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Abstract We design a Web-based prediction market platform to monitor the trading 
behavior among the human traders in real-time. Two experiments tied to the out- 
comes of mayoral election in Taiwan are performed in parallel for 30 days. From the 
accumulated transaction data, we reconstruct the so-called cash-flow networks. We 
observe that the network structure is hierarchical and scale-free with a power-law ex- 
ponent of 1.15• Through carrying out a post-simulation, we also demonstrate 
that a simple double auction market with "zero-intelligence" traders is capable of 
generating hierarchical and scale-free networks. 

1 Introduction 

Complex networks, exhibit several non-trivial topological features (including a fat- 
tail in the degree distribution, a high clustering coefficient; community structure at 
many scales, and a hierarchical structure), emerge in many complex systems such as 
biological[l], social[2] and technological[3] systems. Although these systems have 
been modeled as random graphs in the past, more and more empirical evidence 
suggests that the topology and evolution of these networks are governed by robust 
organizing principles[4]. We might say that the network topology evolves to fulfill 
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system requirements. Studying network systems thus help us to have better insight 
into the complex systems. 

In economics, financial markets are complex systems as well. The prices and in- 
dividual wealth in the market are driven up and down by the so-called "invisible 
hand" coined by Adam Smith. Although we know that these fluctuations are result- 
ing from the interactions among traders within the market, it is difficult for us to 
make any accurate prediction about the markets. In a naive thinking, since the net- 
work can be applied to explain the relations or interactions among each element, 
we shall be able to map the interactions among traders into networks and study 
them. Therefore, we conduct two experiments for gathering the information about 
the trading behavior in the market and introduce a new method to map the trading 
behavior into the networks[5]. 

In this contribution, we first introduce our platform for market experiments with 
human traders and show the results of two experiments on this platform. The trading 
behavior in these two experiments is mapped into a so-called cash-flow network 
and we then present the observation of these networks. Finally, the results based 
on a simulation experiment will also be discussed. The model is described by a 
continuous double-auction (CDA) market with zero-intelligence traders. 

2 Market Experiment with Human Traders 

Markets are open systems where intelligent traders interact with each other with 
some simple trading rules. For an orderly market, the price reflects the underlying 
value of the market instruments. But when bubbles develop, the orderly behavior 
breaks down and markets become complex systems. In the bottom-up scheme, if we 
want to study a complex system, we need to learn how individual elements interact 
with each other in our system. Following this concept, we build a virtual market for 
human traders which allows us to monitor their trading behaviors in real-time. We 
believe that the transactions among traders represent the strength of the interactions 
(or relations) between them. Therefore, we might have deeper insight into the market 
with these transaction data. 

2.1 A Web-based Futures Exchange Platform 

Prediction market[6, 7] is a market designed to run for the primary purpose of min- 
ing and aggregating information scattered among traders. The aggregation of the 
information will therefore be reflected in the form of market prices so as to make 
predictions about the outcomes of some specific events. From the concept of pre- 
diction market, we design a platform which allows the registers to trade the polit- 
ical futures contracts on web and enable us to monitor the transactions among the 
traders[8, 9, 10]. Although we use the virtual money for the trading, the principles 
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and operation of our platform follow those of major financial exchanges in the real 
world. Our platform works as a Web-based server which runs for 24 hours a day 
until we shut it down on the day of liquidation. Any web browser can participate in 
the trading by on line registration. An account with the user-provided login name is 
created for the participant after registration. An initial amount of (virtual) money is 
deposited by the server to the newly created account. The initial wealth for each par- 
ticipant is the same. The demographics about all the registers to date is also updated. 
The process takes place on the server automatically and a trader can start trading al- 
most immediately after successful registration. The demography, price fluctuation 
and accumulated volumes plots are open to any Web surfer irrespective of her reg- 
istration or not. However, only registered users can trade upon login. 

Once the user login onto the server, he can buy bundles of contracts from the 
server for a guaranteed price per bundle or buy the futures contracts from the market 
directly. In our platform, a given political futures contract is associated with the 
liquidation price which equals the percentage of votes that a candidate gets on the 
day of election. A bundle, by design, consists of futures contracts for each candidate 
in the race as well as for all the invalid casts. After the election, all the futures 
contracts in the account should be liquidated. The bundle price of 100 is fair since 
neither the user nor our server loses. Transactions are free in our platform and no 
further service fees will be charged. Users can place market or limit orders to buy 
or sell futures contracts. Our platform then stores and sorts the submitted bid (ask) 
orders in a bid (ask) queue and matches counterpart orders which are compatible 
with each other's price limits. If no matches are met, limit orders stay in the queue 
and wait for further matches with new orders. These limit orders would either expire 
or be canceled by users before the matches. Market orders do not stay if no matches 
are found. Order matching is via the process of continuous double auction (CDA) 
which is the price discovery mechanism widely used by exchange markets in the 
world, including New York Stock Exchange, Tokyo Stock Exchange, SBF-Bourse 
de Paris, and the Stock Exchange of Hong Kong. 

The server records user's trading activities and results. After a transaction, the 
account assets, including cashes and futures contracts, is balanced immediately. The 
price of the contract is decided by the current market price. Therefore, even if a 
user dose not transact anymore, as long as he owns the contracts, his assets would 
vary depending on cun'ent market prices of the contracts, The account in our server 
eams no interest. When a limit order is placed but the execution is not complete, 
the platform will block further order submissions by this user. This rule is meant to 
prevent the server from reckless submissions since there are no transaction fees and 
the money is virtual. 

2.2 Experimental Design 

In this analysis, we take the data from the experiment on Taipei mayoral election in 
Taiwan on December 9, 2006. We issued six futures contracts for this experument, 



248 

which consisted of five candidates ran for Taipei mayor and one for any invalid bal- 
lots cast on the election day. Sum of the prices of these six contracts are set to 100 
at the beginning. Afterward, the sum should remain 100 if the traders behave ratio- 
nally or if the market is efficient. The virtual money of amount 30,000 is deposited 
by the platform for each account to begin with. Two experiments ran in parallel for 
this event at that time. One is AI-ECON futures exchange (AI-ECON FX 1) and 
the other is Taiwan Political Exchange (TAIPEX 2). AI-ECON FX and TAIPEX are 
almost identical in design except for the traders of the former one can chose a pre- 
liminary software agent for the trading. Both servers started to run 30 days before 
the day of liquidation. At the end of the experiment, any contracts in the accounts 
were liquidated using the official result of votes from the government. Money prizes 
were then awarded to the top ten winners determined by the ultimate wealth in the 
players' accounts. 

By analyzing the change of trading volumes in minutes, we observe that the mar- 
ket was active about 11% of the time in AI-ECON FX and 12% in TAIPEX. The 
number of registered players increased monotonically with time in both servers. 
Before the end of the experiments, AI-ECON FX and TAIPEX have accumulated 
532 and 628 registrants respectively. The number of successful transactions totaled 
7,440 in AI-ECON FX and 8,573 in TAIPEX. We further analyzed the transac- 
tion data to distinguish the active players from those who never traded with others 
throughout the whole experiment. After filtering, we found that there are 366 (427) 
active players left in AI-ECON FX (TAIPEX), which implies that only about 68% 
of registrants were active in both servers. 

2.3 The Cash-flow Network 

In a previous analysis[ 10], we showed that such a market, which accumulated typ- 
ically 400 participants, exhibited power-law distributions of price fluctuation, net 
wealth and inter-transaction times that are characteristic of real world markets. Fur- 
thermore, predictions of the market have so far been consistent with election out- 
comes. In this work, being inspired by the recent development of complex networks, 
we introduce a new concept to study the trading behavior in a financial market. Our 
concept is detailed as follows. 

If we treat each trader in the market as a node, and subsequently the transac- 
tions among them could be referred to as the edges. Therefore, we can reconstruct a 
network with traders and transactions. In our experiments, players trade futures con- 
tracts. When a transaction was made between traders i and j with volume v and price 
p, an amount of cash p x v flowed from i to j. Because the flow is directional and ac- 
companied with certain amount of cash, the resulting cash-flow networks should be 
directed, weighted and contains no self-loops. In order to scale down the complex- 

1 http ://futures.nccu.edu.tw/exchange/exchange_eng.html 
2 http ://socioecono.phys.sinica.edu.tw/exchange/exchange_eng.html 
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ity of our problem and to extract the essence from the trading behavior, we simplify 
our cash-flow network into an undirected and unweighted network throughout this 
analysis. The preliminary results for cash-flow networks with directed and weighted 
edges are discussed in Ref. [5]. Without the loss of generality, we also assume that 
non-active players, who never trade during the whole experiment, would scarcely 
affect our results. We therefore neglect all the isolated nodes in our following anal- 
ysis. During the experiment, both servers output the accumulated cash flow among 
traders in every 12 hours, from which we reconstructed 60 networks for each server. 
To understand the growth rate of the edges in these networks, we plot the value of 
(k), the average number of edges per node, in time series. In Fig. 1, one can see that 
the value of (k) grew with time, topping at 15.94 (18.26) in AI-ECON FX (TAIPEX) 
on day 30. We observe that the growth rate in our experiment keeps almost a con- 
stant (about 0.2 per day) after the first 15 days of the running. 
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Fig. 1 The growth of (k) with t ime in A I - E C O N  F X  (dot) and TAIPEX (square). 

Fig. 2 shows the network structure in TAIPEX experiment on day 3. One can 
easily identifies hubs in networks like the example here, which usually accompany 
with the small world properties. To figure out whether the cash-flow networks are 
scale-free or not, we calculate the degree distribution of our networks. The degree 
distribution, p(k),  describes the number of nodes to have k edges. In Fig. 3, we 
show the resulting normalized p(k)  of the cash-flow networks on day 15 and day 30 
in logarithmic scale with the linear fits. One can found that the degree distributions 
of these two networks can be well explained by a power-law decay with the form 
p(k) ~ k-7. We have 7 = 1.13 -4-0.08 and ~, = 1.17 + 0.06 for AI-ECON FX and 
TAIPEX on day 30 respectively. Moreover, we found that these exponents remain 
almost the same during the last 15 days. This result might be related to the fact that 
the growth of (k) also remains roughly the same rate from day 15 to the end of 
experiment. 
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Fig. 2 The structure of the 
cash-flow network developed 
in TAIPEX experiment on 
day 3. The number on the 
vertex corresponds to the ID 
for different traders assigned 
in the last day while edges 
denote the transactions among 
them. 

A power-law decay of p(k) with k suggests excessive presence of hubs in our 
network. In other words, the networks reconstructed from the transactions among 
traders in our markets are hierarchical and scale-free. Since the traders in our mar- 
kets are not supposed to communicate with each other, it is hard to imagine that why 
the transactions among them could develop into such a hierarchical structure. One 
explanation is that the aggressive traders transact many times in order to make prof- 
its from others. But why are the distributions of these aggressive traders (i.e., hubs 
in our networks) almost the same in both servers is not that clear? To further explain 
the observed phenomenon, we conduct a simple simulation to figure out whether 
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Fig. 3 The degree distribution of the cash-flow networks on day 15 (left) and day 30 (fight) for AI- 
ECON FX (dot) and TAIPEX (square). On day 15, the p(k) in both servers could be well fitted by a 
power law decay with 7 ~ 1.18. While on day 30, the best fit is 7 =  1.13 -t-0.08 and 7 =  1.17 -+-0.06 
for AI-ECON FX and TAIPEX respectively. 
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the scale-flee behavior in our cash-flow networks is due to the interactions among 
traders or due to the institutional design of our market. 

3 Market Simulation with Zero-Intelligence Traders 

Inspired by the approach of agent-based modeling, in the first attempt, we model 
our simulation as a continuous double-auction (CDA) market with zero-intelligence 
traders (ZI traders). The ZI traders, by definition, are agent traders without any in- 
telligence. In the markets, they will submit random bids and offers, therefore the 
resulting price never converges toward any specific level. We here adopt the defini- 
tion by D. K. Gode and S. Sunder[11], which demonstrate that in a symmetrically 
structured market, by imposing a simple budget constraint (i.e., the ZI-C traders 
who must profit from the transaction), the allocative efficiency of these transactions 
could be raised close to 100%. Hence, the trader in our simulation is the ZI trader 
with a simple budget constraint. 

There are many variations of CDA markets, in this toy model, we made two 
choices to simplify our simulation. Firstly, each bid, offer and transaction is valid 
for a single item. Secondly, there is no transaction cost and the items are durable. 
Thirdly, in each duration, every trader could make only one successful transaction 
(i.e., the buyer could only have one item and the seller only has one item to sell in 
each duration). The implementation of our simulation is as follows: For the struc- 
ture of markets, the supply and demand functions are generated from Smith's value 
mechanism[ 13] at the beginning for each run and will not change through the end 
of simulation. The price for the item is ranging from 1 to 100 in units of virtual 
money. Because the ZI traders could only perform well in a symmetrically struc- 
tured market[12], we choose the markets of this type in our simulation. In these 
markets, the intersection of supply and demand curves determines the equilibrium 
price. For the traders, initially, there is a fixed number of ZI traders in our simula- 
tion. Half of them are classified as buyers and the remaining half of the traders are 
sellers. At each step, one buyer and one seller are chosen for the matching. Due to 
thebudget constraint, the buyer must bid with the price lower than its redemption 
value given by the demand function and the seller must offer the commodity at the 
price higher than the cost generated by the supply function. Once the bidding price 
exceeds the offering price, the transaction between this buyer and seller is made. No 
transaction will be made otherwise. Whether there exists a successful transaction 
or not, the platform will move forward to the next step and choose another pair of 
traders. The simulation lasts for p periods of a specific duration d and terminates 
after p x d steps. One transaction represents one edge in the network, but since our 
network is unweighted, repeated transactions between the same pair of traders will 
only be counted once. Each simulation runs for 100 times and the resulting degree 
distribution is an average over these 100 runs. 

One should keep in mind that, although the number of traders is fixed at first, not 
all of them will make a successful transaction with others. The final number of nodes 
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connecting to the whole network (i.e., traders with successful transactions) and (k) 
will also depend on the input value of period and duration. In comparison with the 
result in the experiments with human traders, we thus require the resulting cash- 
flow network to have 400 nodes on average with the value of (k) around 16. The 
set of input parameters must satisfied with the above condition. Fig. 4 shows the 
average degree distributions of the cash-flow networks from the simulations with 
two different sets of input parameters. We observe that the distribution follows a 
perfect power law decay with an exponent 7 ~ 0.59 • 0.04. The sudden drop of the 
distribution curve at k ~ 30 might be due to the finite size effects. 

10 -1 

!0 .2 

1 0  -3 

�9 (n:400, <k>~16.34)  
" (n:400, <k>~16.90)  

I, ~ 0 .59 

% 

ec 5 
og 

I I I I I I I : I i I I I I * l  ', ' 

0 ~ 1 0  ~ 1 0  2 

Fig. 4 The degree distributions of the cash-flow networks resulting from the simulations with the 
network size n--400 and (k) ~ 16 . The solid line is the power law fitting with the exponent 
7~  0.59. 

To further justify this observation, we change the value of the input parameters 
for obtaining a network with larger network size. One can see that the decay behav- 
ior of p(k) remains unchanged even for n = 3500 in Fig. 5. The decay exponent 
for this large network is 7 ~ 0.62 • 0.02 which is roughly the same as the expo- 
nent in networks with n = 400. From the above result, it suggests that the nature of 
power-law decay of p(k) depends on neither the network size nor the value of input 
parameters. Although the power-law exponent resulting from the simulation could 
not explain the observed exponent in the markets with human traders, we might still 
come up with a conclusion that the scale-free nature of the cash-flow networks dose 
not rely on the intelligence of the traders. Therefore, we believe that the scale-free 
nature comes from the institutional design and the structure of markets (i.e., the 
supply and demand function in the market). 
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Fig. 5 The comparison of the degree distributions of the cash-flow networks with different network 
size. n - 400 for the circles and n -- 3500 for the squares. The exponents for the power-law decay 
are 7 N 0.59 (solid) and 7 N 0.62 (dashed) respectively. 

4 Conclusion 

In this work, we introduce a new concept to analysis the trading behavior in a fi- 
nancial market. In order to realize this approach, we design a Web-based futures 
exchange platform in order to gather enough information about the transactions 
among traders in a market. Two experiments were conducted with our platform on 
different servers (AI-ECON FX and TAIPEX) for 30 days. 7,440 (8,573) entries of 
transactions were accumulated and recorded in AI-ECON FX (TAIPEX). We thus 
reconstructed the cash-flow networks with these data and found that these networks 
exhibited hierarchical and scale-free properties with a power-law exponent around 
1.15. To further comprehend the underlying mechanism of the observed phenom- 
ena, we carry out a simple simulation experiment involving a CDA market with 
zero-intelligence traders. To our surprise, such a simple market is capable of form- 
ing a hierarchical and scale-free network structure. Although the power-law expo- 
nent resulting from this toy model, which is only around 0.6, could not explain the 
observed exponent in the market experiments with human traders. But it reveals that 
the scale-free nature of the cash-flow networks might rely on the institutional design 
and the structure of markets rather than on the traders' strategies. In our simulation, 
all the agents are equiped with the same strategies, therefore, it is the supply and 
demand function that determines which trader should play as the role of the hub in 

the network. 
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