N observations or

min E =
N∑

n=1

m∑
i=1

(xn,i − x̂n,i)2 (12)

by searching for the space of the connection weights and biases defines what is
known as auto-association neural networks. Briefly, auto-associative neural networks
are feedforward nets, with three hidden layers, trained to produce an approximation
of the identity mapping between network inputs and outputs using backpropagation
or similar learning procedures(See Fig. 3).

The third hidden layer, i.e., the output layer of the MLPN, (10), is also called the
bottleneck layer. If the transfer functions hi (i = 1, 2, 3, 4) are all identical mappings,
and we remove all the bias terms, then (10) can be written as

yk = Gk(x1, ..., xm)

=
l1∑

j=1

wjk(
m∑

i=1

we
ijxi) =

l1∑
j=1

m∑
i=1

wjkwe
ijxi,

=
m∑

i=1

l1∑
j=1

wjkwe
ijxi, =

m∑
i=1

βi,kxi k = 1, 2, ..., f, (13)

where

βi,k =
l1∑

j=1

wjkwe
ij

In the matrix notations, (13) can be written as⎡⎢⎢⎢⎣
x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

. . .
...

xn1 xn2 . . . xnm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

β11 β12 . . . β1f

β21 β22 . . . β2f

...
...

. . .
...

βm1 βm2 . . . βmf

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
y11 y12 . . . y1f

y21 y22 . . . y2f

...
...

. . .
...

yn1 yn2 . . . ynf

⎤⎥⎥⎥⎦ , (14)

or simply
XB = Y. (15)

X, B and Y correspond to the n-by-m, m-by-f , and n-by-f matrices in (14), re-
spectively. Likewise, (11) can be simplified as

YB∗ = X̂. (16)

B∗ is the reconstruction mapping and is an f -by-m matrix, and X̂ is the reconstruc-
tion of X, and hence is an n-by-m matrix.
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Equations (15) and (16) with the objective function (12) define the familiar linear
principal components analysis. To see this, we can decompose X as follows:

X = YB∗ + E = XBB∗ + E = XP + E, (17)

where P = BB∗, and E is the reconstruction error. Then the PCA frequently pre-
sented to us takes the form of the following minimization problem.

min
P

|| E || (18)

It is known that the optimal solution of to problem (18) has the rows of P being
the eigenvectors corresponding to the f largest eigenvalues of the covariance matrix
of X. Therefore, we have shown how the self-associative neural network can be a
non-linear generalization of the familiar linear PCA and how the linear PCA can be
extended to the non-linear PCA through a feedforward neural network with three
hidden layers.

The concept of using a neural network with a bottleneck to concentrate infor-
mation has been previously discussed in the context of encoder/decoder problems. 7

Reference [39] indicates some directions of the financial applications of the non-
linear PCA. In this volume, Chap. 4, Nonlinear Principal Components Analysis
for the Withdrawal of the Employment Time Guarantee Fund, by Weigang Li,
Aipore Rodrigues de Moraes, Lihua Shi, and Raul Yukihiro Matsushita, applies non-
linear principal components analysis to compress a dataset related to employees’
withdrawals from a national pension fund in Brazil. It shows how the work on the
principal components analysis can be facilitated by the use of artificial neural net-
works. This chapter provides a good starting point for those who want to see the
contribution of artificial neural networks to components analysis. The software men-
tioned in the paper can be particularly helpful for researchers who want to tackle
similar problems of their own.

4.3 Support Vector Machines

The support vector machine (SVM) was introduced in the previous volume ([18],
pp.18–20). Two chapters there provide illustrations on the applications of the support
vector machine to classifications ([42]) and time series forecasting ([8]). 8 In this vol-
ume, Chap. 5, Estimating Female Labor Force Participation through Statistical
and Machine Learning Methods: A Comparison, authored by Omar Zambrano,
Claudio M. Rocco, and Marco Muselli, the SVM is applied to forecast the partic-
ipation of the female labor force. In this application, the SVM is formally placed
in a competitive environment with the conventional linear classification models, i.e.,
the logit and probit models. In addition, the authors also include a new classifica-
tion method, referred to as the Hamming clustering, to the competition. They then
address the advantages and disadvantages of each approach.
7 See [34] for a brief review.
8 Since the publication of the previous volume, the financial applications have kept on ex-

panding, and the interested reader can find some useful references directly from the website
of the SVM: http://www.svms.org
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4.4 Self-Organizing Maps and K-Means

The genetic programming approach to pattern discovery, as mentioned in Sect. 5.2
below, is a symbolic approach. This approach can also be carried out in different
ways by other CI tools, such as decision trees.9 The symbolic approach makes the
patterns or rules discovered explicit in a symbolical way, while, semantically, this is
not necessarily so.10

However, not all patterns can be expressively demonstrated with symbols. There
are other interesting classes of patterns, which can best be visualized as images, tra-
jectories or charts. We see two demonstrations in the first volume. One is [14] which
automatically discovers 36 charts by means of the self-organizing map (SOM). In
this case, SOM functions as clustering to cluster similar trajectories into the same
cluster (cell). The other is [25] which applies K-nearest neighbors (KNN) to choose
similar trajectories of time series of exchange rates, and based on those forecasts the
future exchange rates. In this volume, we will see the related work of the two. In this
section, we introduce the one related to the self-organizing map, i.e., K-means clus-
tering, and in the next section, we introduce the one related to K-nearest neighbors,
i.e., instance-based learning.

K-Means clustering, developed by J.B. MacQueen in 1967 ([37]), is one of the
widely used non-hierarchical clustering algorithms that groups data with similar
characteristics or features together. K-means and SOMs resemble each other. They
both involve minimizing some measure of dissimilarity, called the cost function, in
the samples within each cluster. The difference between the K-means and the SOM
lies in their associated cost function to which we now turn. Consider a series of n
observations, each of which has m numeric attributes:

Xm
1 ,Xm

2 , ...,Xm
n , Xm

i ∈ Rm, ∀ i = 1, 2, ..., n (19)

where
Xm

i ≡ {xi,1, xi,2, ..., xi,m}. xi,l ∈ R, ∀ l = 1, 2, ..., m. (20)

K-means clustering means to find a series of k clusters, the centroids of which are
denoted, respectively, by

M1,M2, ...,Mk, Mj ∈ Rm, ∀j = 1, 2, ..., k, (21)

such that each of the observations is assigned to one and only one of the clusters with
a minimal cost, and the cost function is defined as follows:

CK−means =
n∑

i=1

k∑
j=1

d(Xm
i ,Mj) · δi,j , (22)

9 In the first volume, we had a detailed discussion on the use of decision trees in finance. See
[18], Sect. 1.3.5 and Chap. 15.

10 What usually happens is that even experts may sometimes find it difficult to make sense of
the discovered patterns, and hence it is not certain whether these discovered patterns are
spurious. See [19] for a through discussion of the rules discovered by genetic programming.
Also see [33] for some related discussion on this issue.
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where d(Xm
i ,Mj) is the standard Euclidean distance between Xm

i and Mj
11, and

δi,j is the delta function:

δi,j =
{

1, if Xm
i ∈ Clusterj ,

0, if Xm
i /∈ Clusterj .

(23)

To minimize the cost function (22), one can begin by initializing a set of k cluster
centroids. The positions of these centroids are then adjusted iteratively by first as-
signing the data samples to the nearest clusters and then recomputing the centroids.
The details can be found in Chap. 7, Trading Strategies Based on K-means Clus-
tering and Regression Models, written by Hongxing He, Jie Chen, Huidong Jin,
and Shu-Heng Chen.

Corresponding to (22), the cost function associated with SOM can be roughly
treated as follows12

CSOM =
n∑

i=1

k∑
j=1

d(Xm
i ,Mj) · hw(Xm

i ),j, (24)

where hw(Xm
i ),j is the neighborhood function or the neighborhood kernel, and w Xm

i
,

the winner function, outputs the cluster whose centroid is nearest to input Xm
i . In

practice, the neighborhood kernel is chosen to be wide at the beginning of the learn-
ing process to guarantee the global ordering of the map, and both its width and height
decrease slowly during learning. For example, the Gaussian kernel whose variance
monotonically decreases with iteration times t is frequently used. 13 By comparing
Eq. (22) with (24), one can see in SOM the distance of each input from all of the
centroids weighted by the neighborhood kernel h, instead of just the closest one be-
ing taken into account.

In this volume, Chap. 6 and Chap. 7 are devoted to SOM and KNN, respectively.
Chapter 6, An Application of Kohonen’s SOFM to the Management of Bench-
marking Policies authored by Raquel Florez-Lopez, can be read as a continuation of
Chap. 9 ([26]) of the first volume. In terms of the research question, it is even closely
related to [27]. The core of economic theory of firms is to identify the features of the
productivity, efficiency, competitiveness or survivability of firms, or more generally,
to answer what makes some firms thrive and others decline. Using observations of
firms, economic theory provides different approaches to the answer. Some are more
theoretical and require rigid assumptions, while others do not. Data envelopment
analysis ([20]) and stochastic frontier analysis ([36]) belong to the former, whereas
self-organizing maps belong to the latter. However, what Florez-Lopez does in this
chapter is to combine the two: DEA and SOM.

11 Standard Euclidean distance assumes that the attributes are normalized and are of equal
importance. However, this assumption may not hold in many application domains. In fact,
one of the main problems in learning is to determine which are the important features.

12 The rigorous mathematical treatment of the SOM algorithm is extremely difficult in gen-
eral. See [32].

13 For details, see the first volume ([18]), Chap. 8, p. 205.
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Using DEA, one can distinguish those firms that are on the efficient frontier from
those that are not. Nonetheless, without a visualization tool, it is hard to see how
similar or different these firms are, be they efficient or inefficient. For example, it
is almost impossible by using the conventional DEA to see whether efficient firms
are uniformly distributed on the efficient frontier, or whether they are grouped into a
few clusters. Hence, it is hard to answer how many viable strategies are available in
the market. Using SOM, not only can one see the feature distribution of the efficient
firms, but one can also notice how distant, and in what direction, those inefficient
firms are from them.

Despite its greater simplicity, the economic and financial applications of K-
means are surprisingly much less available than those of SOM and KNN. K-means
have occasionally been applied to classify hedge funds ([21]), listed companies
([41]), and houses ([30]), and in this volume, He et al., in Chap. 7, apply them to
the classification of trajectories of financial time series. To see this, we rewrite (19)
and (20) to fit the notations used in the context of time series:

Xm
1 ,Xm

2 , ...,Xm
T , Xm

t ∈ Rm, ∀ t = 1, 2, ..., T (25)

Xm
t ≡ {xt, xt−1, ..., xt−m}, xt−l ∈ R, ∀ l = 0, 1, ..., m − 1. (26)

Xm
t is a windowed series with an immediate past of m observations, also called the

m-history. Equation (25), therefore, represents a sequence of T m-histories which
are derived from the original time series, {xt}T

t=−m+1, by moving the m-long win-
dow consecutively, each with one step. Accordingly, the end-product of applying
K-means or SOMs to these windowed series is a number of centroids M j , which
represents a specific shape of an m-long trajectory, also known as charts for techni-
cal analysts.14

Then the essential question pursued by Chap. 7, as a continuation of Chap. 8
([14]) in the first volume, is whether we can meaningfully cluster the windowed fi-
nancial time series Xm

t by the k associated geometrical trajectories, M1,M2, ...,Mk.
The clustering work can be meaningful if it can help us predict the future. In other
words, conditional on a specific trajectory, we can predict the future better than with-
out being provided this information, e.g.,

Prob(| ξt+1 |>| εt+1 |) > 0.5

where
ξt+1 = xt+1 − E(xt+1), (27)

and
εt+1 = xt+1 − E(xt+1|Xm

t ∈ Clusterj), t > T. (28)

The conditional expectations above are made with the information of the trajectory
(the cluster). Reference [14], in the first volume, is the first one to give this idea a
test. They used self-organizing maps to first cluster the windowed time series of the
stock index into different clusters, by using the historical data to learn whether these
clusters reveal any information, in particular, the future trend of the price. In Chap.
7, the same attempt is carried out again, but now by using K-means clustering.
14 For example, see the charts presented in [14], pp. 206-207.
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4.5 K Nearest Neighbors and Instance-Based Learning

In the first volume, we introduce the financial applications of K-nearest neighbors
(KNN) [25]. KNN can be regarded as a special case of a broader class of algorithms,
known as instance-based learning (IBL). To see this, let us use the notations intro-
duced in Sect. 4.4, and use the time series prediction problem as an illustration.

Consider (28). We have been given information regarding a time series up to time
t, and we wish to forecast the next by using the current m-history, Xm

t . In SOM or
KNN, we will first decide to which cluster Xm

t belongs by checking d(Xm
t ,Mj)

for all j (j = 1, 2, ..., k), and use the forecast model associated with that cluster to
forecast xt+1. In other words, forecasting models are tailored to each cluster, say, f̂j

(j = 1, 2, ..., k).15 Then

x̂t+1 = f̂j∗(Xm
t ), if j∗ = arg min

j
d(Xm

t ,Mj), j = 1, 2, ..., k. (29)

KNN, however, does not have such established clusters M j . Instead, it forms a
cluster based on each Xm

t , N (Xm
t ), as follows:

N (Xm
t ) = {s | Rank(d(Xm

t ,Xm
s )) ≤ k,∀s < t}, (30)

In other words, Xm
t itself serves as the centroid of a cluster, called the neighborhood

of Xm
t , N (Xm

t ). It then invites its k nearest neighbors to be the members of N (Xm
t )

by ranking the distance d(Xm
t ,Xm

s ) over the entire community

{Xm
s | s < t} (31)

from the closest to the farthest. Then, by assuming a functional relation, f , between
xs+1 and Xm

s and using only the observations associated with N (Xm
t ) to estimate

this function ft,16 one can construct the tailor-made forecast for each x t,

x̂t+1 = f̂t(Xm
t ). (32)

In practice, the function f used in (32) can be very simple, either taking the uncon-
ditional mean or the conditional mean. In the case of the latter, the mean is usually
assumed to be linear. In the case of the unconditional mean, one can simply use the
simple average in the forecast,

x̂t+1 =

∑
s∈N (Xm

t ) xs+1

k
, (33)

15 The notation f̂ is used, instead of f , to reserve f for the true relation, if it exists, and in that
case, f̂ is the estimation of f . In addition, there are variations when constructing (29). See
[14] and Chap. 15 in this volume.

16 Even though the functional form is the same, the coefficients can vary depending on Xm
t

and its resultant N (Xm
t ). So, we add a subscript t as ft to make this time-variant property

clear.
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but one can also take the weighted average based on the distance of each member.
The same idea can be applied to deal with the linear conditional mean (linear re-
gression model): we can either take the ordinal least squares or the weighted least
squares.17

From the above description, we can find that KNN is different from K-means
and SOM in the sense that, not just the forecasting function, but also the cluster for
KNN is tailor-made. This style of tailor-made learning is known as lazy learning
in the literature ([2]). It is called lazy because learning takes place when the time
comes to classify a new instance, say Xm

T+t, rather than when the training set, (25),
is processed, say T .18

To make this clear, consider two types of agents: the K-means agent and the
KNN agent. The K-means agent learns from the history before new instances come,
and the resultant knowledge from learning is represented by a set of clusters, which
is extracted from a set of historical instances. Based on these clusters, some gen-
eralization pictures are already produced before the advent of new instances, say
Xm

T+t.
19 The KNN agent, however, is not eager to learn. While he does store every

instance observed, he never tries to extract knowledge (general rules) from them. In
other words, he has the simplest form of “learning,” i.e., rote learning (plain mem-
orization). When the time T + t comes and a new instance Xm

T+t is encountered,
his memory is then searched for the historical instances that most strongly resemble
Xm

T+t.
As said, KNN, as a style of rote learning, stores all the historical instances, as

shown in (31). Therefore, amounts of storage increase with time. This may make the
nearest-neighbor calculation unbearably slow. In addition, some instances may be
regarded as redundant with regard to the information gained. This can be particularly
the case when KNN is applied to classification rather than regression or time series
forecasting. For example, if we are interested in not x t+1 itself, but in whether xt+1

will be greater than xt, i.e., whether xt will go up or go down, then some regions
of the instance space may be very stable with regard to class, e.g., up (1) or down
(0), and just a few exemplars are needed inside stable regions. In other words, we do
not have to keep all historical instances or training instances. The storage-reduction
algorithm is then used to decide which instances in (31) to save and which to discard.
This KNN with the storage-reduction algorithm is called instance-based learning
(IBL) and is initiated by [3].20

17 All details can be found in [25].
18 Note that a fixed T in (25) implies a fixed training set without increments. A non-

incremental training set can be typical for using K-means or SOM. However, KNN learn-
ing, also known as rote learning, memorizes everything that happens up to the present;
therefore, the “training set” (memory) for KNN grows with time.

19 For example, see Chap. 7 of this volume.
20 As a matter of fact, the storage-reduction algorithms are not just to deal with the redundancy

issue, but also the noise-tolerance issue. Reference [3] distinguishes the two by calling the
former memory updating functions, and the latter noise-tolerant algorithms. The details can
also be found in Chap. 9 of this volume.
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The addition of a storage-reduction algorithm to KNN is also interesting from
the perspectives of both neural sciences and economics. Considering the brain with
its limited capacity for memory, we find that an essential question to ask is how the
brain deals with increasing information by not memorizing all of it or by forgetting
some of it. How does it do pruning? This is still a non-trivial issue pursued by neural
scientists today. The same issue can interest economists as well, because it concerns
the efficient use of limited space. A recent study on reward-motivated memory for-
mation by neural scientists may provide an economic foundation for the memory
formation ([1]).21

In this vein, the marginal productivity of the new instance in IBL can be consid-
ered as the reward. The marginal productivity of an instance can be defined by its
contribution to enhance the capability to perform a correct classification. For those
instances which have low marginal productivity, it will be discarded (not be remem-
bered), and for those already stored instances, if their classification performances
are poor, they will be discarded, too (be forgotten). In this way, one can interpret
the mechanism of the pruning algorithms or the storage-reduction algorithms used in
computational intelligence in the fashion of neural economics.

There are two chapters devoted to the financial applications of KNN and IBL.
Chapter 8, Comparison of Instance-Based Techniques for Learning to Predict
Changes in Stock Prices, authored by David LeRoux, uses publicly available
monthly economic index data from the Federal Reserve to forecast changes in the
S&P 500 stock index. This chapter effectively summarizes a number of technical
issues arising from using KNN, including similarity metrics, feature selection, data
normalization, choice of the number of neighbors, distance-based weights assigned
to the neighbors, and cross validation. The author addresses well the consequence of
choosing too many or too few neighbors and involving too many features by demon-
strating empirically the impact of different choices of these parameters on accuracy
performance.

In addition, the paper serves as a tutorial on a “how-to” guide on using the data
mining software known as WEKA ([46]).22 WEKA, along with the book ([46]) ac-
tually provides the beginning readers of CIEF with a good starting point to try some-
thing on their own.

Chapter 9, Application of an Instance Based Learning Algorithm for Pre-
dicting the Stock Market Index, authored by Ruppa K. Thulasiram and Adenike
Y. Bamgbade, is very similar to Chap. 8 except that it uses IBL, instead of KNN, for
predicting the price changes in the S&P 500 daily stock index.

21 Reference [1] reports brain-scanning studies in humans that reveal how specific reward-
related brain regions trigger the brain’s learning and memory regions to promote memory
formation.

22 WEKA is a collection of machine learning algorithms for solving real-world data mining
problems. It is written in Java and runs on almost any platform. The algorithms can either
be applied directly to a dataset or called from the users’ own Java code.
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5 Evolutionary Computation

5.1 Genetic Algorithms

A general introduction to evolutionary computation is given in the previous volume
([18], pp. 33-39). Four branches of evolutionary computation are discussed there.
They are genetic algorithms, genetic programming, evolutionary strategies, and evo-
lutionary programming. Reference [15] provides a bibliography of the uses of evo-
lutionary computation in economics and finance. Among the four, the genetic algo-
rithm is the most popular one used in economics and finance.

Chapter 10, Evaluating the Efficiency of Index Fund Selections over the
Fund’s Future Period, authored by Yukiko Orito, Manabu Takeda, Kiyoaki Iimura,
and Genji Yamazaki, applies genetic algorithms to the composition of an index fund.
The index fund describes a type of mutual fund whose investment objective typically
is to achieve the same return as a particular market index, such as Nikkei 255. An
index fund will attempt to achieve its investment objective primarily by investing in
the securities (stocks or bonds) of companies that are included in a selected index.
Some index funds invest in all of the companies included in an index; other index
funds invest in a representative sample of the companies included in an index. This
paper adopts the second approach, and applies the genetic algorithm to optimize the
sample structure, i.e., the portfolio of the representative sample.

5.2 Genetic Programming

Among all kinds of “intelligence” applied to finance, genetic programming is prob-
ably the one which requires the most intensive efforts on programming, and its ex-
ecution is very time-consuming. Therefore, the applications of GP to finance are
relatively sparse.23 In the first volume, [16] provides a review on the financial appli-
cations of GP, and, in this volume, two more chapters are added to move the research
frontier forward.

In Chap. 11, The Failure of Computational-Intelligence Induced Trading
Strategies: Distinguishing between Efficient Markets and Inefficient Algorithms,
Shu-Heng Chen and Nicolas Navet consider a very fundamental issue: when GP fails
to discover profitable trading strategies, how should we react? In the literature, gen-
erally, there are two responses: the market is efficient or GP is inefficient. However,
there is little clue about which case may be more likely. The two responses can lead
to quite different decisions: one is to give up any further attempts on GP, and the
other is to propose modified, or even more advanced, versions of GP.

In this chapter, the authors propose a test (a pretest) to help decide which case
may be more likely. The test is based upon a very simple idea, namely, comparing
the performance of GP with a good choice of benchmark. The authors argued clearly
that a good benchmark is not “Buy and Hold”, but either random trading strategies or
random trading behavior. It involves using these random benchmarks to decide how
much we have advanced, and then deciding which case we should refer to.

23 Up to the present, [10] is the only edited volume devoted to this subject.
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The idea of using random benchmarks is not new, and it has been used in devel-
oping econometric tests of the predictability of financial time series, which is also
well explained in their chapter. Nonetheless, how to define random trading strate-
gies (or trading behavior) is less evident than random time series. Therefore, the two
contributions of this chapter are to build these random benchmarks upon a techni-
cally acceptable ground, and, as the second part of this chapter, to propose pretests
associated with these random benchmarks.

The performance of these pretests is evaluated in light of the earlier results ob-
tained in [19].24 It is found that when the pretest shows that there is something to
learn, GP always performs well; whereas when there is little to learn, GP, as antic-
ipated, accordingly performs rather poorly. Therefore, there is no strong evidence
to show that the simple GP is ineffective. It is market efficiency which fails GP.
However, the pretests also show that the market is not always efficient; this property
changes over time. Therefore, it should not discourage the further use of GP in the
financial domain. Basically, when it should work, it works as expected.

As to the flavor which we get from the previous chapter, the earlier applications
of financial GP mostly focus on returns. While there are some applications which
also address risk or volatility, GP has been rarely applied to design a trading strategy
which can protect investors against falling stock prices, the so-called downside risk.

In Chap. 12, Nonlinear Goal-Directed CPPI Strategy, Jiah-Shing Chen and
Benjamin Penyang Liao, take up a new challenge of the financial application of GP.
CPPI, which stands for constant proportion portfolio insurance, is a strategy that
allows an investor to limit downside risk while retaining some upside potential by
maintaining an exposure to risky assets. It has recently become one of the most pop-
ular types of cautious investment instruments ([40]).

However, when investors have a targeted return to pursue, the CPPI strategy
may adversely reduce their chances of achieving the goal. To handle this problem,
one needs to simultaneously take care of two constraints: the floor (downside risk)
constraint and the goal constraint. However, the exact mathematical problem corre-
sponding to solving the two constraint issues may be analytically difficult. Therefore,
the authors propose a goal-directed CPPI strategy based on the heuristic motivated
by mathematical finance ([6]).

The proposed strategy has a nice property: it is piecewise linear, and hence is
simple to operate. The property of linearity is actually based on the assumption of
Brownian motion, the cornerstone of modern mathematical finance. It is, however,
no longer valid when this assumption is violated. The authors consider two possible
cases. In the first case, linearity remains, but the slope coefficient (investment in
risky assets) becomes unknown. In the second case, even worse, the linear property
is destroyed, and investment in risk assets becomes a non-linear function of wealth.
The authors propose a solution for each case separately. A genetic algorithm is used
to determine the coefficient of the risky portfolio, and genetic programming is used
to determine the nonlinearship relation between the risky portfolio and wealth.

24 In fact, this chapter can be read as a continuation of the systematic study of the trading
application of genetic programming conducted in [19].
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The investment strategies developed by GA and GP are further tested by using
five stocks selected from the Dow Jones Industrial group. It is found that the piece-
wise non-linear investment strategy developed by GP performs the best, followed by
the piecewise linear investment strategy developed by GA. The piecewise linear in-
vestment strategy based on the assumption of Brownian motion performs the worst.

6 Agents

As in the previous volume, the book ends with a chapter on agents. Computational
intelligence serves as a foundation for algorithmic agents. By using CI tools, one
can then endow agents with capability to learn and to adapt. As to how learning ac-
tually takes place, it is detailed by the respective CI tool in an algorithmic manner.
These algorithmic agents are then placed in a social (interacting) environment, and
the aggregate phenomena are then generated by the collective behavior of these al-
gorithmic agents. It then becomes an experimental study to see how the choice of
these algorithms may impact the observed aggregate dynamics ([17]). Based on the
sensitivity outcome, one can explore the potential richness of a model, and hence
gauge the degree of the inherent uncertainty in the model.

Based on what we have discussed in the previous sections, there are many ways of
comparing different learning algorithms when applied to building algorithmic agents.
Reference [5], for example, from a viewpoint of cognitive psychology provides a way
of comparing some frequently used learning algorithms in economics. 25 Cognitive
loading is certainly an important concern when one wants to choose an appropriate
learning algorithm to model boundedly rational agents. A highly relevant question
to ask is how demanding these algorithms are in terms of cognitive loading, and
whether there is a threshold beyond which the agents’ “humble mind” can simply
not afford those demanding tasks. Answers to these questions are more subtle than
one may think at first sight.

Reference [17] addresses the problem of how to relate and compare agent be-
havior based on computational intelligence models to human behavior, and proposes
the condition of computational equivalence to deal with this difficult issue. The paper
describes the design of a computational equivalence lab where both humans and soft-
ware agents have the same computational intelligence methods at their disposal. In a
similar vein, Chap. 13, Hybrid-Agent Organization Modeling: A Logic-Heuristic
Approach, authored by Ana Marostica, Cesar A. Briano and Ernesto Chinkes, pro-
poses a hybrid-agent organization model by using some ideas from scientific semi-
otics. This chapter illustrates the idea of integrating human agents (decision makers)
with software agents (heuristic decision support system) and the connection between
the two.

25 In addition, these learning algorithms are not just confined to individual agents, i.e., agents
only learn from their own experience. In fact, a class of learning algorithms, called social
learning, explicitly or implicitly assumes the existence of a social network and indicates
how agents learn from others’ experiences as well. For example, see [13].
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7 Concluding Remarks

While this second volume provides us with a good opportunity to include some in-
teresting subjects which are missing in the first volume, these two volumes together
are still not large enough to accommodate all state-of-the-art CI techniques with their
economic and financial applications. To name a few, reinforcement learning, inde-
pendent component analysis, and artificial immune systems are techniques that we
hope to include in the next volume. In addition, some popular hybrid systems, such as
fuzzy C-means, neuro-fuzzy systems, fuzzy-neural networks, genetic fuzzy systems,
fuzzy evolutionary algorithms and genetic Bayesian networks are other techniques
that will be included in the future as well.
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