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Over the last decade, numerous papers have investigated the use of Genetic Program-
ming (GP) for creating financial trading strategies. Typically, in the literature, the
results are inconclusive but the investigators always suggest the possibility of further
improvements, leaving the conclusion regarding the effectiveness of GP undecided.
In this paper, we discuss a series of pretests aimed at giving more clear-cut answers
as to whether GP can be effective with the training data at hand. Precisely, pretesting
allows us to distinguish between a failure due to the market being efficient or due to
GP being inefficient. The basic idea here is to compare GP with several variants of
random searches and random trading behaviors having well-defined characteristics.
In particular, if the outcomes of the pretests reveal no statistical evidence that GP
possesses a predictive ability superior to a random search or a random trading be-
havior, then this suggests to us that there is no point in investing further resources in
GP. The analysis is illustrated with GP-evolved strategies for nine markets exhibiting
various trends.

1 Motivation and Introduction

Computational intelligence techniques such as genetic programming 1, with their
continuous advancement, persistently bring us something positive to expect, and in-
cessantly push the application domain to more challenging issues. However, some-
times, the costs and benefits of using these advanced CI techniques are uncertain.
Usually the benefits are not assured, while the costs are immediate. On the one hand,
the CI techniques are frequently used as intensive search algorithms, which are in-
evitably computationally demanding, and take up a great amount of computational

1 Although, in this paper, we solely focus on genetic programming, the general ideas and
some specific implementations should also be applicable to other computational intelli-
gence techniques used to induce trading strategies.
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resources. On the other hand, whether or not there is a needle in the haystack re-
mains dubious. For example, in the financial application domain, the lack of such a
needle may be due to the efficient markets hypothesis or the no-arbitrage condition.
Certainly, if such a needle does not exist at all, then all efforts are made to no avail.
Given this asymmetry between costs and benefits, it would be economical, at the first
stage, to test for the existence of such a needle before a fully-fledged version of the
search is applied. We refer to this procedure as a pretest.

The pretest procedure proposed here is in a sense similar to the pretests used in
econometrics where the estimator of an unknown parameter is chosen on the basis of
the outcome of a pretest [9]. Pretesting, also known as “data-snooping” in finance,
classically serves to select the right model that will be used later on for forecasting
purposes (see [5, 20]). More broadly, pretesting can be considered to be a practice
of a sequential decision-making process, which is used when the decision involves a
great deal of uncertainty, and the costs of making a wrong decision are huge. 2 In this
case, at the first stage, we would like to expend some limited resources on probing
into gaining some initial information, e.g., the distribution of a very uncertain envi-
ronment, while in the later stages, we will make our decision based on the gauged
distribution.

The reasoning behind prestesting is very intuitive, and [11] is the first to apply
this idea to the financial application of genetic programming (GP). Reference [11]
proposed a measure known as the η statistic. The η statistic is a measure of pre-
dictability obtained by comparing the predictions regarding the actual data and the
shuffled data.3 Basically, by using a simple (vanilla) version of GP, one can first
gauge the predictability based on η. When η is low or close to zero, it indicates that
there is nothing to forecast. So, the use of fully-fledged GP is not advised. The virtue
in doing this is to distinguish two kinds of possibilities when we see the failure of an
initial attempt based on simple GP. First, the series itself has nothing to forecast; sec-
ond, GP has not been used appropriately. Understanding this distinction can result
in big differences in our second stage of the decision. In the former case, we may
simply give up any further search to avoid wasting resources. In the latter case, we
should keep on exploring different deliberations of GP to search for potential gains
before a final conclusion can be reached. In either case, we have a clear-cut situation.
However, when a pretest is absent, we become less conclusive: we are no longer sure
whether the problem is due to the non-existence of the needle, or the improper use
of GP.

2 The problem of sequential decision making under incomplete knowledge has been studied
by researchers in various fields, such as optimal control, psychology, economics, and game
theory.

3 The η statistics make use of surrogate data, that is, the data sharing statistical properties
of the data under study but not the property that is tested for. Here, the property investi-
gated is temporal dependence and, thus, by shuffling the original time series, the temporal
dependencies, if any, are lost. The interested reader might refer to [16] and [18] for a good
starting point on the use of surrogate data.
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Unfortunately, in most financial trading applications of GP, a pretest has been
largely neglected.4 We think that this negligence may give rise to many inconclu-
sive results. Typically, what happens is that the results from using GP are not very
convincing, but the investigators always suggest directions for further improvement,
leaving the actual conclusion regarding the effectiveness of GP undecided. There-
fore, this study attempts to provide a practical pretesting procedure aimed at reducing
the number of cases where the conclusion is inconclusive.

Needless to say, there are various ways of implementing different types of
pretesting. For example, the η statistic mentioned above can be used as a pretest,
as [11] did, but that is mainly applied to forecasting time series. That a series is to
a certain extent predictable does not necessarily imply that we can develop prof-
itable trading strategies. For example, the predictability horizon might be too short,
the fluctuation might not be volatile enough to cover the round-trip transaction costs
or, simply, the right trading instrument might not be available (e.g., no short selling
in a downward oriented market) or else they are some regulation and rules (e.g., the
“uptick rule” makes intraday trading with short selling more difficult). Consequently,
the literature on forecasting with GP (e.g., [12, 17] and [6]) and the literature on
trading with GP (e.g., [1, 14, 21] and [4]) are usually separated. Therefore, in this
paper, we attempt to develop pretest procedures that are more suitable for trading
purposes. However the correlation between the predictability 5 of a time series and
the profitability of GP induced rules, and more generally of any trading strategies, is
an intriguing and still open question, whose answer6 constitutes, in our view, a major
step towards efficient market timing decision tools.

More precisely, we will propose here several different styles of pretests, which
when put together can help us decide whether there are hidden patterns to be discov-
ered and whether GP is properly designed to do the job. The essential idea underly-
ing all proposed pretests is to compare the performance of GP with random trading
strategies or behavior. However, as we shall see in Sect. 2, just making trading strate-

4 This may not be completely so. In fact, most earlier studies selected a risk-free investment
(e.g., treasury bills) or, most often, the buy-and-hold strategy as the benchmark. However,
the conclusion that “GP performs better than buy-and-hold in a bearish market and worse in
a bullish market” is often found in the literature. However, nothing different can be expected
since buy-and-hold is the worst possible strategy in a steadily decreasing market and the
best possible strategy in a steadily increasing market. This shows the limits of choosing
buy-and-hold as a benchmark.

5 Numerous metrics, emerging from the fields of information theory, the study of dynam-
ical systems and algorithmic complexity or statistics, have been devised to quantify the
predictability of a system observed by the data it produces. One can mention the Lyapunov
exponent, which is a measure of the rate of divergence of nearby trajectories and thus an in-
dication of the short-term predictability, the Shannon entropy which measures the diversity
of the data produced or the Grassberger-Crutchfield-Young statistical complexity which
informs us of the amount of information which is relevant to the system’s dynamic. The
reader interested in predictability measures can refer to [2] and [19] for a comprehensive
survey.

6 Of particular interest is the work of [10] which is a significant step in that direction.
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gies or trading behavior arbitrarily random is not sufficient to provide a fair and
informative comparison. To do so, some constraints are expected, and the interesting
point is how to impose these constraints properly.

The rest of the paper is organized as follows. Section 2 provides a detailed for-
mulation of the four pretests. The first three are concerned with the trading strategies,
whereas the last one is concerned with the trading behavior. Normally, trading be-
havior comes from trading strategies, and they cannot be separated; however, when
randomness is introduced, differences between the two may arise. In particular, in the
vein of algorithmic complexity, random trading strategies can imply trading behavior
actually using knowledge, while random trading behavior presumably excludes such
a possibility. We, therefore, intentionally distinguish between the two by referring to
the former as zero-intelligence strategies, and the latter as lottery trading. Section 3
discusses how to use these proposed tests together to make a better judgment given
the initial results we have. Section 4 illustrates the proposed pretests based on the
real data and the experimental designs detailed in the appendix. Section 5 gives the
concluding remarks.

2 Pretests: Description and Rationale

In this section, we describe a series of 4 pretests and discuss their purpose and im-
plementation. Of the 4 pretests, we highlight 2 that are of particular interest and,
as shown in Sect. 3, enable us to gain complementary knowledge on the data under
study and on the efficiency of the GP’s implementation. In the following, we consider
GP with a validation stage before the actual testing of the out-of-sample data. Valida-
tion means that the best rules induced on the training interval are further selected on
the unseen data, i.e., the validation period, before being applied out-of-sample. The
validation step is a device to fight overfitting that has been widely used in earlier GP
work (see for instance [1, 15]).7 Note that our proposals, except for pretest 1 which
explicitly requires validation, remain valid as they do for GP without the validation
step.

2.1 GP versus Equivalent Intensity Random Search

The basic idea here is to compare the outcome of GP with an equivalent intensity
random search. We say that two search algorithms are equivalent in terms of search
intensity if their execution leads to the evaluation of the same number of distinct
trading strategies for the training data. For instance, let us consider GP with the pa-
rameters chosen for this study: a population of 500 individuals evolved over 100 gen-
erations. In the first approximation, the equivalent random search (ERS) would con-
sist of evaluating 50,000 randomly created solutions. In practice, search algorithms
sometimes rediscover identical solutions over the course of their execution. This can

7 The actual effectiveness of validation in this context is, however, still an open question.
See [4] and [3].
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simply be detected by keeping track of all created individuals since the beginning
of the execution, and in doing so useless fitness evaluations can be skipped, which
actually saves computing time when the fitness function is rather time-consuming.
Since, computationally speaking, what is preponderant in our context is the fitness
evaluation, we impose the restriction that our definition of equivalent search inten-
sity only accounts for unique individuals, i.e., individuals that require evaluation. We
consider two solutions to be distinct if their expression is syntactically different8, in
our GP context, if the trees representing the programs are different.

The three following pretests compare GP with a random search both with and
without a training and validation stage. In random search, the biologically inspired
evolution process of GP is simply replaced by the creation of solutions at random.
Since with random search the strategies do not benefit from the “intelligence” result-
ing from the evolution and learning process 9, we dub randomly created solutions as
zero-intelligence trading strategies.

For each pretest i, we formulate the null hypothesisH i,0 that GP does not outper-
form the technique it is compared with at pretest i, where the alternative hypothesis
is denoted by Hi,1. The experiments will provide us with the answer to whether H i,0

should be rejected in favor of Hi,1 or not. As usual, the chosen significance level
of the test enables us to finely control the probability to falsely reject the null, that
is in our case to come wrongly to the conclusion that GP is more effective than the
technique it is compared with.

Pretest 1: GP versus Equal Search Intensity Random Search - both with a
Training and a Validation Stage.

The implementation of the random search strategy is straightforward: parameters of
GP are set in such a way that only the initial generation, where individuals are created
at random, is used. The size of the initial population is adjusted so that the resulting
search intensity is identical to the one for the regular GP.

8 Two individuals can be syntactically different while being equivalent in the sense that they
always lead to the same trading decisions, and the equivalence could thus also be defined in
terms of semantics. With symbolic simplification using rewriting rules and interval arith-
metic on the function arguments, we could detect that some syntactically different individ-
uals are in fact semantically identical. However, there is no way of making sure that all
duplicates will be detected and the implementation of this procedure would be so complex
and time consuming at run time that, in our opinion, a definition based on semantics would
be of little practical interest. Alternatively, the equivalence in search intensity could be de-
fined in terms of equivalent running time. However, there is such a difference in complexity
between a fully-fledged GP implementation and random search that it is hard to imagine
how we can ensure that the two implementations have been optimized in a similar manner,
while a better implementation of GP may for instance may lead us to come to an opposite
conclusion.

9 Comparing GP with random search informs us regarding the effectiveness of the GP oper-
ators. Further meaningful information regarding this issue could be obtained by comparing
regular GP with an implementation that would favor crossover among the less fit solutions
(“breed-the-worst”), as suggested in [13].
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• Hypothesis H1,0 cannot be rejected: the first explanation that can be envisaged
is that, GP or not, there is nothing essential to be learned from the past. In that
case GP would strongly “overfit” the training data, possibly explaining that in
the same cases its out-of-sample performance is worse than that with a random
search. This can be due to the market being efficient or because the training in-
terval exhibits a time series pattern which is significantly different from the out-
of-sample period.10 Another explanation is that the GP machinery is not working
properly, for instance due to a wrong choice in the composition of the function
and terminal sets, because the parameters controlling the GP run are inappropri-
ate (e.g., a search intensity that would be insufficient), or the genetic operators
are unable to create better-than-random individuals.

• Hypothesis H1,0 is rejected in favor of H1,1: there may be something to learn
from the past and GP, with the chosen parameters, may be effective in that task.

Rejecting H1,0 is of course a first indication of the efficiency of GP but, as we will
see in Sect. 3, further investigation may provide additional information to answer
that question and rule out mere luck.

Pretest 2: GP versus Equal Search Intensity Random Search with a Training
but without a Validation Stage.

Here, the best solutions found at random over the training interval are applied di-
rectly to the out-of-sample period. With regard to pretest 1, pretest 2 could give us
some insight into how effective validation is as a device to fight against overfitting.
However, since overfitting is unlikely to occur with random search, the rationale for
using pretest 2 is unclear and it will not be further considered in this study. A more
direct and effective way to evaluate the effect of the validation stage is simply to
compare regular GP with and without validation. 11

Pretest 3: GP versus Equal Search Intensity Random Search both without a
Training and without a Validation Stage

In pretest 3, the selection of the strategies for the training set is removed: a large
number of random strategies are created and applied directly out-of-sample. The per-
formance is evaluated as the average performance (e.g., average total return) over the
set of random strategies. Comparing the outcome of pretest 3 with regard to pretest
1 and regular GP tells us something about how effective the selection process is, and
the extent to which a top performing rule on the training and validation sets will keep
on performing well out-of-sample. If strategies selected by GP or random search on
the training and validation intervals have some predictive ability out-of-sample, this
will provide us with evidence that there is something to learn from the past. It is

10 In [4], experiments have consistently highlighted that when training and out-of-sample data
sets are very “dissimilar”, for instance if the market exhibits opposite trends, then there is
little chance that GP will perform well out-of-sample.

11 For instance, as in the case of [4] and [8].
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worth pointing out that the randomness of the strategies here is constrained by the
GP language: rules can only be made with GP functions/terminals organized accord-
ing to the constructs of the language and its typing scheme. For instance, it may
happen that the GP language is not sufficiently expressive to define a rule consisting
of buying and selling every other period. 12 In the remainder of this study, we will
consider pretest 4, presented in Sect. 2.2, that is similar in spirit to prestest 3, but is
more random in the sense that it does not possess the bias in randomness induced by
the GP language.

2.2 GP versus Lottery Trading

We refer to lottery trading as a strategy that would consist of making the investment
decision randomly on the basis of the outcome of a random variable. In its simplest
form, the random variable would follow a Bernoulli distribution where the parameter
p expresses the probability of taking a long position and 1 − p the probability of
closing a long position or staying out of the market.

In our context, this requires refinement since we are interested in profitability and
profitability takes into account transaction costs. Therefore, in order to allow a fair
comparison with GP, we should make sure that the expected number of transactions
for lottery trading is the same as for GP. We refer to the expected number of trans-
actions per unit of time as the frequency of a trading strategy. Another important
characteristic of a trading strategy is what we term its intensity, i.e. the number of
periods where a position13 “in the market” is held, over the length of the trading in-
terval. We should also enforce lottery trading to have the same expected intensity as
GP to avoid misleading results, for instance, in the case where, given its frequency,
the intensity of lottery trading is not sufficient to cover the transaction costs with the
volatility of the market under study.

We denote by FGP and IGP , respectively, the average frequency and average in-
tensity observed for the set of GP-evolved rules applied to the testing interval over
all GP runs, and NGP is the number of transactions leading to FGP . For the experi-
ments made in the following, a sequence of investment decisions SLT resulting from
lottery trading is generated at random according to the following procedure:

• the intensity for lottery trading, ILT , is uniformly chosen in [IGP · (1 −
α), min(1, IGP · (1 + α))] where parameter α (0 ≤ α ≤ 1) introduces a con-

12 Period refers to the granularity of time used for trading, for instance, one second or one
day.

13 Implicitly, we consider here the trading of a single instrument, e.g., an index, where two
positions are possible at each point in time, i.e., be in or be out of the market if short selling
is not possible, or with short selling as implemented in [4], holding a long position or a short
position. These concepts can be extended to the case where there are three possibilities in
each time period: holding a long position, holding a short position or staying out of the
market. Similarly, intensity and the frequency of a strategy can be instantiated for each
traded instrument.
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trolled randomness.14 In the first step, SLT is made of the ‘0’ positions (i.e., out
of the market) followed by the block of ‘1’ positions (i.e., in the market) corre-
sponding to ILT ,

• the number of transactions NLT is uniformly chosen in the set of integer values
that are even15 in interval [NGP · (1 − α), NGP · (1 + α)]. The block of ‘1’ is
subdivided at random in NLT /2 sub-sequences and each sub-sequence is inserted
at random inside the block of ‘0’. This design avoids the problem of overlapping
among the ‘1’ sub-sequences that may occur with other schemes.

We formulate the pretest comparing GP and lottery trading and denote by H 4,0 the
null hypothesis that GP does not outperform lottery trading while the alternative
hypothesis is H4,1.

Pretest 4: GP versus Lottery Trading

Obviously, if GP is not able to outperform lottery trading, it gives strong evidence
that GP will not be good at evolving effective trading strategies with the data at hand.
In Sect. 3, we shall discuss this point in more detail.

3 What do the pretests tell us ?

The outcomes of the pretests provide us with answers to the following two questions:
Is there something essential to learn on the training data that can be of interest for
the out-of-sample period? Does the GP implementation show some evidence of ef-
fectiveness in that task? Clearly, before actually trading with GP evolved programs,
these two questions must be answered with reasonable certainty; the rest of this sec-
tion explains how pretests may help in that regard.

3.1 Question 1: Is there something to learn ?

The null hypothesis H4,0 corresponding to pretest 4 has been presented in Sect. 2.2.
We introduce pretest 5 that will be used in conjunction with pretest 4.

14 Parameter α is intended to reproduce the variability of intensity and frequency observed
over the sample of GP runs that lottery trading is compared with. In the simplest form
presented here, this is implemented as a parameter α which is unique for intensity and
frequency. It is of course possible to refine this scheme by individualizing the parameter
for intensity and frequency, or by drawing at random the values of ILT and NLT according
to the empirical distributions of intensity and frequency encountered over the sample of
GP runs. This latter procedure is especially meaningful when the empirical distributions
of intensity and frequency in GP significantly differ from the uniform distribution that is
implicitly assumed here.

15 NLT has to be even since a “buy” transaction is followed by a sell transaction and no
positions are left open.
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Pretest 5: Equivalent Intensity Random Search with Training and Validation
versus Lottery Trading

Here, we compare lottery trading to a random search with training and validation, and
a search intensity equivalent to the one used for GP in pretest 4. The null hypothesis
H5,0 is that the equivalent intensity random search does not outperform lottery trad-
ing for the out-of-sample data. Depending on the validity of H 4,0 and H5,0, we can
draw the conclusions that are summarized in Table 1:

H4,0 H5,0 Interpretation
case 1 ¬R ¬R there is evidence that there is nothing to learn
case 2 R ¬R there may be something to learn (weak certainty)
case 3 R R there is evidence that there is something to learn
case 4 ¬R R there may be something to learn (weak certainty)

Table 1. Information drawn from the outcomes of pretest 4 and pretest 5 (¬R means that the
null hypothesis Hi,0 cannot be rejected while R means that the hypothesis is rejected in favor
of the alternative hypothesis).

In case 1, the best solutions for the training intervals, obtained with 2 different
search algorithms, do not perform better than lottery trading for the out-of-sample
period. This suggests to us than there is nothing to learn. In case 2, GP outperforms
lottery trading but random search does not; it is possible that there is something to
learn, but that the selected random rules do not have a sufficient predictive ability. In
any case, this leads us to a less certain conclusion than in case 3 where both search
techniques outperform lottery trading. Finally case 4 is a special case where random
search performs better than lottery trading but GP does not. The whole evolutionary
process of GP has thus a detrimental effect and a possible explanation is that GP-
induced solutions strongly overfit the training data despite the validation stage.

3.2 Question 2: Is the GP machinery working properly?

The second question we ought to ask is whether GP is effective. Of course, this
cannot be answered with the data at hand if pretests 4 and 5 have shown that there is
nothing to be learned (case 1 in Table 1). In addition, in case 4 of Table 1, we already
know that GP is not efficient since, by transitivity, it is outperformed by the random
search-based algorithm. Thus, the only two cases where one really needs to proceed
to further examination are case 2 and case 3. The validity of the null hypothesisH 1,0,
which can be tested with pretest 1, gives a helpful insight into the answer: only if
H1,0 should be rejected can we conclude that GP shows some real effectiveness. We
would like to stress that rejecting H1,0 is far from implying profitability, but beating
a mere random search algorithm on a difficult problem with an infinite search space
is the bare minimum one can expect from GP.
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4 Experiments

The aim of the experiments is to evaluate the extent to which the pretests proposed are
reliable. The methodology adopted here is to check if the outcomes of the pretests are
consistent with results already published in the literature. We call the software used
in [4] GP1, which will constitute our benchmark, while GP2 is the GP implementa-
tion developed for this study. Although both programs have been developed by mem-
bers of the AI-ECON Research Center, they have not been written by the same per-
sons and do not share a single line of code. Furthermore, GP2, which is based on the
Open-Beagle C++ library (see [7] and http://beagle.gel.ulaval.ca/),
makes use of strongly-typed GP on the contrary to GP1. The GP2 control parame-
ters, as close as possible to the ones used in [4] for GP1, are summarized in Table 1
(Appendix A).

The traded instruments are the indexes of 3 stock exchanges: the TSE 300
(Canada), the Nikkei Dow Jones (Japan) and the Capitalization Weighted Stock In-
dex (Taiwan). They have been chosen among the 8 markets studied in [4] because
they exhibit the main price evolution patterns that can be found in the set of 8 mar-
kets. The aim of GP is to induce the most profitable strategy, measured by the accu-
mulated return, for trading the stock exchange index. The use of short selling is possi-
ble. We adopt what is done classically in the literature in terms of data-preprocessing
and use normalized data that is obtained by dividing each day’s price by a 250-day
moving average.16 In a way similar to what is usually done, we subdivide the whole
data set into three sections: the training, validation and out-of-sample test periods.
For each stock index considered, 3 different out-of-sample test periods of 2 years
each (i.e., 1999-2000, 2001-2002, 2003-2004) follow a 3-year validation and a 3-
year training period. In the following, the term market refers to a stock exchange
during a specific out-of-sample period. For instance, market Canada-1 (C1 for short)
is the TSE 300 during the out-of-sample period 1999-2000. Hypothesis testing is
performed with the Student’s t-test at a 95% confidence level. The samples for statis-
tics are made up of the results of 50 GP runs, 50 runs of equivalent search intensity
random search with training and validation (ERS) and 100 runs of lottery trading
(LT) with parameter α = 0.2 (see §2.2 for the definition of α). The following results
were obtained with GP2:

• In 4 out of the 9 markets (i.e., C3, J2, T1, T3), there is evidence that there is
something to learn from the training data (case 3 in Table 1 - GP2 and ERS
outperform Lottery Trading). This is consistent with [4] where GP1 performs
outstandingly in these 4 markets (respective total return: 0.34, 0.17, 0.52, 0.27).

• In markets C1, J3 and T2, pretests 4 and 5 suggest to us that there is nothing
to learn (case 1 in Table 1 - neither GP2 nor ERS outperform Lottery Trading).
Except for C1, GP1 also performs poorly (−0.18 for J3 and −0.05 for T2). 17

16 See [4] for a discussion on how non-normalized data affects the performance of GP.
17 The two markets that are not listed, i.e. C2 and J1, correspond to cases where “there may

be something to learn.” Precisely, they both belong to case 2 in Table 1, that GP beats LT
but random search does not beat LT.
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• Finally, in the 3 markets where GP2 is shown to beat ERS (H1,0 is rejected in
favor of H1,1 for J1, J2 and T1), the GP results are very good: both GP1 and GP2
produce positive returns and outperform the buy-and-hold strategy.

Although more comprehensive tests are needed, the experiments conducted here
on 9 markets show some preliminary evidence that the proposed pretests possess
some predictive ability. Indeed, when the outcome is “nothing to learn,” the two GP
implementations perform very poorly (except in one case). On the contrary, when
the pretests suggest that there is something to learn, at least one GP implementation
does well.18

When pretests suggest to us that a market is efficient, we cannot conclude that
there is no way of making consistent profits in this market, because the concept of
efficiency is of course relative to the investors considered. What can be concluded
is that a group of investors making their investment decisions by running GP2 on
the past price time-series will not be able to consistently outperform the market. It is
also worth noting that the efficiency of a market is variable over time; for instance,
pretests suggest to us that T2 is efficient while T1 and T3 are not. As highlighted
in [4], GP not being efficient is often due to the training interval exhibiting a time
series pattern which is significantly different from the out-of-sample period (e.g.,
“bull” versus “bear”, “sideways” versus “bull”, . . . ). Thus, a first way of making
improvements that can be investigated is to rethink the data division scheme.

In light of the pretests, we should also conclude that our GP implementation (i.e.
GP2) is more efficient than random search (GP2 outperforms ERS in 3 markets while
ERS never beats GP2 with statistical significance). However, in our experiments,
searching trading rules at random, with the same set of functions and terminals as
used in GP, is usually enough to come up with trading systems that outperform lottery
trading when GP does as well. This suggests to us that GP2 may only be able to take
advantage of “simple” regularities in the data.

5 Conclusions

The main purpose of this paper is to enrich the earlier research on Genetic Program-
ming (GP) induced market-timing decisions by proposing pretests aiming to shed
light on the GP results. In actual fact, in the literature, the results of applying GP
for market-timing decisions are typically not very convincing, but the investigators
always suggest the possibility of further improvements. If the investigators can first
be convinced that there is something to learn and that GP is suitable for that task,
then their conclusion would be less vague and uncertain. We propose here a series of

18 In all 4 such cases (C3, J2, T1, T3), GP2 beats LT, but in 2 cases where the market is bullish
(C3 and T3) the returns earned by GP2, which are 5% and -4%, respectively, are far less
than those of Buy-and-Hold, which are more than 30% during the out-of-sample period. As
a result, one cannot say that GP2 is performing superbly. However, in those 2 cases, GP1,
which seems in general to be the best implementation, happens to be very efficient (only a
few percent less than buy and hold).
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pretests, where GP is tested against a random behavior (lottery trading) and against
strategies created at random (zero-intelligence strategies) that aim to answer these
two crucial questions. Of course there is the risk of getting a wrong pretest result
and the possible reasons why GP may have failed should be thoroughly investigated
before drawing a conclusion. But, in the end, analyzing the results in light of the
pretests should help us to draw more fine-grained conclusions.
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A Genetic Programming Settings

Program GP2 implements strongly typed GP with the set of functions and terminals
described in Table 1. The parameters here are basically identical to the ones in [4]
(program GP1) except when fine-tuning GP2 has highlighted that better results may
be obtained with different parameters. Precisely when we make use of more elitism,
the size of the tournament selection is set to 5 and numerical mutation is imple-
mented.
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