
Computational Intelligence in Agent-Based
Computational Economics

Shu-Heng Chen

AI-ECON Research Center, Department of Economics, National Chengchi
University, Taipei, Taiwan 116, chchen@nccu.edu.tw

1 Introduction

1.1 What is Agent-Based Computational Economics (ACE)?

Agent-based computational economics is the study of economics using agent-
based modeling and simulation, which, according to [21], is the third way, in
addition to deduction and induction, to undertake social sciences. An agent-
based model is a model comprising autonomous agents placed in an interactive
environment (society) or social network. Simulating this model via computers
is probably the most practical way to visualize economic dynamics.

An autonomous agent is one which is able to behave (think, learn, adapt,
make strategic plans) with a set of specifications and rules which are given
initially; they are fixed and require no further intervention. The necessity for
using autonomous agents in agent-based computational economics – or, more
broadly, agent-based social sciences – is still an issue open for discussion.
We make no attempt here to give a full account of the development of this
issue – this would deserve a Chapter on its own. For a brief account, the use
of autonomous agents is, in one way or the other, connected to the notion of
bounded rationality, popularized by Herbert Simon [138].

In order to build autonomous agents, agent-based computational eco-
nomists need to employ existing algorithms or develop new algorithms which
can enable agents to behave with a degree of autonomy. Sections 1.2, 2 and
3 of the chapter will give a thorough review of the algorithmic foundations
of ACE. We also introduce here the field known as computational intelligence
(CI) and its relevance to economics. Section 4 then reviews the use of compu-
tational intelligence in agent-based economic and financial models. Section 5
gives some general remarks on these applications, as well as pointing to future
directions. This is followed by concluding remarks in Sect. 6.

S.-H. Chen: Computational Intelligence in Agent-Based Computational Economics, Studies in

Computational Intelligence (SCI) 115, 517–594 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

518 S.-H. Chen

1.2 Algorithmic Foundations of ACE

The purpose of the next few Sections is to address a very important attribute
of autonomous agents, this being their capability to adapt to a changing
environment. The idea is to equip the artificial agents with some in-built
algorithms so that they are able to develop some degree of sophisticated cog-
nitive behavior; in particular, they are able to learn from the past, and hence
are able to anticipate the future, and develop strategic behavior accordingly.
The algorithms which can help our artificial agents achieve the above goal are
initiated from many different fields and hence are interdisciplinary. Recently,
they have been addressed together in the field known as computational intel-
ligence (CI). Therefore, the next few Sections may be read as an introduction
to CI from the perspective of agent-based computational economics.

The aim of this Chapter is to review a number of important developments
in computational intelligence, including artificial neural networks (Sect. 2) and
evolutionary computation (Sect. 3). While these tools have been introduced to
economists on numerous other occasions – for example, quantitative finance –
we have a different motivation for studying them. Mainly, these two major
CI tools allow us to discuss a number of crucial mental activities, such as
attention control, memory, and pattern discovery. Therefore, even though our
brief review will go through some important quantitative applications, we
should remind readers at different places that our scope is broader.

Section 2 describes a number of different neural network models, which
help us to understand how some algorithms, associated with the artificial
brain, are able to conduct data compression, redundancy removal, classifica-
tion, and forecasting. Let us be more specific with some of these. An important
cognitive task for human agents is that, under some degree of survival pressure
(or incentives), they are able to perform correct classification and react upon
it properly. A simple example is the salesman who needs to identify those
consumers who are willing to pay a high price for a specific new product, and
to distinguish them from general buyers. A family of neural networks, also
known as supervised learning (Sect. 2.1, 2.2, and 2.5), are able to equip agents
with this capability.

Prior to classification, one more fundamental cognitive task is concept
formation – in other words, to extract useful concepts from observations.
Then, based on these concepts, new observations can be classified so as to
facilitate decision-making. A typical example would be a stock trader who
needs to recognize some special charts to make his market timing decisions.
A family of neural networks, known as unsupervised learning (Sect. 2.6), can
help agents to acquire this kind of cognitive capability.

Sometimes, it is hard to form concepts. In this case, one may directly deal
with cases, and make decisions based on the similarity of cases. Sections 2.7
and 2.8 are devoted to the literature on lazy learning – that is, learning

Computational Intelligence in Agent-Based Computational Economics 519

by simply memorizing experiences, with little effort to develop generalized
concepts on top of these experiences.

The third important cognitive task concerns the efficient use of limited
brain space. This has something to do with data compression or redundancy
removal. Section 2.4 introduces a network which can perform this task. In
addition, Sect. 2.3 describes a device to reduce data storage space by building
in loops in the ‘brain’.

The above three cognitive tasks do not involve social interaction. They
mainly describe how an individual learns from his own experience without
interacting with other individuals’ experiences. The latter case is referred to
as social learning or population learning in the literature. Imitation (repro-
duction) is the clearest example of social learning: agents simply follow the
behavior rules of whomever they consider the most suitable. Nonetheless, imi-
tation is not enough to cover more complex patterns of social learning, such
as innovations of using inspiration from others. Through evolutionary compu-
tation (Sect. 3), both forms (imitation and innovation) of learning with social
interactions are operated with the familiar survival-of-the-fittest principle.1

Genetic programming (GP) is a one kind of evolutionary computation. It dif-
fers from others in the sense that it gives us much more expressive power to
observe changes.

2 Artificial Neural Networks

Among CI tools, the artificial neural network (ANN) is the most widely accept-
able tool for economists and finance people, even though its history is much
shorter than that of fuzzy logic so far as the application to economics and
finance is concerned. The earliest application of ANNs was [156]. Since then
we have witnessed an exponential growth in the number of applications. ANN
is probably the only CI tool which drew serious econometricians’ attention and
on which a lot of theoretical studies have been done. Both [131] and [157] gave
a rigorous mathematical/statistical treatment of ANNs, and hence have estab-
lished ANNs with a sound foundation in the econometrics field. Nowadays,
ANNs have already become an integral part of textbooks in econometrics,
and even moreso in financial econometrics and financial time-series. A great
number of textbooks or volumes especially edited for economists and finance
people are available, for example, [23,24,84,130,136,147,163], to name a few.
Its significance to finance people can also be seen from the establishment of
the Neurove$t journal (now Computational Intelligence in Finance) in 1993.

It has been shown in a great number of studies that artificial neural nets,
as representative of a more general class of nonlinear models, can outperform

1 Evolutionary computation, in a sense, is a kind of ‘bio-sociology’.

520 S.-H. Chen

many linear models, and can sometimes also outperform some other nonlinear
models.2

Three classes of artificial neural nets have been most frequently used in
economics and finance. These are multilayer perceptrons, radial basis neu-
ral networks, and recurrent neural networks. The first two classes will be
introduced in Sects. 2.1 and 2.2, whereas the last one is introduced in 2.3.

2.1 Multilayer Perceptron Neural Networks

Let us consider the following general issue. We observe a time-series of an
economic or financial variable, such as the foreign exchange rate, {xt}. We
are interested in knowing its future values, xt+1, xt+2, For that purpose,
we need to search for a function relation f(), such that when a vector xt is
input into the function, a prediction on xt+1, ... can be made. The question
then is how to construct such a function. Tools included in this Chapter
provide two directions in which to work, distinguishable by different modeling
philosophies. The first one is based on the universal modeling approach, and
the second one is based on the local modeling approach. Alternatively, we can
say that the first one aims to build the function in the time domain, whereas
the second works in the feature or trajectory domain.3 We shall start with
the first approach, and the canonical artificial neural network (ANN) can be
considered to be a representative of this paradigm.

The reason why economists can embrace the ANN without any difficulty
is due to the fact that ANN can be regarded as a generalization of their
already familiar time-series model, ARMA (autoregressive moving-average)
model. Formally, an ARMA(p,q) model is described as follows:

Φ(L)xt = Θ(L)εt (1)

where Φ(L) and Θ(L) are polynomials of order p and q,

Φ(L) = 1− φ1L− φ2L
2 − · · · − φpL

p (2)

Θ(L) = 1− θ1L− θ2L
2 − · · · − θqL

q (3)

{εt} is white noise, and L is the lag operator.

ANNs can be regarded as a non-linear generalization of these ARMA pro-
cesses. In fact, more concretely, multilayer perceptron (MLP)neural networks
are nonlinear generalizations of the so-called autoregressive process,

xt = f(xt−1, . . . , xt−p) + εt (4)

2 This is not an appropriate place to provide a long list, but interested readers can
find some examples from [7,77,90,137,153, 154] and [158].

3 There are alternate names for the local modeling approach, for example ‘guarded
experts’ – see [18].

Computational Intelligence in Agent-Based Computational Economics 521

Xt-1

Xt-2

Xt-p

…
…

…
…

Input Hidden
Layer

Output

…
…

Fig. 1. The multilayer perceptron neural network of a non-linear AR process

whereas recurrent neural networks are non-linear generalizations of the ARMA
processes,

xt = f(xt−1, . . . , xt−p, εt−1, ...εt−q) + εt (5)

In terms of a multilayer perceptron neural network, Eqn. (4) can then be
represented as:

xt = h2(w0 +
l∑

j=1

wjh1(w0j +
p∑

i=1

wijxt−i)) + εt (6)

Hence Eqn. (6) is a three-layer neural net (Fig. 1). The input layer has
p inputs: xt−1, ...xt−p. The hidden layer has l hidden nodes, and there is a
single output for the output layer x̂t. Layers are fully connected by weights;
wij is the weight assigned to the ith input for the jth node in the hidden
layer, whereas wj is the weight assigned to the jth node (in the hidden layer)
for the output; w0 and w0j are constants, also called biases; h1 and h2 are
transfer functions.

There is a rich choice of transfer functions. According to [64], a multilayer
perceptron network with any Tauber-Wiener functions as transfer function
of the hidden units can be qualified as a universal approximator. Also, a
necessary and sufficient condition for being a Tauber-Wiener function is that
it is non-polynomial. In practice, a differentiable transfer function is desirable.
Commonly used transfer functions for multilayer perceptron networks are the
sigmoid function,

hs(x) =
1

1 + e−x
(7)

and hyperbolic tangent function,

ht(x) =
2

1 + e−2x
− 1 (8)

Clearly, 0 < hs(x) < 1, and −1 < ht(x) < 1.

522 S.-H. Chen

2.2 Radial Basis Network

Next to the multilayer perceptron neural network is the radial basis network
(RBN), which is also popularly used in economics and finance. Radial basis
function (RBF) networks are basically a feedforward neural networks with a
single hidden layer,

f(x) =
k∑
i

wiϕ(‖x− ci‖), (9)

where ϕ() is a radial basis function, ci is the ith center, and k is the number
of the center. Both wi, ci and k are determined by the data set of x. Typical
choices of radial basis functions are:

• the thin-plate-spline function,

ϕ(x) = x2 logx (10)

• the Gaussian function,

ϕ(x) = exp(−x2

β
) (11)

• the multi-quadratic function,

ϕ(x) = (x2 + β2)
1
2 (12)

• the inverse multi-quadratic function,

ϕ(x) =
1

(x2 + β2)
1
2

(13)

Theoretical investigation and practical results seem to show that the choice
of radial basis function is not crucial to the performance of the RBF network.

It has been proved that the RBF network can indeed approximate arbitrar-
ily well any continuous function if a sufficient number of radial-basis function
units are given (the network structure is large enough), and the network
parameters are carefully chosen. RBN also has the best approximation prop-
erty in the sense of having the minimum distance from any given function
under approximation.

2.3 Recurrent Neural Networks

In Sect. 2.1, we discussed the relation between time series models and artificial
neural networks. Information transmission in the usual multilayer perceptron
neural net is feedforward in the sense that information is transmitted forward
from the input layer to the output layer, via all hidden layers in between, as
shown in Fig. 1; transmission in the reverse direction between any two layers
is not allowed.

Computational Intelligence in Agent-Based Computational Economics 523

This specific architecture makes the multilayer perceptron neural net
unable to deal with the moving-average series, MA(q), effectively. To see this,
consider the following MA(1) series:

xt = εt − θ1εt−1 (14)

It is well-known that if |θ1| < 1, then the above MA(1) series can also be
written as an AR(∞) series.

xt = −
∞∑

i=1

θixt−i + εt (15)

In using the multilayer perceptron neural network to represent Eqn. (15),
one needs to have an input layer with an infinite number of neurons (infinite
memory of the past), namely, xt−1, xt−2, ..., which is impossible in practice.
Although from the viewpoint of approximation, an exact representation is not
required and a compromise with a finite number of neurons (finite memory)
is acceptable, in general quite a few inputs are still required. This inevitably
increases the complexity of the network, leads to an unnecessary large number
of parameters, and hence slows down the estimation and training process [116].

This explains why the multilayer perceptron neural net can only be
regarded as a nonlinear extension of autoregressive (AR) time series mod-
els Eqn. (4), but not a nonlinear extension of autoregressive moving-average
(ARMA) models Eqn. (16).

xt = f(xt−1, . . . , xt−p, εt−1, ...εt−q) + εt

= f(xt−1, . . . , xt−p, xt−p−1, ...) + εt (16)

The finite memory problem of the multilayer perceptron neural net is well
noticed by ANN researchers. In his celebrated article, Elman stated:

“...the question of how to represent time in connection models is very
important. One approach is to represent time implicitly by its effects
on processing rather than explicitly (as in a spatial representation)”.
[76]: 179 (italics added)

The multilayer perceptron neural net tries to model time by giving it a
spatial representation (that is, explicit) representation. What Elman suggests
is to let time have an effect on the network response rather than represent it by
an additional input dimension. Using an idea initiated by [95], Elman proposes
an internal representation of memory by allowing the hidden unit patterns to
be fed back to themselves. In this way, the network becomes recurrent.

The difference between the multilayer perceptron neural net (feed forward
neural net) and the recurrent neural net can be shown as follows. For a mul-
tilayer perceptron neural network, Eqn. (4) can be re-formulated as Eqn. (6)
(for a three-layer neural net – Fig. 1).

524 S.-H. Chen

Xt-1

Xt-2

Xt-p

Input Hidden
Layer

Output

Lag

Context
Layer

Lag

Lag

......

......

......

......

......

Fig. 2. The multilayer perceptron neural network model of a nonlinear AR process

A recurrent neural net – Eqn. (5) – can then be represented as:

xt = h2(w0 +
l∑

j=1

wjh1(w0j +
p∑

i=1

wijxt−i +
l∑

m=1

�mjzm,t−1)) + εt (17)

where

zm,t = w0m +
p∑

i=1

wimxt−i +
l∑

k=1

�kjzk,t−1, m = 1, . . . , l (18)

Compared to the multilayer perceptron and radial basis function neural
nets, the recurrent neural net has been much less explored in the economic
and financial domains.4 This is, indeed, a little surprising, considering the
great exposure of its linear counterpart ARMA to economists.

2.4 Auto-Associative Neural Networks

While most economic and financial applications of neural networks con-
sider the development of non-linear forecasting models, another important
4 Some early applications can be found in [36] and [108].

Computational Intelligence in Agent-Based Computational Economics 525

consideration is dimensionality reduction and/or feature extraction. In this
application, ANN can provide a nonlinear generalization of the conventional
principal component analysis (PCA). The specific kind of ANN for this
application is referred to as the auto-associative neural network (AANN).

The fundamental idea of principal component analysis is dimensionality
reduction, which is a quite general problem when we are presented with a large
number of correlated attributes, and hence a large number of redundancies.
It is, therefore, a natural attempt to compress or store this original large data
set into a more economical space by getting rid of these redundancies. Thus,
on the one hand, we want to have a reduced space that is as small as possible;
on the other hand, we still want to keep the original information. These two
objectives are, however, in conflict when attributes with complicated relations
are presented. Therefore, techniques to make the least compromise between
the two become important.

To introduce AANN and its relationship to principal component analysis,
let us consider the following two mappings,

G : Rm → Rf (19)

and
H : Rf → Rm (20)

where G and H are, in general, nonlinear vector functions with their com-
ponents indicated as G = {G1, G2, . . . , Gf} and H = {H1, H2, . . . , Hm}. To
represent these functions with multilayer perceptron neural nets, let us rewrite
Eqn. (6) as follows,

yk = Gk(x1, . . . , xm)

= h2(w0k +
l1∑

j=1

wjkh1(we
0j +

m∑
i=1

we
ijxi)), k = 1, 2, . . . , f (21)

and

x̂i = Hi(y1, . . . , yf)

= h4(w0i +
l2∑

j=1

wjih3(wd
0j +

f∑
k=1

wd
kjyk)), i = 1, 2, . . . , m (22)

All the notations used in Eqns. (21) and (22) share the same interpretation
as those in Eqn. (6), except that superscripts e and d stand for the encoding
and decoding maps, respectively. By combining the two mappings, we have a
mapping from X = {x1, . . . , xm} to its own reconstruction X̂ = {x̂1, . . . , x̂m}.
Let Xn be the nth observation of X , and

Xn = {xn,1, . . . , xn,m} (23)

526 S.-H. Chen

y1

yf

y2

x1

xm

x2

X1

X2

Xm

…
…

…
…

…
…

…
…

…
…

…
…

Input

G H

Output Hidden
Layer

Hidden
Layer

Hidden
Layer

Fig. 3. The auto-associative neural network

Accordingly,
X̂n = {x̂n,1, . . . , x̂n,m} (24)

Then minimizing the difference between observation Xn and its recon-
struction X̂n over the entire set of N observations or

min E =
N∑

n=1

m∑
i=1

(xn,i − x̂n,i)2 (25)

by searching for the space of the connection weights and biases defines what is
known as ‘auto-association neural networks’. Briefly, auto-associative neural
networks are feedforward nets, with three hidden layers, as shown in Fig. 3,
trained to produce an approximation of the identity mapping between network
inputs and outputs using backpropagation or similar learning procedures.

The third hidden layer – namely the output layer of the MLPN, (Eqn. (21)) –
is also called the bottleneck layer. If the transfer functions hi (i = 1, 2, 3, 4)
are all identical mappings, and we remove all the bias terms, then Eqn. (21)
can be written as:

yk = Gk(x1, . . . , xm)

=
l1∑

j=1

wjk(
m∑

i=1

we
ijxi) =

l1∑
j=1

m∑
i=1

wjkwe
ijxi,

=
m∑

i=1

l1∑
j=1

wjkwe
ijxi, =

m∑
i=1

βi,kxi k = 1, 2, . . . , f, (26)

Computational Intelligence in Agent-Based Computational Economics 527

where

βi,k =
l1∑

j=1

wjkwe
ij (27)

In matrix notation, Eqn. (26) can be written as:⎡
⎢⎢⎢⎣

x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

. . .
...

xn1 xn2 . . . xnm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

β11 β12 . . . β1f

β21 β22 . . . β2f

...
...

. . .
...

βm1 βm2 . . . βmf

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y11 y12 . . . y1f

y21 y22 . . . y2f

...
...

. . .
...

yn1 yn2 . . . ynf

⎤
⎥⎥⎥⎦ , (28)

or simply
XB = Y (29)

X, B and Y correspond to the n-by-m, m-by-f , and n-by-f matrices in
Eqn. (28), respectively. Likewise, Eqn. (22) can be simplified as:

YB∗ = X̂ (30)

B∗ is the reconstruction mapping and is an f -by-m matrix, and X̂ is the
reconstruction of X, and hence is an n-by-m matrix.

Equation (29) and (30), together with the objective function (Eqn. (25)),
define the familiar linear principal component analysis. To see this, we can
decompose X as follows:

X = YB∗ + E = XBB∗ + E = XP + E (31)

where P = BB∗, and E is the reconstruction error. Then the PCA frequently
presented to us takes the form of the following minimization problem.

min
P

|| E || (32)

It is known that the optimal solution of this problem (Eqn. (32)) has the
rows of P being the eigenvectors corresponding to the f largest eigenvalues of
the covariance matrix of X. Therefore, we have shown how the self-associative
neural network can be a nonlinear generalization of the familiar linear PCA,
as well as how the linear PCA can be extended to the nonlinear PCA through
a feedforward neural network with three hidden layers.

The concept of using a neural network with a bottleneck to concentrate
information has been previously discussed in the context of encoder/decoder
problems.5 [119] indicates some directions for financial applications using
nonlinear PCA.
5 See [106] for a brief review.

528 S.-H. Chen

2.5 Support Vector Machines

In the 1990s, based on results from statistical learning theory [149], an alterna-
tive to the artificial neural network was developed, in the form of the support
vector machine (SVM). SVM was founded primarily by Vapnik, who con-
tributed to the development of a general theory for minimizing the expected
risk of losses using empirical data. Brief introductory material on the SVM
can be found in [150], whereas [67] is a textbook devoted to the SVM.6

Support vector machines map non-linearly an n-dimensional input space
into a high dimensional feature space.

φ : V n → V m (33)

where V n is an n-dimensional input vector space, and V m is an m-dimensional
feature vector space. Given a series of l historical observations:

(y1, x1), . . . , (yl, xl) (34)

where yi ∈ V 1 and xi ∈ V n.

We approximate and estimate the functional relation between yi and xi

by

y = f(x) =< w, φ(x) > +b =
m∑

i=1

wiφ(x)i + b (35)

where < . , . > denotes the inner product. The vector w and the constant b
is to be determined by following the structural risk minimization principle,
borrowed from statistical learning theory. It is interesting to note some sim-
ilarities between the RBN and SVM, namely, Eqns. (9) and (35). However,
there is also a noticeable difference. Consider an input xi as a vector of three-
dimensions: (xi,1, xi,2, xi,3). Then for each neuron in the hidden layer of the
RBN, they all share the same form as

(ϕ(xi,1, xi,2, xi,3, c1), ϕ(xi,1, xi,2, xi,3, c2), ...) (36)

while being associated with different centers. However, each neuron in the
hidden layer of the SVM may actually take different inputs. For example, the
first neuron takes the first two inputs, but the second takes the last two as

(φ1(xi,1, xi,2), φ2(xi,2, xi,3), ...) (37)

Also, notice that the transfer functions, ϕ() are the same for each neuron in
the RBN, but in general are different for the SVM as φ1, φ2,

6 Financial applications have kept on expanding; the interested reader can find
some useful references directly from the SVM website: http://www.svms.org/

Computational Intelligence in Agent-Based Computational Economics 529

In the case where the yi are categorical, such as yi ∈ {−1, 1}, the mini-
mization process also determines a subset of {xi}l

i=1, called support vectors,
and the SVM when constructed has the following form.

f(x) =
∑

s

yiα
∗
i < φ(xs), φ(x) > +b∗ (38)

where α∗
i and b∗ are the coefficients satisfying the structural risk minimization

principle, and s is the set of all support vectors.

The category assigned to the observation x, 1 or −1, will then be deter-
mined by the sign of f(x).

y =
{

1, if f(x) > 0
−1, if f(x) < 0 (39)

Eqns. (38) and (39) are the SVM for the classification problem. A central
concept of the SVM is that one does not need to consider the feature space in
explicit form; instead, based on the Hilbert-Schmidt theory, one can use the
kernel function, K(xs, x), where

K(xs, x) =< φ(xs), φ(x) > (40)

Therefore, the SVM is also called the kernel machine. Eqn. (38) can then
be rewritten as

f(x) =
∑

s

yiα
∗
i K(xs, x) + b∗ (41)

Following a similar procedure, one can construct an SVM for regression
problems as follow:

f(x) =
l∑

i=1

(α∗
i − β∗

i)K(x, xi) + b∗ (42)

where α∗
i , β∗

i and b∗ are the coefficients minimizing the corresponding objec-
tive functions.

In addition to the functional form f(x), the second important issue is
the set of variables x itself, and one has to deal naturally with the problem
known as variable selection or feature selection. The involvement of irrelevant
variables or features may lead to poor generalization capability.

2.6 Self-Organizing Maps and k-means

In the social and behavioral sciences, the ability to recognize patterns is an
essential aspect of human heuristic intelligence. Herbert Simon, a Nobel Prize
Laureate in Economics (1978), considered pattern recognition to be critical
and advocated the need to pay much more explicit attention to the teaching

530 S.-H. Chen

of pattern recognition principles. In the financial market, chartists appear to
have been good at performing pattern recognition for many decades, yet little
academic research has been devoted to a systematic study of these kinds of
activities. On the contrary, sometimes it has been treated as nothing more
than astrology, and hardly to be regarded as a rigorous science.

The Self-Organizing Map was invented by Kohonen [101]. It has been
applied with great success to many different engineering problems and to
many other technical fields. [71] was the first volume to demonstrate the use
of the SOM in finance.

Self-organizing maps (SOMs) solve the pattern recognition problem which
deals with a class of unsupervised neural networks. Basically, the SOM itself
is a two-layer neural network. The input layer is composed of p cells, one for
each system input variable. The output layer is composed of neurons which are
placed on n-dimensional lattices (the value of n is usually 1 or 2). The SOM
adopts so-called competitive learning among all neurons. Through competitive
learning, the neurons are tuned to represent a group of input vectors in an
organized manner.

k-means clustering, developed by [115], is a widely used non-hierarchical
clustering algorithm that groups data with similar characteristics or features
together. k-means and SOMs resemble each other. They both involve mini-
mizing some measure of dissimilarity, called the cost function, in the samples
within each cluster. The difference between the k-means and the SOM lies in
their associated cost function to which we now turn. Consider a series of n
observations, each of which has m numeric attributes:

Xm
1 ,Xm

2 , . . . ,Xm
n , Xm

i ∈ Rm ∀ i = 1, 2, . . . , n (43)

where
Xm

i ≡ {xi,1, xi,2, . . . , xi,m}. xi,l ∈ R, ∀ l = 1, 2, . . . , m (44)

The k-means clustering is to find a series of k clusters, the centroids of
which are denoted, respectively, by

M1,M2, . . . ,Mk, Mj ∈ Rm, ∀j = 1, 2, . . . , k (45)

such that each of the observations is assigned to one and only one of the
clusters with minimal cost, and with cost function being defined as follows:

Ck−means =
n∑

i=1

k∑
j=1

d(Xm
i ,Mj) · δi,j (46)

where d(Xm
i ,Mj) is the standard Euclidean distance between Xm

i and Mj ,7

and δi,j is the delta function:
7 Standard Euclidean distance assumes that the attributes are normalized and are

of equal importance. However, this assumption may not hold in many application
domains. In fact, one of the main problems in learning is to determine which are
the important features.

Computational Intelligence in Agent-Based Computational Economics 531

δi,j =
{

1, if Xm
i ∈ Clusterj

0, if Xm
i /∈ Clusterj

(47)

To minimize the cost function (Eqn. (46)), one can begin by initializing a
set of k cluster centroids. The positions of these centroids are then adjusted
iteratively by first assigning the data samples to the nearest clusters and then
re-computing the centroids.

Corresponding to Eqn. (46), the cost function associated with SOM can
be roughly treated as follows8

CSOM =
n∑

i=1

k∑
j=1

d(Xm
i ,Mj) · hw(Xm

i),j (48)

where hw(Xm
i),j is the neighborhood function or neighborhood kernel, and

wXm
i

– the winner function – outputs the cluster whose centroid is nearest to
the input Xm

i .

In practice, the neighborhood kernel is chosen to be wide at the beginning
of the learning process to guarantee global ordering of the map, and both its
width and height decrease slowly during learning. For example, the Gaussian
kernel whose variance monotonically decreases with iteration times t is fre-
quently used.9 By comparing Eqn. (46) with Eqn. (48), one can see in SOM the
distance of each input from all of the centroids weighted by the neighborhood
kernel h, instead of just the closest one being taken into account.

Despite its greater simplicity, the economic and financial applications of
k-means are surprisingly much less available than those of SOM and KNN.
k-means have occasionally been applied to classify hedge funds [68], listed
companies [128], and houses [93], but it can also be applied to the classification
of trajectories of financial time series. To see this, we rewrite Eqns. (43) and
(44) to fit the notations used in the context of time series:

Xm
1 ,Xm

2 , . . . ,Xm
T , Xm

t ∈ Rm, ∀ t = 1, 2, . . . , T (49)

Xm
t ≡ {xt, xt−1, . . . , xt−m}, xt−l ∈ R, ∀ l = 0, 1, . . . , m− 1 (50)

Xm
t is a windowed series with an immediate past of m observations,

also called the m-history. Eqn. (49), therefore, represents a sequence of T
m-histories which are derived from the original time series, {xt}T

t=−m+1, by
moving the m-long window consecutively, one step at a time. Accordingly,
the end-product of applying k-means or SOMs to these windowed series is
a number of centroids Mj , which represents a specific shape of an m-long
trajectory, also known as ‘charts’ by technical analysts.10

8 The rigorous mathematical treatment of the SOM algorithm is extremely difficult
in general – see [102].

9 For details, see [51] Chap. 8: 205.
10 For example, see the charts presented in [44]: 206–207.

532 S.-H. Chen

Then the essential question pursued here is whether we can meaningfully
cluster the windowed financial time series Xm

t by the k associated geometrical
trajectories, M1,M2, . . . ,Mk. The clustering work can be meaningful if it can
help us predict the future. In other words, conditional on a specific trajectory,
we can predict the future better than without being provided this information,
for example,

Prob(|ξt+1| > |εt+1|) > 0.5 (51)

where
ξt+1 = xt+1 − E(xt+1) (52)

and
εt+1 = xt+1 − E(xt+1|Xm

t ∈ Clusterj), t > T (53)

The conditional expectations above are made with the information of the
trajectory (the cluster).

2.7 K Nearest Neighbors

In 1998, a time-series prediction competition was held during the Intl. Work-
shop on Advanced Black-Box Techniques for Nonlinear Modeling. The data
to be predicted were available from November 1997 through April 1998 at
Leuven. The data was generated from a generalized Chua’s circuit, a well-
known chaotic dynamic system. Seventeen entries had been submitted before
the deadline. The winner of the competition turned out to be James McNames,
and the strategy he used was the nearest trajectory algorithm. By using this
algorithm to fast nearest neighbor algorithms, McNames was able to make an
accurate prediction up to 300 points in the future of the chaotic time-series.
At first sight, this result may be a surprise for some, because KNN is not
technically demanding in contrast to many other well known tools as intro-
duced in this Chapter, nevertheless it could outperform many other familiar
advanced techniques, such as neural nets, wavelets, Kohonen maps (SOM),
and Kalman filters in that competition.11

KNN can be related to decision trees. What makes them different is that
the latter have categories A1, . . . , An to host input variables Xm

t , while the
former have Xm

t itself as a center of a hosting category, which will invite its
own neighbors, Xm

s (s < t), by ranking the distance ||Xm
t − Xm

s || over all
s < t from the closest to the farthest. Then the k closest Xm

s s will constitute
the neighbors of Xm

t , N (Xm
t). Now, for the purpose of predicting xt+1, one

can first study the functional relation between xs+1 and Xm
s , ∀s ∈ N (Xm

t),
in other words,

xs+1 = ft(Xm
s), s ∈ N (Xm

t) (54)

11 For details of the competition report, see [140].

Computational Intelligence in Agent-Based Computational Economics 533

One then forecasts xt+1 based on f̂t, an estimation of ft,

x̂t+1 = f̂t(Xm
t) (55)

Let’s make a brief remark on what makes KNN different from conventional
time-series modeling techniques. Conventional time-series modeling, known
as the Box-Jenkins approach, is a global model, which is concerned with the
estimation of the function, be it linear or non-linear, in the following form:

xt+1 = f(xt, xt−1, . . . , xt−m) + εt = f(Xm
t) + εt (56)

by using all of the information up to t – that is, Xm
s ∀s ≤ t – and the estimated

function f̂ is assumed to hold for every single point in time. As a result, what
will affect xt+1 most is its immediate past xt, xt−1, ... under the law of motion
estimated by all available samples.

For KNN, while what affects xt+1 most is also its immediate past, the law
of motion is estimated only with similar samples, not all samples. The esti-
mated function f̂t is hence assumed to only hold for that specific point in time.
Both KNN and SOM challenge the conventional Box-Jenkins methodology by
characterizing the hidden patterns in a different form. In their formulation,
hidden patterns are not characterized by time location, but by topological
trajectories.

Technical issues involved here are the choice of distance function
d(Xm

t ,Xm
s), choice of functional form ft, choice of the number of neighbors

k, and choice of the embedding dimension m.

2.8 Instance-Based Learning

KNN can be regarded as a special case of a broader class of algorithms,
known as instance-based learning (IBL). To see this, let us use the nota-
tions introduced in Sect. 2.6, and use the time series prediction problem as
an illustration.

Consider Eqn. (53). We have been given information regarding a time series
up to time t, and we wish to forecast the next by using the current m-history,
Xm

t . In SOM or KNN, we will first decide which cluster Xm
t belongs by check-

ing d(Xm
t ,Mj) for all j (j = 1, 2, . . . , k), and use the forecast model associated

with that cluster to forecast xt+1. In other words, forecasting models are
tailored to each cluster, say, f̂j (j = 1, 2, . . . , k).12 Then

x̂t+1 = f̂j∗(Xm
t), if j∗ = argmin

j
d(Xm

t ,Mj) j = 1, 2, . . . , k (57)

12 The notation f̂ is used, instead of f , to reserve f for the true relation, if it exists,
and in that case, f̂ is the estimation of f . In addition, there are variations when
constructing Eqn. (57) – see [44].

534 S.-H. Chen

KNN, however, does not have such established clusters Mj . Instead, it
forms a cluster based on each Xm

t , N (Xm
t), as follows.

N (Xm
t) = {s | Rank(d(Xm

t ,Xm
s)) ≤ k, ∀s < t} (58)

In other words, Xm
t itself serves as the centroid of a cluster, called the

neighborhood of Xm
t , N (Xm

t). It then invites its k nearest neighbors to be
the members of N (Xm

t) by ranking the distance d(Xm
t ,Xm

s) over the entire
community

{Xm
s | s < t} (59)

from the closest to the farthest.

Then, by assuming a functional relation, f , between xs+1 and Xm
s and

using only the observations associated with N (Xm
t) to estimate this function

ft,13 one can construct the tailor-made forecast for each xt,

x̂t+1 = f̂t(Xm
t) (60)

In practice, the function f used in Eqn. (60) can be very simple, either
taking the unconditional mean or the conditional mean. In the case of the lat-
ter, the mean is usually assumed to be linear. In the case of the unconditional
mean, one can simply use the simple average in the forecast,

x̂t+1 =

∑
s∈N (Xm

t) xs+1

k
(61)

but one can also take the weighted average based on the distance of each
member.

The same idea can be applied to deal with the linear conditional mean
(linear regression model): we can either take the ordinal least squares or the
weighted least squares.14

From the above description, we find that KNN is different from k-means
and SOM in the sense that, not just the forecasting function, but also the
cluster for KNN is tailor-made. This style of tailor-made learning is known
as lazy learning in the literature [2]. It is called ‘lazy’ because learning takes
place when the time comes to classify a new instance, say Xm

T+t, rather than
when the training set, Eqn. (49), is processed, say T .15

13 Even though the functional form is the same, the coefficients can vary depending
on Xm

t and its resultant N (Xm
t). Accordingly, we add a subscript t as ft to make

this time-variant property clear.
14 Details can be found in [78].
15 Note that a fixed T in Eqn. (49) implies a fixed training set without increments. A

non-incremental training set can be typical for using k-means or SOM. However,
KNN learning, also known as rote learning, memorizes everything that happens
up to the present; therefore, the ‘training set’ (memory) for KNN grows with
time.

Computational Intelligence in Agent-Based Computational Economics 535

To make this clear, consider two types of agents: the k-means agent and the
KNN agent. The k-means agent learns from the history before new instances
come, and the resultant knowledge from learning is represented by a set of
clusters, which is extracted from a set of historical instances. Based on these
clusters, some generalization pictures are already produced before the advent
of new instances, say Xm

T+t. The KNN agent, however, is not eager to learn.
While he does store every instance observed, he never tries to extract knowl-
edge (general rules) from them. In other words, he has the simplest form of
‘learning’, that is, rote learning (plain memorization). When the time T + t
comes and a new instance Xm

T+t is encountered, his memory is then searched
for the historical instances that most strongly resemble Xm

T+t.

As stated previously, KNN, as a style of rote learning, stores all the histor-
ical instances, as shown in Eqn. (59). Therefore, amounts of storage increase
with time. This may make the nearest-neighbor calculation unbearably slow.
In addition, some instances may be regarded as redundant with regard to the
information gained. This can be particularly the case when KNN is applied to
classification rather than regression or time series forecasting. For example,
if we are interested not in xt+1 itself, but in whether xt+1 will be greater
than xt – namely, whether xt will go up or go down, then some regions of the
instance space may be very stable with regard to class – for instance, up (1) or
down (0) – and just a few exemplars are needed inside stable regions. In other
words, we do not have to keep all historical instances or training instances.
The storage-reduction algorithm is then used to decide which instances in
Eqn. (59) to save and which to discard. This KNN with the storage-reduction
algorithm is called instance-based learning (IBL) and was initiated by [3].16

The addition of a storage-reduction algorithm to KNN is also interesting
from the perspectives of both neural sciences and economics. Considering the
brain with its limited capacity for memory, then an essential question to ask
is how the brain deals with increasing information by not memorizing all of it
or by forgetting some of it. How does it perform pruning? This is still a non-
trivial issue pursued by neural scientists today. The same issue can interest
economists as well, because it concerns the efficient use of limited space. A
recent study on reward-motivated memory formation by neural scientists may
provide an economic foundation for the memory formation [1].17

In this vein, the marginal productivity of the new instance in IBL can
be considered as the reward. The marginal productivity of an instance can

16 As a matter of fact, the storage-reduction algorithms are not just to deal with
the redundancy issue, but also the noise-tolerance issue. [3] distinguish the two
by calling the former memory updating functions, and the latter noise-tolerant
algorithms.

17 [1] report brain-scanning studies in humans that reveal how specific reward-related
brain regions trigger the brain’s learning and memory regions to promote memory
formation.

536 S.-H. Chen

be defined by its contribution to enhance the capability to perform a correct
classification. For those instances which have low marginal productivity, it will
be discarded (not remembered), and for those already stored instances, if their
classification performances are poor, they will be discarded, too (forgotten).
In this way, one can interpret the mechanism of the pruning algorithms or the
storage-reduction algorithms used in computational intelligence in the fashion
of neural economics.

3 Evolutionary Computation

The second important pillar of computational intelligence is so called evolu-
tionary computation (EC). EC uses Nature as an inspiration. While it also has
a long history of utilization in economics and finance, it is, relatively speaking,
the ‘new kid on the block’, as compared with neural networks, and even more
so with fuzzy logic. It has also drawn less attention from economists and finan-
cial analysts than the other two approaches. By comparison, there are already
about a dozen books or volumes on the economic and financial applications
using fuzzy logic and neural nets. In the area of EC, there are only three
volumes edited for economists and financiers [25,39,40]. Evolutionary compu-
tation is generally considered to be a consortium of genetic algorithms (GA),
genetic programming (GP), evolutionary programming (EP) and evolutionary
strategies (ES).

The history of evolutionary computation can be traced back to the mid-
1960s, where evolutionary strategies were originated by Rechenberg [129],
Schwefel [134] and Bienert at the Technical University of Berlin. The develop-
ment of genetic algorithms started with Holland at the University of Michigan,
and evolutionary programming was originated by Fogel [80] at the University
of California at Los Angeles.18 Despite their non-trivial differences, they share
the common structure shown in Fig. 4.

Evolutionary computation starts with an initialization of a population of
individuals (solution candidates), called P (0), with a population size to be
supplied by the users. These solutions will then be evaluated based on an
objective function or a fitness function determined by the problem of interest.
Continuation of the procedure will hinge on the termination criteria supplied
by the users. If these criteria are not met, then we move to the next stage or
generation by adding 1 to the time counter (t → t + 1). Two major opera-
tors are conducted to form the new generation, which can be regarded as a
correspondence, as follows,

Fs2 ◦ Fa ◦ Fs1(P (t)) = P ((t + 1)) (62)

where Fs1 and Fs2 denotes selection, and Fa denotes alteration.
18 For a description of the birth of EC, see [75], [79], and [135].

Computational Intelligence in Agent-Based Computational Economics 537

begin

 t := 0;

 Initialize P(t);

 evaluate P(t);

while not terminating do

begin

M(t) := select-mates(P(t));

O(t) := alternation(M(t));

 evaluate(O(t));

 P(t+1) := select(O(t) P(t));

 t := t+1;

end

end

Fig. 4. Evolutionary computation (EC) pseudo-algorithm

The main purpose of the first-stage selection, Fs1 , is to form a mating pool
(a collection of parents), M(t), which can in turn be used to breed the new
generation:

Fs1(P (t)) = M(t). (63)

Once the mating pool is formed, Fa is applied to generate offspring, O(t),
from these parents. Two major steps (genetic operators) are involved here,
namely, recombination (crossover), denoted by Fr, and mutation, denoted by
Fm, which shall be described in detail later.

Fa(M(t)) = Fm ◦ Fr(M(t)) = O(t). (64)

These offspring will be first evaluated, then enter the second-stage selection
with or without their parents P (t). Finally, the new generation P (t + 1) is
formed as a result of the second-stage selection.

Fs2 (O(t) ∪ P (t)) = P ((t + 1)). (65)

After that, we go back to the beginning of the loop, and then check the
termination criteria to see whether to stop or to start another generation of
runs – see Fig. 5 for the evolution loop.

Based on the description above, it is perhaps beneficial to have the
seven major components of evolutionary algorithms listed as follows for quick
reference:

1. individuals and their representations,
2. initialization,
3. fitness evaluation,
4. selection,

538 S.-H. Chen

loop

select mating partners

recombinate

mutate

evaluate

 select

(terminate)

evaluate

initialize population

Fig. 5. The evolutionary loop

5. mutation,
6. recombination,
7. replacement.

3.1 Evolutionary Strategies

We shall illustrate each of these components mainly within the context of evo-
lutionary strategies. Individuals are also called chromosomes. The individual
in ES is represented as a pair of real-valued vectors v = (x, σ), where the x
represent a point in the solution space, and σ is a standard deviation vector
that determines the mutation step size. Generally, σ is also called the strategy
parameter in ES, and x is called the object variable.

The ES population size of is usually characterized by two parameters µ
and λ. The former is the population size of P (t), whereas the later is the
population size of O(t). Selection of Fs1 is much more straightforward in ES
than in GA. Usually, it takes the whole P (t) as the mating pool and parents
are randomly selected therein. However, selection of Fs2 in ES can be more
intriguing. There are two Fs2 schemes in ES, known as the (µ + λ) (Plus)
scheme and the (µ, λ) (Comma) scheme. In the (µ + λ) scheme, µ individuals
produce λ offspring, and a new population is formed by selecting µ individuals
from µ+λ. In the (µ, λ) scheme, µ individuals produce λ offspring, and a new
population is formed by selecting µ individuals from the λ offspring. There
is generally no constraint for µ and λ for the (µ + λ) scheme, but for the

Computational Intelligence in Agent-Based Computational Economics 539

(µ, λ) scheme, to make selection meaningful, µ has to be strictly less than λ;
moreover, λ/µ ≈ 7 is an ideal ratio.

Mutation is considered the major ES operator for altering chromosomes.
Mutation is applied to this individual to perturb real-valued parameters. If
we let v be the parent randomly selected from P (t), then mutation on v can
be described as follows:

v′ = (x′, σ′) = (fmx(x), fmσ (σ)) (66)

where

fmx(x) = x + N(0, (σ′)2) (67)

and

fmσ (σ) = σ exp(τN(0, 1)) (68)

N(0, σ2) denotes the normal distribution with mean 0 and variance σ2.19

Notice that in implementation, Eqn. (68) has to be computed before Eqn. (67).
This is because x′ is obtained by mutating x with the new standard deviation
σ′.20

Recombination operators compose new chromosomes from corresponding
parts of two or more chromosomes. For the binary case, two chromosomes
v1 = (x1, σ

2
1) and v2 = (x2, σ

2
2) are to be recombined by an operator fr. We

can describe the composition of a new chromosome v′ as follows:

v′ = (x′, σ′) = (frx(x1, x2), frσ(σ2
1 , σ2

2 ,)) (69)

Each element of the object and strategy parameter is a recombination of
the respective entries v1 and v2. There is great variation of frx and frσ . In the
ES literature, they are differentiated by the terms discrete or intermediate,
dual (sexual) or global (panmictic). With a discrete recombination function,
one of the corresponding components is chosen at random and declared the
new entry. With an intermediate recombination, a linear combination of the
corresponding components is declared the new entry. More formally, consider
x′ as an example:

x′ =
{

x1 or x2 discrete
χx1 + (1− χ)x2 intermediate

(70)

where χ ∈ [0, 1] denotes a uniform random variable.
19 Here, for simplicity, we assume that x is a real-valued number. In a more general

setting, the variable x can be a vector; in that case, σ should be replaced by the
variance-covariance matrix Σ.

20 In Eqn. (67), (σ′)2 is determined randomly. There is, however, some way to make
it adaptive. For example, in the (1 + 1)-ES case, one has the famous 1/5-success
rule. (σ′)2 can also be determined in a self-adaptive way. In that case, the learning
rate τ can be set as a function of time. For details, see [135].

540 S.-H. Chen

So far we have only considered a one-dimensional x. An n-dimensional
x can further complicate the recombination function, and that is where the
terms dual and global come from. Dual means that two parents are chosen
at random for the creation of the offspring. Global means that one parent is
chosen anew for each component of the offspring.

x′
i =

⎧⎪⎪⎨
⎪⎪⎩

x1,i or x2,i discrete, dual
x1,i or x(2),i discrete, global
χx1,i + (1− χ)x2,i intermediate, dual
χx1,i + (1− χ)x(2),i intermediate, global

(71)

where x(2),i indicates that parent 2 is chosen anew for each vector component
i, (i = 1, 2, . . . , n).

3.2 Evolutionary Programming

While evolutionary programming (EP) was proposed about the same time as
evolutionary algorithms, their initial motives were quite different. Evolution-
ary strategies were developed as a method to solve parametric optimization
problems, whereas evolutionary programming was developed as a method
to simulate intelligent behavior. Lacking a capability to predict, an agent
cannot adapt its behavior to meet the desired goals, and success in pre-
dicting an environment is a prerequisite for intelligent behavior. As Fogel
puts it:

“Intelligent behavior is a composite ability to predict one’s environ-
ment coupled with a translation of each prediction into a suitable
response in the light of some objective”. ([82]: 11)

During the early stage, the prediction experiment can be illustrated with
a sequence of symbols taken from a finite alphabet, say, a repeating sequence
‘(101110011101)∗’ from the alphabet {0, 1}. The task then is to create an
algorithm that would operate on the observed indexed set of symbols and
produce an output symbol that agrees with the next symbol to emerge from
the environment. Fogel took finite state automata (FSA) as the machine to
predict the sequence. A FSA is a device which begins in one state and upon
receiving an input symbol, changes to another state according to its current
state and the input symbol. EP was first proposed to evolve a population of
finite state machines that provides successively better predictions.

3.3 Genetic Programming and Genetic Algorithms

While genetic programming has been applied to economic modeling for more
than half a decade, its relevance to the nature of economics has not been fully
acknowledged. In the most sympathetic situations, it is regarded as nothing

Computational Intelligence in Agent-Based Computational Economics 541

but alchemy. In unsympathetic situations, it is notorious for its black-box oper-
ation. Sometimes, the process and results are so complicated that economists
can hardly consider it relevant and interesting. This Section is intended to
deliver a simple but strong message: genetic programming is not just another
fancy technique exploited by the unorthodox, but could be a faithful language
to express the essence of economics. In particular, it provides evolutionary
economists with a way to substantiate some features which distinguish them
from mainstream economists.

An Evolving Population of Decision Rules

Let’s start from the most fundamental issue: why is genetic programming
relevant? Lucas provided a notion of an economic agent.

“In general terms, we view or model an individual as a collection
of decision rules (rules that dictate the action to be taken in given
situations) and a set of preferences used to evaluate the outcomes aris-
ing from particular situation-action combinations”. [114]: 217 (italics
added)

Immediately after this static description of an economic agent, Lucas
described an adaptive (evolutionary) version:

“These decision rules are continuously under review and revision: new
decision rules are tried and tested against experience, and rules that
produce desirable outcomes supplant those that do not”. (Ibid: 217).

So, according to Lucas, the essence of an economic agent is a collection of
decision rules which are adapting (evolving) based on a set of preferences. In
short, it is the idea of an ‘evolving population’.

Suppose that an evolving population is the essence of the economic agent,
then it seems important to know whether we economists know any operational
procedure to substantiate this essence. Back in 1986, the answer was abso-
lutely ‘no’. That certainly does not mean that we did not know anything about
evolving decision rules. On the contrary, since the late 1970s, the literature
known as ‘bounded rationality in macroeconomics’ has introduced a number of
techniques to evolve a single decision rule (a single equation or a single system
of equations): recursive regression, Kalman filtering, and Bayesian updating,
to name a few; [132] made an extensive survey of this subject. However, these
techniques shed little light on how to build a Lucasian agent, especially since
what we wanted to evolve was not a single decision rule but a population of
decision rules.

In fact, it may sound a little surprising that economists in those days rarely
considered an individual as a population of decision rules, not to mention
attending to the details of its evolution. Therefore, all the basic issues per-
taining to models of the evolving population received little, if any, attention.

542 S.-H. Chen

For example, how does the agent initialize a population of decision rules?
Once the agent has a population of decision rules, which one should they fol-
low? Furthermore, in what ways should this population of decision rules ‘be
continuously under review and revision’? Should we review and revise them
one by one because they are independent, or modify them together because
they may correlate with each other? Moreover, if there are some ‘new decision
rules to be tried’, how do we generate (or find) these new rules? What are
the relations between these new rules and the old ones? Finally, it is also not
clear how ‘rules that produce desirable outcomes should supplant those that
do not.’

There is one way to explain why economists are not interested in, and hence
not good at, dealing with a population of decision rules: economists used to
derive the decision rule for the agent deductively, and the deductive approach
usually leads to only one solution (decision rule), which is the optimal one.
There was simply no need for a population of decision rules.

Genetic Algorithms and Classifier Systems

We do not know exactly when or how the idea of the evolving population
of decision rules began to attract economists, but Holland’s contribution to
genetic algorithms definitely exerted a great influence. Genetic algorithms
simulate the biological evolution of a society of computer programs, each of
which is represented by a chromosome or, normally, a string of binary ones
and zeros. Each of these computer programs can be matched to a solution to
a problem. This structure provides us with an operational procedure of the
Lucasian agent. First, a collection of decision rules are now represented by a
society of computer programs (a society of strings of binary ones and zeros).
Second, the review and revision process is implemented as a process of natural
selection.

While genetic algorithms have had a great impact on computer science,
mathematics, and engineering since the early 1980s, their implications for
social sciences were not acknowledged until the late 1980s. In 1987, Axelrod, a
political scientist at the University of Michigan, published the first application
of the GA to the social sciences [21]. A year later, the first PhD dissertation
that applied GAs to the social sciences was completed by John Miller from,
not surprisingly, the University of Michigan. The issue addressed by Axelrod
and Miller is the well-known repeated prisoner’s dilemma. In addition to these
two early publications, perhaps the most notable event that brought GAs
into economics was the invited speech by John Holland at an economic con-
ference at the Santa Fe Institute in the autumn of 1987. Among the audience
were some of the most prestigious contemporary economists, including Ken-
neth Arrow, Thomas Sargent, Hollis Chenery, Jose Scheinkman, and Brian
Arthur. In his lecture entitled ‘The global economy as an adaptive process’,

Computational Intelligence in Agent-Based Computational Economics 543

Holland introduced to the economics circle the essence of genetic algorithms
as ‘building blocks’.

A building block refers to the specific pattern of a chromosome – that is, an
essential characteristic of a decision rule. There is a formal word for this in the
genetic algorithm; it is called a schema. In the genetic algorithm, a schema
is regarded as the basic unit of learning, evolution, and adaptation. Each
decision rule can be defined as a combination of some schemata. The review
and revision process of decision rules is nothing more than a search for the
right combination of those, possibly infinite, schemata. To rephrase Lucas’s
description in Holland’s words, “economic agents are constantly revising and
rearranging their building blocks as they gain experience”. Not only do genetic
algorithms make the Lucasian economic agent implementable, but they also
enrich its details.

After a gradual spread and accumulation of knowledge about GA among
economists, modeling economic agents with an evolving population of deci-
sion rules finally began to increase in the 1990s. To the best of this author’s
knowledge, the first refereed journal article was [117]. This paper is follow-up
research to that of [100]. In a simple barter economy, Kiyotaki and Wright
found that low storage costs are not the only reason why individuals use
money. The other one is that money makes it easier to find a suitable partner.
Replacing the rational agents in the Kiyotaki-Wright environment with arti-
ficially intelligent agents, [117], however, found that goods with low storage
costs play the dominating role as a medium of exchange.

The population of decision rules used to model each agent is a classifier
system, another contribution made by Holland in the late 1970s. A classifier
system is similar to the Newell-Simon type expert system, which is a popula-
tion of if..then or condition-action rules. However, the classical expert system
is not adaptive. What Holland did with the classifier system was to apply
the idea of competition in the market economy to a society of if..then rules.
Market-like competition is implemented by way of a formal algorithm known
as the bucket-brigade algorithm, credit rules generating good outcomes and
debit rules generating bad outcomes. This accounting system is further used
to resolve conflicts among rules. The shortcoming of the classifier system is
that it cannot automatically generate or delete rules. Nonetheless, by adding a
genetic algorithm on top of the bucket brigade and rule-based system, one can
come up with something similar to a Lucasian agent, which not only learns
from experience, but can be spontaneous and creative.

While Holland’s version of the adaptive agent is much richer and more
implementable than the Lucasian economic agent, and the work was already
completed before the publication of [91], its formal introduction to economists
came five years after the publication of [114]. In 1991, Holland and Miller
published a sketch of the artificial adaptive agent in the highly influential
journal American Economic Review. The first technique to implement the

544 S.-H. Chen

Lucasian economic agent was finally ‘registered’ in economics, and genetic
algorithms and classifier systems were formally added to economic analysts’
toolkits. Is five years too long? Maybe not, given that ‘Economic analysis
has largely avoided questions about the way in which economic agents make
choices when confronted by a perpetually novel and evolving world’ ([92]: 365).

What’s next? If the Lucasian economic agent is a desirable incarnation
of the economic agent in economic theory, and if Holland’s artificial adaptive
agent is indeed an effective implementation of it, then follow-up research can
proceed in three directions: first, novel applications of this new technology,
second, theoretical justifications, and finally, technical improvements to it.
That is exactly what we experienced during the 1990s.

For the first line of research, Jasmina Arifovic, a student of Sargent’s,
finished the first PhD dissertation that applied GAs to macroeconomics in
1991. It was not until 1994, however, that she published her work as a journal
article. [10] replaced the rational representative firm in the cobweb model
with Holland’s adaptive firms, and demonstrated how the adaptation of firms,
driven by market forces (natural selection), collectively make the market price
converge to the rational-expectations equilibrium price. Since then, a series
of her papers has been published in various journals with a range of new
application areas, including inflation [11], exchange rates [12] and coordination
games [15].

Santa Fe Institute (SFI) Economics

Although Holland introduced this powerful toolkit to economists, he did not
conduct any economic research with this toolkit himself, except for some joint
work with Brian Arthur. Holland and Arthur met in September 1987 at a
physics and economics Workshop hosted by the Santa Fe Institute. They had
a great conversation on the nature of economics. The chess analogy proposed
by Arthur led Holland to believe that the real problem with economics is “how
do we make a science out of imperfectly smart agents exploring their way into
an essentially infinite space of possibilities?” [152]: 151. On the other hand,
Arthur was impressed by Holland’s approach to complex adaptive systems.
Holland’s ideas of adaptation, emergence, and perpetual novelty, along with
other notions, offered illuminating revelations to Arthur – insights he could
never have had gained if he had confined himself to theorizing on equilibria.

This new vision of economics turned out to be the approach of the Santa
Fe Institute when it established its economics program in 1988. The essence of
the SFI economics was well documented by [19]. Instead of explaining genetic
algorithms and classifier systems, which [92] had already done, this paper put
a great emphasis on motivation. Arthur eloquently argued why the deductive
approach should give way to the inductive approach when we are dealing with
a model of heterogeneous agents. His paper thus built the microfoundation

Computational Intelligence in Agent-Based Computational Economics 545

of economics upon agents’ cognitive processes, such as pattern recognition,
concept formation, and hypothesis formulation and refutation. Arthur then
showed how the dynamics of these cognitive processes can be amenable to
analysis with Holland’s toolkit.

Maybe the best project to exemplify the SFI approach to economics is the
artificial stock market. This research project started in 1988. Despite progress
made in 1989, journal articles documenting this research were not available
until 1994. [127] first built their stock market from a standard asset pricing
model [89]. They then replaced the rational representative agent in the model
with Holland’s artificial adaptive agents, and then simulated the market.

For Arthur, the relevance of genetic algorithms to economics is much more
than just strengthening the rational expectations equilibrium. He would like
to see how one can use this tool to simulate the evolution of a real economy,
such as the emergence of barter trading, money, a central bank, labor unions,
and even Communism. However, he understood that one should start with a
more modest problem than building a whole artificial economy, and this led
to the artificial stock market.

Given this different motive, it is also interesting to see how SFI economists
programmed agents in their models, and, given their coding or programming,
how complex their agents can evolve to be. [127] also used the standard ternary
string to code different types of trading rules frequently used by financial
market traders. Each bit of a string was randomly drawn from the ternary
alphabet {0, 1, ∗}. Each bit corresponds to the condition part of a single trad-
ing rule. For example, the condition part of a double moving average rule
could be ‘The 20-period moving average of price is above the 100-period mov-
ing average.’ The appropriate bit is 1 if the condition is true, and 0 if it is
false. They typically used strings of 70-80 symbols – that is, the same as the
number of trading rules. This defines a search space of between 370 and 380

possible non-redundant classifiers. However, each artificial trader has only 60
classifiers in their own classifier system. Consider a case with 100 comput-
erized traders: there are at most 6000 different rules being evaluated in one
single trading run. Compared with the size of the search space, the number
of rules is infinitesimal.

This rather large search space is certainly beyond what [19] called the
problem complex boundary, a boundary beyond which arriving at the deductive
solution and calculating it are unlikely or impossible for human agents, and
this is where the SFI stock market comes into play. It provides the right place
to use genetic algorithms and a great opportunity to watch evolution. As
depicted by [19]: 24

“We find no evidence that market behavior ever settles down; the
population of predictors continually co-evolves. One way to test this
is to take agents out of the system and inject them in again later on.

546 S.-H. Chen

If market behavior is stationary they should be able to do as well in
the future as they are doing today. But we find that when we ‘freeze’
a successful agent’s predictors early on and inject the agent into the
system much later, the formerly successful agent is now a dinosaur.
His predictions are unadapted and perform poorly. The system has
changed. From our vantage point looking in, the market – the ‘only
game in town’ on our computer – looks much the same. But internally
it co-evolves and changes and transforms. It never settles.”

Maybe the real issue is not whether GAs are used to strengthen the idea of
REE, or to simulate artificial life, but how we program adaptive agents. This is
crucial because different programming schemes may lead to different results.
As Hahn pointed out, while there is only one way to be perfectly rational,
there are an infinite number of ways to be partially rational ([152]: 250–251).
This unlimited ‘degree of freedom’ of programming adaptive agents was also
noticed by [132]: 2

“This area is wilderness because the researcher faces so many choices
after he decides to forgo the discipline provided by equilibrium
theorizing.”

Arthur would consider letting the agents start off ‘perfectly stupid’, and
become smarter and smarter as they learn from experience. Now comes the
core of the issue: how to program agents so that they can be initialized as
perfectly stupid individuals, but can potentially get very smart. To answer
this question, let us go back to the origin of genetic algorithms.

List Programming (LISP)

It is interesting to note that the binary strings initiated by Holland were orig-
inally motivated by an analogy to machine codes. After decoding, they can be
computer programs written in a specific language, say, LISP or FORTRAN.
Therefore, when a GA is used to evolve a population of binary strings, it
behaves as if it is used to evolve a population of computer programs. If a
decision rule is explicit enough not to cause any confusion in implementation,
then one should be able to write it in a computer program. It is the popula-
tion of computer programs (or their machine codes) which provides the most
general representation of the population of decision rules. However, the equiva-
lence between computer programs and machine codes breaks down when what
is coded is the parameters of decision rules rather than decision rules (pro-
grams) themselves, as we often see in economic applications with GAs. The
original meaning of evolving binary strings as evolving computer programs is
lost.

The gradual loss of the original function of GAs has finally been noticed
by Koza [104]. He chose the language LISP as the medium for the programs

Computational Intelligence in Agent-Based Computational Economics 547

created by genetic programming (GP) because the syntax of LISP allows
computer programs to be manipulated easily like the bit strings in GAs, so
that the same genetic operations used on bit strings in GAs can also be applied
to GP.

LISP S-expressions consist of either atoms or lists. Atoms are either mem-
bers of a terminal set, that comprise the data (for example, constants and
variables) to be used in the computer programs, or members of a function
set that consists of a number of pre-specified functions or operators that are
capable of processing any data value from the terminal set and any data value
that results from the application of any function or operator in the function
set. Lists are collections of atoms or lists, grouped within parentheses. In the
LISP language, everything is expressed in terms of operators operating on
some operands. The operator appears as the leftmost element in the paren-
theses and is followed by its operands and a closing (right) parenthesis. For
example, the S-expression (+X 3) consists of three atoms: from the left-most
to right-most they are the function ‘+’, the variable X and the constant 3.
As another example, (×X (−Y 3)) consists of two atoms and a list. The two
atoms are the function ‘×’ and the variable ‘X ,’ which is then followed by the
list (−Y 3).

LISP was invented in the late 1950s by John McCarthy at MIT as a formal-
ism for reasoning about the use of certain kinds of logical expressions, called
recursion equations. LISP possesses unique features that make it an excel-
lent medium for complex compositions of functions of various types, handling
hierarchies, recursion, logical functions, self-modifying computer programs,
self-executing computer programs, iterations, and structures whose size and
shapes are dynamically determined. The most significant of these features is
the fact that LISP descriptions of processes (routines) can themselves be repre-
sented and manipulated as LISP data (subroutines). As Koza demonstrated,
LISP’s flexibility in handling procedures as data makes it one of the most
convenient languages in existence for exploring the idea of evolving computer
programs genetically [104]. However, Koza and others have noted that the
use of LISP is not necessary for genetic programming; what is important for
genetic programming is the implementation of a LISP-like environment, where
individual expressions can be manipulated like data, and are immediately
executable.

Symbolic Regression

The distinguishing feature of GP is manifested by its first type of applica-
tion in economics, known as symbolic regression. In symbolic regression, GP
is used to discover the underlying data-generation process of a series of obser-
vations. While this type of application is well known to econometricians, the
perspective from GP is novel. As Koza stated,

548 S.-H. Chen

“An important problem in economics is finding the mathematical
relationship between the empirically observed variables measuring a
system. In many conventional modeling techniques, one necessarily
begins by selecting the size and shape of the model. After making this
choice, one usually then tries to find the values of certain coefficients
required by the particular model so as to achieve the best fit between
the observed data and the model. But, in many cases, the most impor-
tant issue is the size and shape of the model itself.” [105]: 57 (italics
added)

Econometricians offer no general solution to the determination of size and
shape (the functional form), but for Koza, finding the functional form of the
model can be viewed as searching a space of possible computer programs for
the particular computer program which produces the desired output for given
inputs.

Koza employed GP to rediscover some basic physical laws from experimen-
tal data, for example, Kepler’s third law and Ohm’s law [104]. He then also
applied it to eliciting a very fundamental economic law, namely, the quantity
theory of money or the exchange equation [105]. Genetic programming was
thus formally demonstrated as a knowledge discovery tool. This was probably
the closest step ever made toward the original motivation of Holland’s inven-
tion: ‘Instead of trying to write your programs to perform a task you don’t
quite know how to do, evolve them.’ Indeed, Koza did not evolve the param-
eters of an arbitrary chosen equation; instead, he evolved the whole equation
from scratch. This style of application provides an evolutionary determination
of bounded rationality.

Koza motivated a series of economic applications of genetic programming
in the mid-1990s [105]. Chen and Yeh applied genetic programming to redis-
covering the efficient market hypothesis in a financial time series [52]. They
then moved one step forward to propose an alternative formulation of the
efficient market hypothesis in the spirit of the Kolmogorov complexity of
algorithms for pattern extraction from asset price data [54]. [54] and [141]
employed GP to discover the underlying chaotic laws of motion of time series
data. [6] and [123] also adopted a GP approach to discover profitable tech-
nical trading rules for the foreign exchange market and the stock market,
respectively. Another area in which GP was actively applied is option pric-
ing. [61] used GP for hedging derivative securities. [98] showed that genetically
determined formulas outperformed most frequently quoted analytical approx-
imations in calculating the implied volatility based on the Black-Scholes
model. [65] and [99] derived approximations for calculating option prices and
showed that GP-models outperformed various other models presented in the
literature.

Needless to say, one can expect many more applications of GP to the auto-
matic discovery of economic and financial knowledge (automatic generation

Computational Intelligence in Agent-Based Computational Economics 549

of economic and financial knowledge in terms of their computer-programmed
representations). However, its significant contribution to economics should
not be mistaken for a perfect solution to knowledge discovery, data mining,
or, more generally, function optimization. In a nutshell, genetic programming
should be used to grow evolving hierarchies of building blocks (subroutines) –
the basic units of learning and information, from an immense space of subrou-
tines. All evolution can do is look for improvements, not perfection. Holland
believed that these evolving hierarchies are generic in adaptation, and can
play a key role in understanding human learning and adaptive processes.

4 Agent-Based Economic Simulations with CI

In this Section, we shall review the applications of CI to ACE. Given the
size limitations, it is impossible to give an exhaustive survey here. We can
therefore only review a few selected areas which we consider most represen-
tative and characterize the early development of the literature. We shall give
a macroscopic view of the literature in Sects. 5.1 and 5.2, and introduce some
most recent developments, which point to the future research, in Sect. 5.3.

4.1 The Cobweb Model

The cobweb model is a familiar playground in which to investigate the effects
of production decisions on price dynamics. In this model consumers base their
decisions on the current market price, but producers decide how much to
produce based on the past prices. Agricultural commodities serve as a good
example of the cobweb model. This model plays an important role in macroe-
conomics, because it is the place in which the concept ‘rational expectations’
originated [121]. Moreover, it is also the first neo-classical macroeconomic
prototype to which an agent-based computational approach was applied [10].
This Section will first briefly formulate the cobweb model and then review the
work on agent-based modeling of the cobweb model.

Consider a competitive market composed of n firms which produce the
same goods by employing the same technology and which face the same cost
function described in Eqn. (72):

ci,t = xqi,t +
1
2
ynq2

i,t (72)

where qi,t is the quantity supplied by firm i at time t, and x and y are the
parameters of the cost function. Since at time t− 1, the price of the goods at
time t, Pt, is not available, the decision about optimal qi,t must be based on
the expectation (forecast) of Pt – that is, P e

i,t. Given P e
i,t and the cost function

ci,t, the expected profit of firm i at time t can be expressed as follows:

πe
i,t = P e

i,tqi,t − ci,t (73)

550 S.-H. Chen

Given P e
i,t, qi,t is chosen at a level such that πe

i,t can be maximized and,
according to the first-order condition, is given by

qi,t =
1
yn

(P e
i,t − x) (74)

Once qi,t is decided, the aggregate supply of the goods at time t is fixed
and Pt, which sets demand equal to supply, is determined by the demand
function:

Pt = A−B

n∑
i=1

qi,t (75)

where A and B are parameters of the demand function.

Given Pt, the actual profit of firm i at time t is:

πi,t = Ptqi,t − ci,t (76)

The neo-classical analysis simplifies the cobweb model by assuming the
homogeneity of market participants – in other words, a representative agent.
In such a setting, it can be shown that the homogeneous rational expectations
equilibrium price (P ∗) and quantity (Q∗) are ([53]: 449):

P ∗
t =

Ay + Bx

B + y
; Q∗

t =
A− x

B + y
(77)

CI in the Agent-Based Cobweb Model

The neo-classical analysis based on homogeneous agents provides us with
a limited understanding of the price dynamics or price instability in a real
market, since firms’ expectations of the prices and the resultant production
decisions in general must be heterogeneous. Using genetic algorithms to model
the adaptive behavior of firms’ production, Arifovic gave the first agent-based
model of the cobweb model [10] . She applied two versions of GAs to this
model. The basic GA involves three genetic operators: reproduction, crossover,
and mutation. Arifovic found that in each simulation of the basic GA, indi-
vidual quantities and prices exhibited fluctuations for its entire duration and
did not result in convergence to the rational expectations equilibrium values,
which is quite inconsistent with experimental results with human subjects.

Arifovic’s second GA version – the augmented GA – includes the election
operator in addition to reproduction, crossover, and mutation. The election
operator involves two steps. First, crossover is performed. Second, the poten-
tial fitness of the newly-generated offspring is compared with the actual fitness
values of its parents. Among the two offspring and two parents, the two high-
est fitness individuals are then chosen. The purpose of this operator is to
overcome difficulties related to the way mutation influences the convergence

Computational Intelligence in Agent-Based Computational Economics 551

process, because the election operator can bring the variance of the population
rules to zero as the algorithm converges to the equilibrium values.

The results of the simulations show that the augmented GA converges
to the rational expectations equilibrium values for all sets of cobweb model
parameter values, including both stable and unstable cases, and can cap-
ture several features of the experimental behavior of human subjects better
than other simple learning algorithms. To avoid the arbitrariness of choice
of an adaptive scheme, [114] suggested that comparison of the behavior of
adaptive schemes with behavior observed in laboratory experiments with
human subjects can facilitate the choice of a particular adaptive scheme. From
this suggestion, the GA could be considered an appropriate choice to model
learning agents in a complex system.

The application of genetic programming to the cobweb model started
from [53], who compared the learning performance of GP-based learning
agents with that of GA-based learning agents. They found that, like GA-based
learning agents, GP-based learning agents also can learn the homogeneous
rational expectations equilibrium price under both the stable and unstable
cobweb case. However, the phenomenon of ‘price euphoria’, which did not
happen in [10], does show up quite often at the early stages of the GP experi-
ments. This is mainly because agents in their setup were initially endowed with
very limited information as compared to [10]. Nevertheless, GP-based learning
can quickly coordinate agents’ beliefs so that the emergence of price euphoria
is only temporary. Furthermore, unlike [10], Chen and Yeh did not use the
election operator. Without the election operator, the rational expectations
equilibrium is exposed to potentially persistent perturbations due to agents’
adoption of the new, but untested, rules. However, what shows up in [53] is
that the market can still bring any price deviation back to equilibrium. There-
fore, the self-stabilizing feature of the market, known as the ‘invisible hand’,
is more powerfully replicated in their GP-based artificial market.

The self-stabilizing feature of the market demonstrated in [53] was fur-
thered tested with two complications. In the first case, [55] introduced a
population of speculators to the market and examined the effect of specu-
lations on market stability. In the second case, the market was perturbed
with a structural change characterized by a shift in the demand curve; [57]
then tested whether the market could restore the rational expectations equi-
librium. The answer to the first experiment is generally negative, namely that
speculators do not enhance the stability of the market; on the contrary, they
destabilize the market. Only in special cases when trading regulations – such
as the transaction cost and position limit – were tightly imposed could spec-
ulators enhance the market stability. The answer for the second experiment
is, however, positive. Chen and Yeh showed that GP-based adaptive agents
could detect the shift in the demand curve and adapt to it [57]. Nonetheless,
the transition phase was non-linear and non-smooth; one can observe slumps,

552 S.-H. Chen

crashes, and bursts in the transition phase. In addition, the transition speed
is uncertain. It could be fast, but could be slow as well.

This series of studies on the cobweb model enriches our understanding of
the self-stabilizing feature of the market. The market has its limit, beyond
which it can become unstable with crazy fluctuations. However, imposing
trading regulations may relax the limit and enhance market stability. One is
still curious to know where the self-stabilizing capability comes from in the
first place. Economists have known for a long time that it comes from the
free competition principle, or the survival-of-the-fittest principle. In GA or
GP, this principle is implemented through selection pressure. Chen studied
the role of selection pressure by replacing the usual proportionate selection
scheme with the one based on the approximate uniform distribution, showing
that if selection pressure is removed or alleviated, then the self-stabilizing
feature is lost [37]. In a word, selection pressure plays the role of the invisible
hand in economics.

It is interesting to know whether the time series data generated by the
artificial market can replicate some dynamic properties observed in the real
market. [46] and [57] started the analysis of the time series data generated
from the artificial market. The time series data employed was generated by
simulating the agent-based cobweb model with the presence of speculators.
It was found that many stylized features well documented in financial econo-
metrics can in principle be replicated from GP-based artificial markets, which
include leptokutosis, non-IIDness, and volatility clustering. Furthermore, [57]
performed a CUSUMSQ test, a statistical test for structural change, on the
data. The test indicated the presence of structural changes in the data, which
suggested that the complex interaction process of these GP-based producers
and speculators can even generate endogenous structural changes.

4.2 Overlapping Generations Models

While there are several approaches to introducing dynamic general equilibrium
structures to economics, the overlapping generations model (hereafter, OLG)
may be regarded as the most popular one in current macroeconomics. Over
the last two decades, the OLG model has been extensively applied to studies
of savings, bequests, demand for assets, prices of assets, inflation, business
cycles, economic growth, and the effects of taxes, social security, and budget
deficits. In the following, we shall first give a brief illustration of a simple OLG
model of inflation, a two-period OLG model.

Two-Period OLG Model

A simple OLG model can be described as follows. It consists of overlapping
generations of two-period-lived agents. At time t, N young agents are born.
Each of them lives for two periods (t, t+1). At time t, each of them is endowed

Computational Intelligence in Agent-Based Computational Economics 553

with e1 units of a perishable consumption good, and with e2 units at time
t + 1 (e1 > e2 > 0). Presumably e1 is assumed to be greater than e2 in order
to increase the likelihood (but not ensure) that agents will choose to hold
money from period 1 to 2 so as to push value forward. An agent born at time
t consumes in both periods. Term c1

t is the consumption in the first period (t),
and c2

t the second period (t+1). All agents have identical preference given by

U(c1
t , c

2
t) = ln(c1

t) + ln(c2
t) (78)

In addition to perishable consumption goods, there is an asset called money
circulating in the society. The nominal money supply at time t, denoted by
Ht, is exogenously determined by the government and is held distributively
by the old generation at time t. For convenience, we shall define ht to be Ht

N –
in other words, the nominal per capita money supply.

This simple OLG gives rise to the following agent’s maximization problem
at time t:

max
(c1

i,t,c2
i,t)

ln(c1
i,t) + ln(c2

i,t)

such that c1
i,t +

mi,t

Pt
= e1, c2

i,t = e2 +
mi,t

Pt+1
(79)

where mi,t represents the nominal money balances that agent i acquires at
time period t and spends in time period t + 1, and Pt denotes the nominal
price level at time period t. Since Pt+1 is not available at period t, what agents
actually can do is to maximize their expected utility E(U(c1

t , c
2
t)) by regarding

Pt+1 as a random variable, where E(.) is the expectation operator. Because
of the special nature of the utility function and budget constraints, the first-
order conditions for this expected utility maximization problem reduce to the
certainty equivalence form:

c1
i,t =

1
2
(e1 + e2πe

i,t+1) (80)

where πe
i,t+1 is agent i’s expectation of the inflation rate πt+1(≡Pt+1

Pt
). This

solution tells us the optimal decision of savings for agent i given her expecta-
tion of the inflation rate, πe

i,t+1.

Suppose the government deficit Gt is all financed through seignorage and
is constant over time (Gt = G). We can then derive the dynamics (time series)
of nominal price {Pt} and inflation rate {πt} from Eqn. (80). To see this, let
us denote the savings of agent i at time t by si,t. Clearly,

si,t = e1 − c1
i,t (81)

From Eqn.(79), we know that

mi,t = si,tPt, ∀i, t (82)

554 S.-H. Chen

In equilibrium, the nominal aggregate money demand must equal nominal
money supply, namely,

N∑
i=1

mi,t = Ht = Ht−1 + GPt, ∀t (83)

The second equality says that the money supply at period t is the sum of the
money supply at period t− 1 and the nominal deficit at period t, GPt. This
equality holds, because we assume the government deficits are all financed by
seignorage.

Summarizing Eqns. (82) and (83), we get

N∑
i=1

si,tPt =
N∑

i=1

si,t−1Pt−1 + GPt (84)

The price dynamics are hence governed by the following equation:

πt =
Pt

Pt−1
=
∑N

i=1 si,t−1∑N
i=1 si,t −G

(85)

Now suppose that each agent has perfect foresight, that is,

πe
i,t = πt, ∀i, t (86)

By substituting the first-order condition Eqn. (80) into Eqn. (84), the paths
of equilibrium inflation rates under perfect foresight dynamics are then

πt+1 =
e1

e2
+ 1− 2g

e2
− (

e1

e2
)(

1
πt

) (87)

where g = G
N is the real per capita deficit.

At steady state (πt+1 = πt), Eqn. (87) has two real stationary solutions
(fixed points), a low-inflation stationary equilibrium, π∗

L, and a high-inflation
one, π∗

H , given by

π∗
L =

1 + e1

e2 − 2g
e2 −

√
(1 + e1

e2 − 2g
e2)− 4 e1

e2

2
(88)

π∗
H =

1 + e1

e2 − 2g
e2 +

√
(1 + e1

e2 − 2g
e2)− 4 e1

e2

2
(89)

Despite its popularity, the OLG models are well known for their multi-
plicity of equilibria, in our case, the coexistence of two inflation equilibria:
Eqns. (88) and (89). Things can be even more intriguing if these equilibria
have different welfare implications. In our case, the one with a higher inflation
rate is the Pareto-inferior equilibrium, whereas the one with a lower inflation
rate is the Pareto-superior equilibrium.

Computational Intelligence in Agent-Based Computational Economics 555

CI in Agent-Based OLG Models of Inflation

To see whether decentralized agents are able to coordinate intelligently to
single out a Pareto-superior equilibrium rather than be trapped in a Pareto-
inferior equilibrium, [11] proposed the first agent-based modification of an
OLG model of inflation. She applied genetic algorithms (GAs) towards mod-
eling the learning and adaptive behavior of households. In her study, GA-based
agents were shown to be able to select the Pareto-superior equilibrium. She
further compared the simulation results based on GAs with those from lab-
oratories with human subjects, concluding that GAs were superior to other
learning schemes, such as the recursive least squares.

This line of research was further carried out in [27,31–33] and [69]. Bullard
and Duffy made the distinction between two implementations of GA learn-
ing: depending on what to encode, GA learning can be implemented in two
different ways, namely, learning how to optimize [11] and learning how to
forecast [33]. It was found that these two implementations lead to the same
result: agents can indeed learn the Pareto-superior equilibrium. The only dif-
ference is the speed of convergence. The ‘learning how to forecast’ version of
genetic algorithm learning converges faster than the ‘learning how to optimize’
implementation studied by [11]. Nevertheless, a robust analysis showed that
coordination was more difficult when the number of inflation values consid-
ered (search space) by agents was higher, when government deficits increased,
and when agents entertained inflation rate forecasts outside the bounds of
possible stationary equilibria.

Chen and Yeh generalized Bullard and Duffy’s ‘learning how to fore-
cast’ version of GA learning with GP [56]. In [33], what agents learn is just
a the inflation rate per se, rather than regularity about its motion, which
is a function. Chen and Yeh considered it too restrictive to learn just a
number. From [86], if the equilibrium of an OLG is characterized by limit
cycles or strange attractors rather than by fixed points, then what agents
need to learn is not just a number, but a functional relationship, such as
xt = f(xt−1, xt−2, ...). Chen and Yeh therefore generalized Bullard and Duffy’s
evolution of beliefs from a sequence of populations of numbers to a sequence
of populations of functions. Genetic programming serves as a convenient tool
to make this extension.

The basic result observed in [56] is largely consistent with [10] and
[33], namely, agents being able to coordinate their actions to achieve the
Pareto-superior equilibrium. Furthermore, their experiments showed that the
convergence is not sensitive to the initial rates of inflation. Hence, the Pareto-
superior equilibrium has a large domain of attraction. A test on a structural
change (a change in deficit regime) was also conducted. It was found that GP-
based agents were capable of converging very fast to the new low-inflationary
stationary equilibrium after the new deficit regime was imposed. However,

556 S.-H. Chen

the basic result was not insensitive to the dropping of the survival-of-the-
fittest principle. When that golden principle was not enforced, we experienced
dramatic fluctuations of inflation and occasionally the appearance of super
inflation. The agents were generally worse off.

Birchenhall and Lin provided perhaps the most extensive coverage of
robustness checks ever seen in agent-based macroeconomic models [27]. Their
work covers two different levels of GA designs: one is genetic operators, and the
other is architecture. For the former, they consider different implementations
of the four main GA operators – namely, selection, crossover, mutation, and
election. For the latter, they consider a single-population GA (social learning)
versus a multi-population GA (individual learning). They found that Bullard
and Duffy’s results are sensitive to two main factors: the election operator and
architecture. Their experimental results in fact lend support to some early
findings – for example, the significance of the election operator [10] and the
different consequences of social learning and individual learning [151]. What
is particularly interesting is that individual learning reduces the rate of con-
vergence to the same belief. This is certainly an important finding, because
most studies on the convergence of GAs to Pareto optimality are based on
the social learning version.

Ballard and Duffy studied a more complicated version of the two-period
OLG model, based on [86]. They consider the following utility function for
the households [32],

U(c1
t , c

2
t) =

ln(c1
t)

1−ρ1

1− ρ1
+

ln(c2
t)

1−ρ2

1− ρ2
(90)

Under time-separable preferences and provided that the value of the coef-
ficient of relative risk aversion for the old agent (ρ2) is high enough and
that of the young agents is low enough (ρ1), [86] showed that stationary
perfect-foresight equilibria also may exist in which the equilibrium dynam-
ics are characterized either as periodic or chaotic trajectories for the inflation
rate, and these complicated stationary equilibria are also Pareto optimal. To
have these possibilities, they set ρ2 equal to 2 and then increased the value of
this preference parameter up to 16 by increments of 0.1, while fixed ρ1 at 0.5
in all cases.

The forecast rule considered by Bullard and Duffy is to use the price level
that was realized k + 1 periods in the past as the forecast of next period’s
price level, namely,

P e
i,t = Pt−k−1, k ∈ [0, k̄] (91)

In their case, k̄ was set to 256, which allows the agents to take actions
consistent with a periodic equilibrium of an order as high as 256. Alternatively,

Computational Intelligence in Agent-Based Computational Economics 557

agent i’s forecast of the gross inflation factor between dates t and t + 1 is
given by

πe
i,t =

Pt−k−1

Pt−1
(92)

As usual, the lifetime utility function was chosen as the fitness function to
evaluate the performance of a particular forecast rule. Instead of roulette wheel
selection, tournament selection was applied to create the next generation.

It was found that the stationary equilibria on which agents coordinate
were always relatively simple – either a steady state or a low-order cycle.
For low values of ρ2 (in particular, those below 4.2), they observed conver-
gence to the monetary steady state in every experiment, which is the same
prediction made by the limited backward perfect-foresight dynamics. As ρ2

was increased further, the limiting backward perfect foresight dynamics dis-
played a bifurcation, with the monetary steady state losing stability and never
regaining it for values of ρ2 ≥ 4.2. However, in their system with learning,
the monetary steady state was always a limit point in at least 1 of the 10
experiments conducted for each different value of ρ2. Also, for ρ2 ≥ 4.2, their
system often converged, in at least one experiment, to a period-2 stationary
equilibrium, even in cases in which that equilibrium, too, had lost its stability
in the backward perfect-foresight dynamics.

It is difficult, however, for an economy comprised of optimizing agents with
initial heterogeneous beliefs to coordinate on especially complicated stationary
equilibria, such as the period-k cycles where k ≥ 3. In particular, the period-
3 cycle that is stable in the backward perfect-foresight dynamics for values
ρ2 ≥ 13 was never observed in their computational experiments. Interesting
enough, three is the last entry of Sarkovskii’s ordering, whereas one, two and
four are first few entries.

They also found that the time it took agents to achieve coordination tended
to increase with the relative risk aversion of the old agents over a large portion
of the parameter space. Usually, it was the case when the system converged to
the period-2 cycle. Moreover, when cycles exist, the transient dynamics of their
systems could display qualitatively complication dynamics for long periods of
time before eventually to relatively simple, low-periodicity equilibria.

A related phenomenon to cyclical equilibria is sunspot equilibria. The
sunspot variable is the variable which has no intrinsic influence on an econ-
omy – in other words, it has nothing to do with an economy’s fundamentals.
Sunspot equilibria exist if the sunspot variable can impact the economy simply
because a proportion of agents believe so and act accordingly to their belief.
[22] showed that the connection between cyclical and sunspot equilibria is very
close. They proved that a two-state stationary sunspot equilibrium exists if
and only if a period-2 equilibrium exists. [69] started with an OLG model of

558 S.-H. Chen

inflation comparable to [32]. He studied an economy whose households have
the following utility function,

U(c1
t , c

2
t) = 0.1[c1

t]
0.9 + 10− [

10
1 + c2

t

]2 (93)

This utility function has the property that the concavity with respect to
c1
t is much smaller than the concavity with respect to c2

t , which is necessary
for the existence of a periodic equilibrium [86].

He first found that in cases where periodic equilibria exist, households’
beliefs were successfully coordinated to the period-2 cycle rather than the
steady state. He then assumed all households to be sunspot believers and
showed that households’ beliefs converged to the sunspot equilibrium. In that
case, the observed values of the price levels are completely governed by some-
thing which has nothing to do with the economy’s fundamentals. Finally, he
relaxed the assumption by simulating an explicit contest between ‘sunspot
believers’ and ‘sunspot agnostics’. The simulation showed that in most cases,
the population consisted, after a rather short period, only of households whose
actions depended on the value of the sunspot variable.

4.3 Foreign Exchange Rate Fluctuations

Another popular class of OLG models to which an agent-based approach is
applied is the the OLG model of foreign exchange rates, which is a version of
the two-country OLG model with fiat money [96].

The OLG Model of Exchange Rate

There are two countries in the model. The residents of both countries are
identical in terms of their preferences and lifetime endowments. The basic
description of each country is the same as the single-country OLG model.
Each household of generation t is is endowed with e1 units of a perishable
consumption good at time t, and e2 of the good at time t + 1, and consumes
c1
t of the consumption good when young and c2

t when old. Households in both
countries have common preferences given by

U(c1
t , c

2
t) = ln(c1

t) + ln(c2
t). (94)

The government of each country issues its own unbacked currency, H1,t and
H2,t. Households can save only through acquiring these two currencies. There
are no legal restrictions on holdings of foreign currency. Thus, the residents of
both countries can freely hold both currencies in their portfolios. A household
at generation t solves the following optimization problem at time t:

max
(c1

i,t,mi,1,t)
ln(c1

i,t) + ln(c2
i,t)

such that c1
i,t +

mi,1,t

P1,t
+

mi,2,t

P2,t
= e1, c2

i,t = e2 +
mi,1,t

P1,t+1
+

mi,2,t

P2,t+1

(95)

Computational Intelligence in Agent-Based Computational Economics 559

where mi,1,t is household i’ nominal holdings of currency 1 acquired at time t,
mi,2,t is household i’ nominal holdings of currency 2 acquired at time t, P1,t

is the nominal price of the good in terms of currency 1 at time t, and P2,t is
the nominal price of the good in terms of currency 2 at time t. The savings of
household i at time t by si,t is

si,t = e1 − c1
i,t =

mi,1,t

P1,t
+

mi,2,t

P2,t
(96)

The exchange rate et between the two currencies is defined as et =
P1,t/P2,t. When there is no uncertainty, the return on the two currencies
must be equal,

Rt = R1,t = R2,t =
P1,t

P1,t+1
=

P2,t

P2,t+1
, t ≥ 1 (97)

where R1,t and R2,t are the gross real rate of return between t and t + 1,
respectively. Rearranging Eqn. (97), we obtain

P1,t+1

P2,t+1
=

P1,t

P2,t
t ≥ 1 (98)

From Eqn. (98) it follows that the exchange rate is constant over time:

et+1 = et = e, t ≥ 1 (99)

Savings demand derived from household’s maximization problem is given by

si,t =
mi,1,t

p1,t
+

mi,2,t

p2,t
=

1
2
[e1 − e2 1

Rt
] (100)

Aggregate savings of the world at time period t, St, are equal to the sum
of their savings in terms of currency 1, S1,t, and in terms of currency 2, S2,t.
With the homogeneity assumption, we have

S1,t =
2N∑
i=1

mi,1,t

P1,t
=

2Nm1,t

P1,t
(101)

and

S2,t =
2N∑
i=1

mi,2,t

P2,t
=

2Nm2,t

P2,t
(102)

The equilibrium condition in the loan market requires

St = S1,t + S2,t = N [e1 − e2 P1,t+1

P1,t
] =

H1,t + H2,te

P1,t
(103)

Eqn. (103) only informs us of the real saving in terms of the real world
money demand. This equation alone cannot determine the household real

560 S.-H. Chen

demands for each currency. Hence, this equation cannot uniquely determine
a set of price (P1,t, P2,t), and leave the exchange rate indeterminate as well.
This is known as the famous indeterminacy of exchange rate proposition. The
proposition says that if there exists a monetary equilibrium in which both
currencies are valued at some exchange rate e, then there exists a monetary
equilibrium at any exchange rate ê ∈ (0,∞) associated with a different price
sequence {P̂1,t, P̂2,t} such that

Rt =
P1,t

P1,t+1
=

P2,t

P2,t+1
=

P̂1,t

P̂1,t+1

=
P̂2,t

P̂2,t+1

(104)

and
St =

H1,t + H2,te

P1,t
=

H1,t + H2,tê

P̂1,t

(105)

where

P̂1,t =
H1,t + êH2,tP1,t

H1,t + eH2,t
, P̂2,t =

P̂1,t

ê
. (106)

Rearranging Eqn. (103), one can derive the law of motion of P1,t

P1,t+1 =
e1

e2
P1,t −

H1,t + eH2,t

Ne2
(107)

For any given exchange rate e, this economy with constant supplies of both
currencies, H1 and H2, has a steady-state equilibrium, namely,

P1,t+1 = P1,t = P ∗
1 =

H1 + eH2

N(e1 − e2)
(108)

Like e, the level of P ∗
1 is also indeterminate. In addition, since households

are indifferent between the currencies that have the same rates of return in
the homogeneous-expectations equilibrium, the OLG model in which agents
are rational does not provide a way to determine the portfolio λi,t, which is
the fraction of the savings placed into currency 1.

CI in Agent-Based OLG Models of the Exchange Rate

In order to examine the behavior of the exchange rate and the associated price
dynamics, Arifovic initiated the agent-based modeling of the exchange rate in
the context of the OLG model [12]. In the OLG model of the exchange rate,
households have two decisions to make when they are young, namely, saving
(si,t) and portfolio (λi,t). These two decisions were encoded by concatenation
of two binary strings, the first of which encoded si,t, whereas the second of
which encoded λi,t. The single-population augmented genetic algorithm was
then applied to evolve these decision rules. The length of a binary string, l,
is 30: The first 20 elements of a string encode the first-period consumption

Computational Intelligence in Agent-Based Computational Economics 561

of agent i of generation t; the remaining 10 elements encode the portfolio
fraction of agent i:

010100...110︸ ︷︷ ︸
20 bits:si,t

101..001︸ ︷︷ ︸
10 bits:λi,t

While Eqn. (99) predicts the constancy of the exchange rate, genetic algo-
rithm simulations conducted by [12] indicated no sign of the setting of the
exchange rate to a constant value. Instead, they showed persistent fluctua-
tions of the exchange rate. Adaptive economic agents in this model can, in
effect, endogenously generate self-fulfilling arbitrage opportunities, which in
turn make exchange rates continuously fluctuate.

The fluctuating exchange rate was further examined using formal statisti-
cal tests in both [12] and [16]. First, in [12], the stationarity (Dickey-Fuller)
test was applied to examine whether the exchange rate series is non-stationary.
The result of the test did not indicate non-stationarity. Second, [16] analyzed
the statistical properties of the exchange rate returns, namely, the logarithm of
et/ee−1. The independence tests (Ljung-BOx-Pierce and BDS) clearly rule out
the lack of persistence (dependence) in the return series. Third, they plotted
the phase diagrams of the return series and found that there is a well-defined
attractor for all series. The shapes of the attractor are robust to the changes
in the OLG model parameters as well as to the changes in the GA parame-
ters. Fourth, to verify that this attractor is chaotic, the largest two Lyapunov
exponents were calculated. The largest Lyapnov exponent is positive in all
series, which supports that attractors under investigation are chaotic. Finally,
volatility clustering was also found to be significant in the return series. This
series of econometric examinations confirms that agent-based modeling is able
to replicate some stylized facts known in financial markets.

Arifovic considered a different application of GAs to modeling the adap-
tive behavior of households [14]. Instead of savings and portfolio decision rules,
she turned to the forecasting behavior of households. The forecasting mod-
els of exchange rates employed by agents are simple moving-average models.
They differ in the rolling window size, which are endogenously determined and
can be time-variant. What is encoded by GAs is the size of the rolling win-
dow rather than the usual savings and portfolio decision. Simulations with
this new coding scheme resulted in the convergence of the economies to a
single-currency equilibrium – that is, the collapse of one of the two currencies.
This result was not found in [12]. This study therefore shows that different
implementations of GA learning may have non-trivial effects on the simula-
tion results. In one implementation, one can have persistent fluctuation of the
exchange rate [12]; in another case, one can have a single-currency equilibrium.

Following the design of [81], Arifovic combined two different applications
of GA learning. In addition to the original population of agents, who are
learning how to forecast, she added another population of agents, who are
learning how to optimize [14]. Nevertheless, unlike [81], these two populations

562 S.-H. Chen

of agents did not compete with each other. Instead, they underwent separate
genetic algorithm updating. Simulations with these two separate evolving pop-
ulations did not have the convergence to single currency equilibrium, but were
characterized instead by persistent fluctuation.

A different scenario of the currency collapse is also shown in [13], which
is an integration of the OLG model of exchange rate with the OLG model
of inflation. In this model, the governments of both countries have constant
deficits (Gi, i = 1, 2) which were financed via seignorage,

Gi =
Hi,t −Hi,t−1

Pi,t
, i = 1, 2 (109)

Combining Eqns. (103) and (109) gives the condition for the monetary
equilibrium in which both governments finance their deficits via seignorage:

G1 + G2 = St − St−1Rt−1 (110)

This integrated model inherits the indeterminacy of the exchange rate
from the OLG model of the exchange rate and the indeterminacy of the infla-
tion rate from the OLG model of inflation. Any constant exchange rate e
(e ∈ (0,∞)) is an equilibrium that supports the same stream of government
deficits (G1, G2), and the same equilibrium gross rate of return (and thus the
same equilibrium savings). The existence of these equilibrium exchange rates
indicates that the currencies of both countries are valued despite the difference
of the two countries’ deficits. In fact, in equilibrium the high-deficit country
and the low-deficit county experience the same inflation rate, and hence so
do their currencies’ rates of return. Nonetheless, since the high-deficit country
has a higher money supply, if both currencies are valued, then the currency
of the high-deficit country will eventually drive the currency of the low-deficit
country out of households’ portfolios. Given this result, it might be in the
interest of a country with lower deficits to impose a degree of capital control.

Arifovic showed that agent-based dynamics behave quite different from
the above homogeneous rational expectations equilibrium analysis [13]. In her
agent-based environment, the evolution of households’ decision rules of savings
and portfolio results in a flight away from the currency used to finance the
larger of the two deficits. In the end, households hold all of their savings in
the currency used to finance the lower of the deficits. Thus, the economy
converges to the equilibrium in which only the low-deficit currency is valued.
The currency of the country that finances the larger of the two deficits become
valueless, and we have a single-currency equilibrium again.

4.4 Artificial Stock Markets

Among all applications of the agent-based approach to macroeconomic mod-
eling, the most exciting one is the artificial stock market. By all standards,
the stock market is qualified to be a complex adaptive system. However,

Computational Intelligence in Agent-Based Computational Economics 563

conventional financial models are not capable of demonstrating this feature.
On the contrary, the famous no-trade theorem shows how inactive this market
can be in equilibrium [146]. It was therefore invigorating when Holland and
Arthur established an economics program at the Santa Fe Institute in 1988
and chose artificial stock markets as their initial research project. The SFI
artificial stock market is built upon the standard asset pricing model [88,89].
What one can possibly learn from this novel approach was well summarized
in [127], which is in fact the first journal publication on an agent-based arti-
ficial stock market. A series of follow-up studies materialized the content of
this new fascinating frontier in finance.

Agent Engineering and Trading Mechanisms

Agent-based artificial stock markets have two mainstays: agent engineering
and institution (trading mechanism) designs. Agent engineering mainly con-
cerns the construction of financial agents. [144] showed how to use genetic
algorithms to encode trading strategies of traders. A genetic fuzzy approach
to modeling trader’s behavior was shown in [143], whereas the genetic neural
approach was taken by [110]. To simulate the agent-based artificial stock mar-
ket based on the standard asset pricing model, the AI-ECON Research Center
at the National Chengchi University, Taiwan developed software known as
the AI-ECON Artificial Stock Market (AIE-ASM). The AIE Artificial Stock
Market differs from the SFI Artificial Stock Market in the computational tool
that is employed. The former applies genetic programming, while the latter
has genetic algorithms. In AIE-ASM, genetic programming is used to model
agents’ expectations of the price and dividends. A menu-like introduction to
AIE-ASM Ver. 2 can be found in [63].

In [35] and [160] we see a perfect example of bringing different learn-
ing schemes into the model. The learning schemes incorporated into [35]
include empirical Bayesian traders, momentum traders, and nearest-neighbor
traders, whereas those included in [160] are neural network and momentum
traders. [109] gave a more thorough and general discussion of the construction
of artificial financial agents. In addition to models, data is another dimension
of agent engineering. What can be addressed here is the issue of stationarity
that the series traders are looking at. Is the entire time series representa-
tive of the same dynamic process, or have things changed in the recent past?
LeBaron studied traders who are initially heterogeneous in perception with
different time horizons, which characterize their interpretation of how much
of the past is relevant to the current decision making [110].

Chen and Yeh contributed to agent engineering by proposing a modified
version of social learning [58]. The idea is to include a mechanism, called the
business school. Knowledge in the business school is open for everyone. Traders
can visit the business school when they are under great survival pressure.
The social learning version of genetic programming is applied to model the

564 S.-H. Chen

evolution of the business school rather than directly on traders. Doing it this
way, one can avoid making an implausible assumption that trading strategies,
as business secrets, are directly imitable. [161] further combined this modi-
fied social learning scheme with the conventional individual learning scheme
in an integrated model. In this integrated model a more realistic description
of traders’ learning behavior is accomplished: the traders can choose to visit
the business school (learning socially), to learn exclusively from their expe-
rience (learning individually), or both. In their experiments, based on the
effectiveness of different learning schemes, traders will switch between social
learning and individual learning. Allowing such a competition between these
two learning styles, their experiment showed that it is the individual learn-
ing style which won the trust of the majority. To the best of our knowledge,
this is the only study which leaves the choice of the two learning styles to be
endogenously determined.

The second component of agent-based stock markets is the institutional
design. An institutional design should answer the following five questions: (i)
who can trade, (ii) when and how can orders be submitted, (iii) who may
see or handle the orders, (iv) how are orders processed, and (v) how are
prices eventually set. Trading institutional designs in the conventional SFI
artificial stock market either follow the Walrasian ‘tatonnement’ scheme or
the rationing scheme. This scheme describes a market operation procedure.
Basically, there is an auctioneer who serves as a market coordinator. In each
market period, the auctioneer announces a price to all market participants.
Based on this market price, participants submit their transaction plans, for
instance how much to buy or how much to sell. The auctioneer will then
collect all submissions. If there is an imbalance between demand and supply,
the auctioneer will then announce a new price, and the market participants
will submit new plans accordingly. This process continues until the auctioneer
finds a price which can equate demand to supply, and all transaction plans
will be carried out with this price, also called the ‘equilibrium price’. The
essence of tatonnement is that no single transaction can be allowed unless the
equilibrium price is found. This highly centralized trading system needs to be
distinguished from other less centralized or distributed trading systems.

[35] and [160], however, considered a double auction mechanism. This
design narrows the gap between artificial markets and the real market, and
hence makes it possible to compare the simulation results with the behavior
of real data, such as tick-by-tick data. Since stock market experiments with
human subjects were also conducted within the double auction framework
[139], this also facilitates conversation between the experimental stock market
and the agent-based artificial stock market.

Based on agent engineering and trading mechanism designs, agent-based
artificial stock markets can generate various market dynamics, including price,
trading volumes, the heterogeneity and complexity of traders’ behavior, and
wealth distribution. Among them, price dynamics is the one under the most

Computational Intelligence in Agent-Based Computational Economics 565

intensive study. This is not surprising, because ever since the 1960s price
dynamics has been the focus of studies on random walks, the efficient mar-
ket hypothesis, and market rationality (the rational expectations hypothesis).
With the advancement of econometrics, it further became the focus of the
study of non-linear dynamics in the 1980s.

Mis-Pricing

Agent-based artificial stock markets make two important contributions to our
understanding of the behavior of stock prices. First, they enable us to under-
stand what may cause the price to deviate from rational equilibrium price or
the so-called ‘fundamental value’.

Both [35] and [160] discussed the effect of momentum traders on price
deviation. Yang found that the presence of momentum traders can drive the
market price away from the homogeneous rational equilibrium price [160].
Chan reported a similar finding: adding momentum traders to a population
of empirical Bayesian traders has an adverse impact on market performance,
although price deviation decreased as time went on [35]. Empirical Bayesian
basically behaves like a Bayesian, except that the posterior distribution is
built upon the empirical rather upon a subjective distribution. For example,
in this context, the empirical Bayesian trader forms its posterior distribution
of the dividends by using the empirical distributions of both dividends and
prices.

LeBaron inquired whether agents with a long-horizon perception can learn
to effectively use their information to generate a relatively stable trading envi-
ronment [110]. The experimental results indicated that while the simple model
structure with fixed long horizon agents replicates the usual efficient market
results, the route to evolving a population of short horizon agents to long
horizons may be difficult. [20] and [111] found that when the speed of learn-
ing (the length of a genetic updating cycle) decreased (which forces agents to
look at longer horizon features), the market approached the REE.

[47] is another study devoted to price deviation. They examined how well a
population of financial agents can track the equilibrium price. By simulating
the artificial stock market with different dividend processes, interest rates,
risk attitudes, and market sizes, they found that the market price is not an
unbiased estimator of the equilibrium price. Except in a few extremely bad
cases, the market price deviates from the equilibrium price moderately from
−4% to +16%. The pricing errors are in fact not patternless. They are actually
negatively related to market sizes: a thinner market size tends to have a larger
pricing error, and a thicker market tends to have a smaller one. For the thickest
market which they have simulated, the mean pricing error is only 2.17%. This
figure suggests that the new classical simplification of a complex world may
still provide a useful approximation if some conditions are met, such as in this
case, the market size.

566 S.-H. Chen

Complex Dynamics

As to the second contribution, agent-based artificial stock markets also
enhance our understanding of several stylized features well documented in
financial econometrics, such as fat tails, volatility clusters, and non-linear
dependence. [111] showed that the appearance of the ARCH effect and the
non-linear dependence can be related to the speed of learning. [160] found that
the inclusion of momentum traders generates a lot of stylized features, such
as excess volatility, excess kurtosis (leptokurtotic), lack of serial independence
of return, and high trading volume.

Another interesting line is the study of emergent properties within the
context of artificial stock markets. Emergence is about “how large interacting
ensembles exhibit a collective behavior that is very different from anything
one may have expected from simply scaling up the behavior of the individ-
ual units” ([107]: 3). Consider the efficient market hypothesis (EMH) as an
example. If none of the traders believe in the EMH, then this property will
not be expected to be a feature of their collective behavior. Thus, if the
collective behavior of these traders indeed satisfies the EMH as tested by
standard econometric procedures, then we would consider the EMH as an
emergent property. As another example, consider the rational expectations
hypothesis (REH). It would be an emergent property if all our traders are
boundedly rational, with their collective behavior satisfying the REH as tested
by econometrics.

Chen and Yeh applied a series of econometric tests to show that the
EMH and the REH can be satisfied with some portions of the artificial time
series [59]. However, by analyzing traders’ behavior, they showed that these
aggregate results cannot be interpreted as a simple scaling-up of individ-
ual behavior. The main feature that produces the emergent results may be
attributed to the use of genetic programming, which allows us to generate a
very large search space. This large space can potentially support many fore-
casting models in capturing short-term predictability, which makes simple
beliefs (such as that where the dividend is an iid (independent and identically
distributed) series, or that when the price follows a random walk) difficult to
be accepted by traders. In addition to preventing traders from easily accepting
simple beliefs, another consequence of a huge search space is the generation of
sunspot-like signals through mutually-reinforcing expectations. Traders pro-
vided with a huge search space may look for something which is originally
irrelevant to price forecasts. However, there is a chance that such kinds of
attempts may mutually become reinforced and validated. The generation of
sunspot-like signals will then drive traders further away from accepting simple
beliefs.

Using Granger causality tests, [59] found that dividends indeed can help
forecast returns. By their experimental design, the dividend does not con-
tain the information of future returns. What happens is a typical case of

Computational Intelligence in Agent-Based Computational Economics 567

mutually-supportive expectations that make the dividend eventually contain
the information of future returns.

As demonstrated in [58] and [59], one of the advantages of agent-based
computational economics (the bottom-up approach) is that it allows us to
observe what traders are actually thinking and doing. Are they martingale
believers? Are they sunspot believers? Do they believe that trading volume
can help predict returns? By counting the number of traders who actually
use sunspots or trading volumes to forecast returns, one can examine whether
sunspot effects and the causal relation between stock returns and trading
volume can be two other emergent properties [49, 62].

Market Diversity and Market Efficiency

Yeh and Chen examined another important aspect of agent engineering, this
being market size (number of market participants) [162]. Few studies have
addressed the significance of market size on the performance of agent-based
artificial markets. One good exception is [26], whose simulation results showed
that the simple tradable emission permit scheme (an auction scheme) can be
the most effective means for pollution control when the number of participants
is small. However, as the number of participants increases, its performance
declines dramatically and becomes inferior to that of the uniform tax scheme.
Another exception is [33]. In most studies, the number of market participants
is usually determined in an arbitrary way, mainly constrained by the com-
putational load. [10], however, justified the number of participants from the
viewpoint of search efficiency. She mentioned that the minimal number of
strings (agents) for an effective search is usually taken to be 30 according to
the artificial intelligence literature. Nonetheless, agent-based artificial markets
have different purposes and concerns.

Related to market size is population size. In the case of social learning
(single-population GA or GP), market size is the same as population size.
However, in the case of individual learning (multi-population GA or GP),
population size refers to something different, namely, the number of solution
candidates each trader has. Like market size, population size is also arbitrarily
determined in practice.

Yeh and Chen studied the effect of market size and population size upon
market efficiency and market diversity under social and individual learning
styles [162] . Their experimental results can be summarized as two effects
on market efficiency (price predictability), namely, the size effect and the
learning effect. The size effect says that the market will become efficient when
the number of traders (market size) and/or the number of models (GP trees)
processed by each trader (population size) increases. The learning effect says
that the price will become more efficient if traders’ adaptive behavior becomes
more independent and private. Taking a look at market diversity, we observe

568 S.-H. Chen

very similar effects except for population size: market diversity does not go
up with population size. These findings motivate us to search for a linkage
between market diversity and market efficiency. A ‘theorem’ may go as follows:
a larger market size and a more independent learning style will increase the
diversity of traders’ expectations, which in turn make the market become more
active (high trading volume), and hence more efficient (less predictable). Their
simulation results on trading volumes also supported this ‘theorem’. They
further applied this ‘theorem’ to explain why the US stock market behaves
more efficiently than Taiwan’s stock market.

4.5 Market/Policy Design

One of the research areas in which agent-based computational economics and
experimental economics are closely intertwined is the double-auction market
(DA market), or the agent-based DA market. The agent-based market serves
as a good starting point for applying agent-based simulation to market/policy
design. One important application of agent-based computational models to
market/policy design is the electricity supply market [29, 125, 126]. In this
application area, we are convinced that agent engineering (learning schemes)
plays a crucial role in simulating the consequences of various market designs.

By agent engineering, [73] categorized agent-based models which have been
developed to characterize or understand data from human subject experiments
into three classes, namely, zero intelligent (ZI) agents, reinforcement and belief
learning, and evolutionary algorithms. Among the three, ZI agents were con-
sidered to be a useful benchmark or a good building block for developing more
advanced agent-based models. Zero-intelligent agents are introduced by [85],
which is the earliest ACE work motivated by the double-auction market exper-
iment.21 However, as far as market efficiency is concerned, ZI traders are not
sufficient for the market to converge to the social-welfare maximization price,
or the equilibrium price. The necessary condition, therefore, requires agents
to learn. Among all learning agents studied in the agent-based DA models,
the simplest one is the ZI Plus (ZIP) agents, introduced by [66].

Wu and Bhattacharyya continued this line of research and studied the
boundary beyond which ZIP traders may fail the market mechanism [159].
They introduced speculators into standard DA markets. They found that
ZIP traders can no longer guarantee market efficiency when there is a large
number of speculators, as compared to the number of normal traders. In some
scenarios, the efficiency losses about 25% of the social welfare.

The purpose in studying the agent-based double auction (DA) market is
to adequately equip ourselves to tackle the much more complex agent-based
electricity market. [124] gave a splendid review of the well-known Electric-
ity Market Complex Adaptive System (EMCAS) developed by the Argonne
21 For a survey of later developments, see [38].

Computational Intelligence in Agent-Based Computational Economics 569

National Laboratory. EMCAS is an agent-based electricity supply market
model written using the Recursive Agent Simulation Toolkit (Repast), a
special-purpose agent-based simulation tool. The research on the agent-based
electricity market is motivated by the undergoing transition from centrally
regulated electricity markets to decentralized markets. These transitions intro-
duce a highly intricate web of interactions of a large number of heterogeneous
companies and players, which causes the consequences of new regulatory struc-
tures largely unknown and leaves policy design in a state of high stakes.22

Given this uncertainty, agent-based models can help construct suitable labo-
ratories that can provide ranges of possibilities and test regulatory structures
before they are actually implemented. EMCAS now serves as the basis for
evaluating Illinois’ deregulation of the market.

Boyle presented an ambitious project on the agent-based model of the
whole criminal justice system in the UK, which was funded by the Home Office
in the UK [30]. The criminal justice system in England is delivered by three
diverse government bodies, the Home Office, the Department of Constitutional
Affairs, and the Crown Prosecution Service. Within the criminal justice system
as a whole, there must be some dependencies among the functions of the
three agencies. Nonetheless, the three constituents might not have been ‘joined
up’ sufficiently well to encourage the best use of resources, and this caught
the attention of the Treasury in their biennial spending review. Therefore,
the purpose of this project is to build an agent-based model to help diverse
operating groups engage in strategic policy making and take into account the
complex interactions within the criminal justice system so as to better observe
the impacts of policy.

To make the model fulfill this objective, [30] introduced a new thinking
regarding agent-based models, called the mirror function, which is equivalent
to producing a model of the whole criminal justice system in which all actors in
the system acknowledge that the model was really ‘them’. The work entailed
gathering evidence of links between the behavior and actions of one person or
group of people, and those of another, and through this making arguments for
the best use of resources, while also reaching agreement between each group
of people regarding all of this. This is essentially to do with encouraging
a change in the style of working of these core government agencies. Boyle
therefore demonstrates a very distinctive class of agent-based models, which
integrates a vein of social work into model-building [30].23

22 This is exemplified by the extremely unsatisfactory experience of California.
While, according to economic theory, deregulation and free competition will lead
to increased economic efficiency expressed in higher quality services and products
at lower prices, the reality of today’s emerging electricity markets does not fit
this straightforward economic model.

23 At present, there are very few agent-based models of this sort; [120] is the only
case known to this author.

570 S.-H. Chen

5 Pushing the Research Frontier with CI

5.1 Developments in Agent Engineering

An essential element of the agent-based modeling is agent engineering. Over
the last decade, the progress made in modeling adaptive behavior has been
particularly noticeable. There seems to have been a general tendency to enrich
agents’ adaptive behavior from several different perspectives. This enrichment
has been made possible mainly due to extensive applications of computational
intelligence to economics.

First, simple adaptive behavior has been extended to complex adaptive
behavior. Initially, agents’ decisions were simply characterized by parametric
models; usually, there were just numbers over a bounded real space. [10]–[12]
are typical examples (see Sect. 4 for details). All important decisions such as
quantity supply, labor supply, savings, financial portfolios, and investment in
human capital were characterized by numbers rather than rules. As a result,
the things revealed by the adaptive processes were best viewed as a series of
number crunching exercises. Sophisticated learning or adaptive behavior were
not able to appear in these simple adaptive models.

Later on, the notion of using rules instead of numbers to character-
ize agents’ decisions was brought in by [31]– [33], [81], and many others.
These series of efforts brought about discernible progress: they formally intro-
duced agents which are able to forecast with rules (models). Nonetheless, their
forecasting behavior was largely confined to linear regression models. This
restriction was unavoidable because at that stage economists did not know
much about dealing with non-parametric adaptive behavior, and linear regres-
sion models seemed to be the natural starting point. However, there is neither
sound theoretic nor empirical support for the assumption that agents’ adaptive
behavior may be parameterized.

A breakthrough was made by [9], [53] and [112] via genetic programming
(GP). The use of genetic programming not only makes agents able to engage
in non-linear and non-parametric forecasting, but it also makes them able to
think and reason. This last virtue is crucial because it helps us to represent
a larger class of cognitive capabilities, such as making plans and strategies.
This development contributes to the advancement of the agent-based models
which are full of the non-trivial strategic behavior of agents, for instance,
games, auctions, and financial markets. The AI-ECON Research Center in
Taipei has now launched a research project – referred to as the Functional-
Modularity Foundation of Economics – that has further enlarged the adaptive
behavior to encompass preferences, commodities, technology, human capital,
and organizations [41, 42].

By manipulating a set of primitives with genetic operators, one can grow
a great variety of human cognitive processes. In principle, there is no limit to

Computational Intelligence in Agent-Based Computational Economics 571

those growing processes. It is the survival pressure endogenously generated via
agent interactions that determines their size. In this case, neither do we need to
assume that the agents follow simple rules, as the KISS (keep it simple, stupid)
principle suggests, nor do we assume that they are sophisticated. Simplicity or
complexity is not a matter of an assumption but a matter of emergence. For
example, in a simple deterministic agent-based cobweb model, the literature
shows that all surviving firms have indeed followed simple and myopic rules
to forecast price. However, their behavior became more complicated when
speculators were introduced into the markets. In addition, when turning to
the stock market, agents’ behavior could switch between simple rules and
sophisticated rules.24 In a nutshell, in ACE, what determines the survivability
of a type of agent is not the model designers, but the natural law of the models;
we shall see more on this in Sect. 5.2.

The second development is concerned with the behavioral foundations of
agent engineering. While CI tools have been extensively applied to agent
engineering, their ability to represent sensible adaptive behavior has been
questioned since agent-based economic models became popular. Since 1999, a
series of efforts have been made in an attempt to justify the use of genetic algo-
rithms in agent-based modeling. However, most of these studies are mainly
built upon theoretical arguments. [94] were the first to use evidence from
interviews and questionnaires to justify the use of genetic algorithms in their
agent-based foreign exchange markets. Their study highlights the significance
of the field study – an approach frequently used by sociologists – to agent engi-
neering. Duffy’s agent-based model of a medium of exchange applied the data
from laboratory experiments with human subjects to justify the use of rein-
forcement learning [72]. His study showed how agent-based economic models
can benefit from experimental economics.

Another related development has occurred in the use of natural language.
People frequently and routinely use natural language or linguistic values, such
as ‘high’, ‘low’, and so on, to describe their perception, demands, expectations,
and decisions. Some psychologists have argued that our ability to process
information efficiently is the outcome of applying fuzzy logic as part of our
thought process. Evidence on human reasoning and human thought processes
supports the hypothesis that at least some categories of human thought are
definitely fuzzy. Yet, early agent-based economic models have assumed that
an agent’s adaptive behavior is crisp. Tay and Linn made progress in this
direction by using a genetic-fuzzy classifier system (GFCS) to model traders’
adaptive behavior in an artificial stock market [143].

[143] provided a good illustration of the non-equivalence between the
acknowledgement of the cognitive constraint and the assumption of simple
agents. It is well-known that the human mind is notoriously bad at intuitively
24 In plain English parlance, they sometimes regarded George Soros as their hero,

while at other times they developed a great admiration for Warren Buffett.

572 S.-H. Chen

comprehending exponential growth. However, there is no evidence that traders
on Wall Street are simple-minded. Tay and Linn’s work recognized the dif-
ference, and appropriately applied the GFCS to lessen agents’ reasoning load
via the use of natural language.

[72], [94], and [143] can all be regarded as a starting point for a more
remarkable development in agent engineering: the CI tools employed to model
agents’ adaptive behavior are grounded in strong evidence within the cognitive
sciences. It is at this point that agent-based modeling should have closer inter-
actions with the field and panel study, experimental economics and behavioral
economics (See more below in Sect. 5.3).

5.2 Distinguishing Features

While the progress made in agent engineering is evident, a more subtle issue
of ACE is: “does agent-based computational economics have anything worth-
while to offer economists in general, or is it only of interest to practitioners
of its own paradigm?” In this Section, we shall argue that the development of
ACE has already demonstrated some distinguishing features with insightful
lessons which are generally not available from neoclassical macroeconomics.
The distinguishing features, which may interest economists in general, are
two-fold. First, ACE helps build a true micro-foundation of macroeconomics
by enabling us to study the micro-macro relation. This relation is not just
a linear scaling-up, but can have a complex ‘chemical’ effect, known as the
emergent property. Consequently, economics becomes a part of the Sciences of
Emergence. Second, ACE is able to demonstrate a lively co-evolution process,
which provides a new platform for testing economic theories. Moreover, what
comes with the co-evolution process is a novelty-generation process. The latter
is, in particular, the weakest area of neoclassical economics.

Micro-Macro Relation and Emergent Properties

Agent-based modeling provides us with a rich opportunity to study the so-
called ‘micro-macro relation’, which is beyond the feasibility of the neoclassical
economics that consists of only a few representative agents. The first type of
micro-macro study involves laying the foundation for the aggregate behav-
ior upon the agents’ interacting adaptive schemes. A series of efforts were
made by [17] and [70] to attribute, in an analytical way, the appearance of
some interesting macroeconomic phenomena, such as fluctuations in foreign
exchange rates, the bid-ask spread, hyperinflation and economic take-off, to
the adaptive behavior driven by GA. Elements, such as self-reinforcement and
critical mass, upon which the conventional arguments are built, are actually
encapsulated into GAs. [53], [56] and [60], on the other hand, showed the sig-
nificance of the survival-of-the-fittest principle to the convergence to Pareto

Computational Intelligence in Agent-Based Computational Economics 573

optimality. In their agent-based cobweb model, OLG model of saving and infla-
tion, and coordination games, it was shown that the property of converging
to Pareto optimality will break down if survival pressure is removed.

The second type of micro-macro study is concerned with the consistency
between the micro behavior and the macro behavior. A particularly interesting
thing is that the micro behavior can sometimes be quite different from the
macro behavior. Both the work done by [81] on the cobweb model and [58] and
[59] on the asset pricing model showed that the time series of the market price
(an aggregate variable) followed a simple stochastic process. However, there is
no simple description of the population dynamics of individual behavior. The
simple stochastic price behavior was, in effect, generated by a great diversity
of agents whose behavior was constantly changing. [58] proposed a measure
for the complexity of an agent’s behavior and a measure of the diversity of
an agent’s complexity, and it was found that both measures can vary quite
widely, regardless of the simple aggregate price behavior.

In addition, using the micro-structure data, [49], [58], [59], and [62] ini-
tiated an approach to study what is called the emergent property. By that
definition, they found that a series of aggregate properties, such as the efficient
market hypothesis, the rational expectations hypothesis, the price-volume
relation and the sunspot effect, which were proved by rigorous economet-
ric tests, were generated by a majority of agents who did not believe in these
properties. Once again, our understanding of the micro behavior does not
lead to a consistent prediction of the macro behavior. The latter is simply
not just the linear scaling-up of the former. Conventional economics tends to
defend the policy issues concerned with the individual’s welfare (for instance
the national annuity program), based on macroeconometric tests such as the
permanent income hypothesis. Agent-based macroeconomics may invalidate
this approach due to emergent properties.

Co-Evolution

Briefly, co-evolution means that everything depends on everything else. The
performance of one strategy depends on the composition of the strategies with
which it interacts, and the fundamental push for agents to adapt arises because
other agents are adapting as well. This idea is by no means new to economists.
Actually, it is the main subject of evolutionary game theory. However, what
has not been shown explicitly in the evolutionary game theory or mainstream
economics is that it is the force of co-evolution which generates novelties. We
shall say a few words concerning their relation here, but more on novelty in
the next Section.

Novelties-generation, from its general characteristics to its formation pro-
cess, is little known in mainstream economics. For example, there is no
formal (mathematical) description of how the MS-DOS system eventually led

574 S.-H. Chen

to the MS-Windows system. Neither is there an abstract description show-
ing how commodities A1, A2, . . . , An in the early days lead to commodities
B1, B2, . . . , Bm at a later stage, or how a population of behavior years ago
leads to a different population of behavior at present. Quite ironically, the
vision of the ‘Father of Neoclassical Economics’, Alfred Marshall, namely,
“Economics, like biology, deals with a matter, of which the inner nature and
constitution, as well as outer form, are constantly changing,” was virtually
not carried out at all by his offspring (neoclassical economists) [118].

ACE attempts to recast economics along biological and evolutionary lines.
Within the co-evolutionary framework, the system which an agent faces is
essentially open and incomplete. The optimal kinds of behavior or strategies
which interest most economists may not necessarily exist in this system. In
his agent-based cobweb model, [81] used the survival distribution function of
firms to show waves of evolutionary activity. In each wave, one witnesses the
sudden collapse of a strongly dominating strategy, the ‘optimal’ strategy. Very
typically, the co-evolution demonstrated in the agent-based model is not a
peaceful state of co-existence, but is an incessant struggle for survival where no
strategy can be safe from being replaced in the near future. Novel strategies are
spontaneously developed and old ‘optimal’ strategies are continually replaced.

This feature casts doubt on the ‘optimal’ economic behavior which is not
derived from the agent-based co-evolutionary context. In this way, Chen and
Huang’s agent-based model of investment lent support to the non-optimality
of the capital asset pricing model (CAPM) [45]. The optimality of the CAPM
was originally derived from a general equilibrium setting. However, they sim-
ulated an agent-based multi-asset market, and showed that, in most of their
simulations, the fund managers who followed the CAPM did not survive when
investors with the constant relative risk aversion presented.

In [45], the CAPM traders and many different types of traders were all
introduced to the market right at the beginning (at the initialization stage).
They were competing with other agents whose portfolio strategies were evolv-
ing over time and which were characterized by GA. The annihilation of the
CAPM traders was the result of this setting. This kind of test is referred to
as the formula-agent approach. Formula agents are agents whose behavior or
decision rules are inspired by economic theory. Based on this approach, the
economic behavior predicted by economic theory is tested by directly adding
formula agents to the initial population. Doing so may be biased because
the resultant co-evolution process may be determined by these initial hints,
a common phenomenon known as path dependence.25 Therefore, the formula-
agent approach is relatively weak as opposed to an alternative approach to
25 Path dependence is ubiquitous in ABM. For example, in Dawid’s agent-based

model of double auctions, the distribution of competitive prices is sensitively
dependent on the distribution of initial bids and asks [69], [70].

Computational Intelligence in Agent-Based Computational Economics 575

the co-evolution test, and Lensberg’s agent-based model of investment is an
illustration of this alternative [112].

Lensberg’s model tested Bayesian rational investment behavior. However,
unlike [45], [112] did not initialize the market with any Bayesian rational
investor. In other words, all agents’ investment rules were generated from
scratch (by GP). It was then shown that, in later periods of evolution, what
dominated the populations (the surviving firms) were the behavioral rules as if
they were expected utility maximizers with Bayesian learning rules. Therefore,
the Bayesian rational investment rule was validated as a behavior emerging
from the bottom.

However, not all cases have lent support to what economic theory pre-
dicts. [110]’s version of the SFI (Santa Fe Institute) artificial stock market is
a case in point. Stationarity associated with the asymptotic theory plays an
important role in current developments in econometrics. In the mainstream
rational-expectations econometrics, agents are assumed to be able to learn
from this stationary environment by using the so-called Kolmogorov-Wiener
filter. The use of this filter can make sense only if agents believe that the entire
time series is stationary, and never doubt that things may have changed in
the recent past. Agents with this belief are called ‘long-horizon agents’ in
LeBaron’s ABM. In a similar way to [112], LeBaron questioned whether these
long-horizon agents can eventually emerge from the evolution of a population
of short-horizon agents, given that the true dividends-generation process is
indeed stationary [110]. Interestingly, he found that while long-horizon agents
are able to replicate usual efficient market results, evolving a population of
short-horizon agents into long-horizon agents is difficult. This study, there-
fore, presents a typical coordination failure problem frequently addressed in
macroeconomics.

Within this co-evolution test framework, the maximizing-expected-utility
(MEU) behavior of investors, known as the principle of maximizing certainty
equivalence, was also rejected by [34], [113], and [142]. In their agent-based
models of investment under uncertainty, they all came up with the same con-
clusion: those who survive were not the most efficient in a normative sense –
in other words, the MEU agents were not able to survive. Hence, in a sense,
the equivalence between efficiency and survival broke down. What happened
instead was that the surviving investors either took too much risk [113] or
were too cautious [34, 142].

Novelties

As mentioned earlier, in ACE, what may come with a co-evolutionary process
is a novelties-generation process. This feature is similar to Hayek’s evolu-
tionary concept of ‘competition as a discovery procedure.’ The neoclassical
economic models are completely silent on the novelties-generation process,

576 S.-H. Chen

from their general characteristics to their formation process. One basically
cannot anticipate anything unanticipated from the neoclassical model. All
types of economic behavior are determined exogenously and can only be
renewed manually by the model designers in a top-down manner. This makes
it very hard for neoclassical economics to give a constructive notion of pref-
erences, commodities, technology, human capital, and organization, concepts
that are fundamentally related to the theory of economic change.

Back in the late 1980s, Holland and Arthur had already sketched a research
idea, known as ‘growing artificial economy’, which was basically to simulate
the evolution of an economy from its primitive state to the advanced state.
This big plan, however, was never carried out. Instead, what was actually
implemented was found in Epstein and Axtell’s famous book, ‘growing artifi-
cial societies.’ In a model of cellular automata, they evolved many interesting
kinds of economic and social behavior, including trade, migration, disease, dis-
tribution of wealth, social networks, sexual reproduction, cultural processes,
and combat. In addition to this major piece of work, [132] studied how money
as a medium of exchange can emerge from a bartering economy, and [17] also
simulated the appearance of an economic take-off (the industrial revolution).

Despite these studies, one has to say that the novelties-generation process
has not been well exploited given the current state of ABM. There should be
more left for the researchers to do. In their research project, the functional-
modularity foundation of economics, [41, 42] proposed an agent-based model
of preference changes and technology formation to grow both technology and
preferences. In their model, consumers’ current preferences will determine the
direction of technology advancement. However, the technology developed will
in turn evolve the preferences as well. GP is applied here to give size-free and
shape-free representation of technology and preferences.

The use of genetic programming in economics provides economists a great
opportunity to rethink some hundred-year-old ideas. In particular, it enables
economists to implement the ideas of economic evolution or progress by incor-
porating and hence acknowledging the importance of modularity. Simulating
economic evolution with functional modularity is not restricted to technol-
ogy or product innovation. More challenging tasks are its application to labor
markets and organizations. While the idea that labor as capital (known as
‘human capital’), has been studied for almost 40 years, the process of accu-
mulating human capital – and hence the role of education, as well as on-job
training – is yet to be established.

5.3 Future Directions

Before ending this Section, we would like point out some directions for fur-
ther research so as to see more opportunities and challenges opening for
applications of computational intelligence tools.

Computational Intelligence in Agent-Based Computational Economics 577

Experimental Economics and Behavioral Economics

It becomes gradually clear that agent-based computational economics should
be able to interact with experimental and behavioral economics in a more inte-
grated framework. A series of papers published recently motivated the need
for an integrated framework and sketched how this work can be done. First,
the behavioral approach and the agent-based approach can collaboratively
work together in a bi-directional manner. On the one hand, experimental and
behavioral approaches can help answer some modeling issues related to agent
engineering, while, on the other hand, agent-based computational finance can
help test the robustness or the generality of some behavioral rules observed
from psychological laboratory experiments.

[43] serves as an example of the first direction. While the essence of agent-
based computing is agents, not so much has been said as to how to model or
program these agents. Disputes still prevail on the issue like the simple/naive
agents versus the sophisticated/smart agents.26 A proposed solution to this
problem is to work with real human behavior, in particular, when the respec-
tive fields or an experimental study are available. For example, there are
already some empirical observations regarding gamblers’ behavior; hence, one
may get some ideas on how a gambling agent should be programmed in light
of the empirical evidence. Chen and Chie’s work on the agent-based modeling
of lottery markets serves as a demonstration of this idea [43].

[48] serves as an example of the other direction. Psychologists have been
long distinct from economists in the rational assumption of human behav-
ior. The gap between the two has, however, been narrowed in recent years,
thanks to a series of celebrated works by Tverskey, Kahneman, and their
followers. Findings based on a series of psychological experiments concerning
decision-making under risk and uncertainty are now applied to address a num-
ber of financial anomalies, which fosters the growing field currently known as
behavioral finance.

Chen and Liao, however, questioned the legitimacy of financial models
directly built upon psychological experiments [48]. Their main concern is that
psychological experiments which lend support to various cognitive biases seem
to focus only on independent individual behavior in a rather static environ-
ment. This setting is, therefore, distant from financial markets, where agents
are able to learn and adapt in an interactively dynamic environment. As
a result, various cognitive biases observed from the psychological experi-
ments may be corrected via learning and may not be exogenously fixed as
in most behavioral financial models. [48] proposed an alternative: instead of
exogenously imposing a specific kind of behavioral bias (for example overcon-
fidence or conservatism) on the agents, we can canvass the emergence and/or

26 See [50] for an in-depth discussion of this issue.

578 S.-H. Chen

the survivorship of this behavioral bias in the highly dynamic and complex
environment through computer simulations.

Second, when software agents are commonly used to replace human agents
in making decisions and taking action in an era of electronic commerce, human
agents and software agents can quite often be placed in a common arena and
their interaction becomes more intense than ever. Questions pertaining to the
consequences of this interaction, therefore, become crucial. [87] pioneered such
a research direction, and raised two fundamental issues which define this line
of research. First, will artificial agents in markets influence human behavior?
Second, will the interaction between human and artificial agents have a posi-
tive or negative effect on the market’s efficiency? They designed a continuous
double auction market in the style of the Iowa electronic market, and intro-
duced software agents with a passive arbitrage seeking strategy to the market
experiment with human agents. Whether or not the human agents are well
informed of the presence of the software agents can have significant impacts
upon market efficiency (in the form of price deviations from the fundamental
price). They found that if human agents are well informed, then the presence
of software agents triggers more efficient market prices when compared to the
baseline treatment without software agents. Otherwise, the introduction of
software agents results in lower market efficiency.27

Agent-Based Econometric Modeling

We now have seen some progress regarding how agent-based models can be
built upon laboratory experiments with human subjects, field studies, and
social work, but not directly with the data themselves. This is concerned with
agent-based econometric models. The complexity of the agent-based models
makes their empirical estimation a daunting task, if not an impossible one.
Therefore, few attempts have been made to conduct an econometric analysis of
an agent-based model. However, recently, we have started to see some progress
in the estimation of some relatively simple agent-based models; [122] was one
of the pioneering efforts.

[122] can be regarded as an outcome of the new research trend that embeds
conventional discrete choice models, also known as the qualitative response
models, in a social network, and examines the impact of the social interaction
upon individuals’ discrete choices. Other similar works can be found in [28]
and [74]. With moderate degrees of simplifying assumptions on individuals’
decision models as well as interaction mechanisms, this network-based agent-
based model can be parameterized and estimated as an econometric model.
This is basically what was done in [122], which estimated the interaction
mechanism among young people in relation to smoking behavior by using the
27 These two issues have been further pursued in the recent development of the

U-Mart platform [103,133,145].

Computational Intelligence in Agent-Based Computational Economics 579

result of [8].28 Its empirical results strongly support the presence of positive
peer effects in smoking behavior among young people.

Certainly, not all agent-based econometric models are network-based.
There are a series of agent-based financial econometric models which do not
explicitly refer to a network or a graph [4, 5, 155].

Agent-Based Social Networks

Having noticed that agent-based econometric models were first successfully
developed in the area of the network-based discrete choice models, we noticed
that the social network plays an increasingly important role in ACE models.
In fact, the network should be an essential ingredient of agent-based mod-
els, while most agent-based simulation models do not explicitly include this
element.

Network externalities may be viewed as one of the best places to see the use
of agent-based social networks. The celebrated work [97] was demonstrated in
an agent-based manner by [148], who built an agent-based model and evalu-
ated it by verifying the simulation results with conventional Beta and VHS
systems. [83] enhances our understanding of the significance of network effects
by creating agent-based computational simulations of such markets. Insights
into the dominance of the inferior technologies are further explored within a
model called ‘Standard-Scape’.

6 Concluding Remarks

Unlike most tutorials on the economic and financial applications of compu-
tational intelligence, this Chapter is not about how CI tools are applied to
economics and finance as merely an optimization numerical tool. Instead,
we have a broader scope, namely to use CI tools to build economic agents
with some reasonable and realistic degree of autonomy, and then study the
emergent phenomena resulting from a society of these autonomous agents.
In this sense, CI is introduced to economics as an algorithmic foundation of
autonomous agents. We review two major algorithmic foundations, namely,
neural networks and evolutionary computation. While the review is not
exhaustive, the essential idea of using other tools to build autonomous agents
and hence evolve the economy is largely the same. A well-motivated reader
should be able to see room for other alternative algorithmic foundations, such
28 [8] can be read as one of the earliest available econometric results of agent-based

models. Given the profile of individual attributes and the social interaction mech-
anism, [8] provides an analytical solution for the equilibrium distribution of the
collection of individuals’ behavior. Hence, it is possible to describe the macro
equilibrium from the micro level.

580 S.-H. Chen

as fuzzy logic, decision trees, Bayesian networks, and reinforcement learn-
ing. The general question left for further study is how these different CI
tools, under what specific environment, can successfully characterize human
decision-making process.

In the second part of this Chapter, we reviewed the early applications of
CI to agent-based computational economics. We saw how CI can help relax
the stringent assumptions frequently used in old-fashion economics, and bring
back some missing processes due to the learning or bounded rational behav-
ior of agents. While making economic predictions using ACE models is still
difficult, the use of CI certainly enhance some of our flexibility to simulate
possible futures. In this review, we have witnessed how CI can help build more
realistic ACE models such that they can be useful in policy design.

The nature of economics is change and evolution, and what makes it change
and evolve is humans. CI provides alternative hypotheses or modeling of the
microscopic details of human behavior. So long as these details are not trivial,
CI can help economists to establish quality models as illustrated in the many
works reviewed in this Chapter.

Acknowledgements

The author is grateful to one of the anonymous referees for their helpful
suggestions. The author is also grateful to Professor John Fulcher for his
painstaking efforts made in editing the Chapter. Research support in the form
of NSC grant No. NSC. 95-2415-H-004-002-MY3 is gratefully acknowledged.

References

1. Adcock A, Thangavel1 A, Whitfield-Gabrieli S, Knutson B, Gabrieli J
(2006) Reward-motivated learning: Mesolimbic activation precedes memory
formation. Neuron, 50(3): 507–517.

2. Aha D (1997) Lazy Learning. Kluwer, Boston, MA.
3. Aha D, Kibler D, Marc K (1991) Instance-based learning algorithms. Machine

Learning, 6(1): 37–66.
4. Alfarano S, Lux T, Wagner F (2005) Estimation of agent-based models: the

case of an asymmetric herding model. Computational Economics, 26(1): 19–49.
5. Alfarano S, Lux T, Wagner F (2007) Empirical validation of stochastic mod-

els of interacting agents: a ‘maximally skewed’ noise trader model. European
Physics J. B, 55: 183–187.

6. Allen F, Karjalainen R (1999) Using genetic algorithms to find technical
trading rules. J. Financial Economics, 51(2): 245–71.

7. Alvarez-Diaz M, Alvarez A (2005) Genetic multi-model composite forecast for
nonlinear prediction of exchange rates. Empirical Economics, 30: 643–663.

8. Amemiya T (1975), Qualitative response models. Annals Economics and Social
Management, 4: 363–372.

Computational Intelligence in Agent-Based Computational Economics 581

9. Andrew M, Prager R (1994) Genetic programming for the acquisition of dou-
ble auction market strategies. In: Kinnear K Jr. (ed.), Advances in Genetic
Programming. MIT Press, Cambridge, MA: 355–368.

10. Arifovic J (1994) Genetic algorithms learning and the cobweb model. J.
Economic Dynamics and Control, 18(1): 3–28.

11. Arifovic J (1995) Genetic algorithms and inflationary economies. J. Monetary
Economics, 36(1): 219–43.

12. Arifovic J (1996) The behavior of the exchange rate in the genetic algorithm
and experimental economies. J. Political Economy, 104(3): 510–541.

13. Arifovic J (2001) Evolutionary dynamics of currency substitution. J. Economic
Dynamics and Control, 25: 395–417.

14. Arifovic J (2002) Exchange rate volatility in the artificial foreign exchange mar-
ket. In: Chen S-H (ed.) Evolutionary Computation in Economics and Finance.
Physica-Verlag, Berlin: 125–136.

15. Arifovic J, Eaton B (1995) Coordination via genetic learning. Computational
Economics, 8(3): 181–203.

16. Arifovic J, Gencay R (2000) Statistical properties of genetic learning in a model
of exchange rate. J. Economic Dynamics and Control, 24: 981–1005.

17. Arifovic J, Bullard J, Duffy J (1997) The transition from stagnation to growth:
an adaptive learning approach. J. Economic Growth, 2(2): 185–209.

18. Armano G, Murru A, Marchesi M (2002) NXCS – A hybrid approach to
stock indexes forecasting. In: Chen, S-H (ed.) Genetic Algorithms and Genetic
Programming in Computational Finance. Kluwer, Boston, MA.

19. Arthur B (1992) On learning and adaptation in the economy. SFI Economics
Research Program, 92-07-038.

20. Arthur W, Holland J, LeBaron B, Palmer R, Tayler P (1997) Asset pricing
under endogenous expectations in an artificial stock market. In: Arthur W,
Durlauf S, Lane D (eds.) The Economy as an Evolving Complex System II.
Addison-Wesley, Reading, MA: 15–44.

21. Axelrod R (1997) Advancing the art of simulation in the social sciences.
In: Conte R, Hegselmann R, Terna P (eds.) Simulating Social Phenomena.
Springer-Verlag, Berlin: 21–40.

22. Azariadis C, Guesnerie R (1986) Sunspots and cycle. Review Economic Studies
LIII: 725–737.

23. Azoff M (1994) Neural Network Time Series: Forecasting of Financial Markets.
Wiley, New York, NY.

24. Baestaens D, Van Den Bergh W, Wood D (1994) Neural Network Solutions for
Trading in Financial Markets. Pitman, London, UK.

25. Bauer R. Jr (1994) Genetic Algorithms and Investment Strategies. Wiley, New
York, NY.

26. Bell R, Beare S (2002) Emulating trade in emissions permits: An application of
genetic algorithms. In: Chen S-H (ed.) Evolutionary Computation in Economics
and Finance. Physica-Verlag, Heidelberg, Germany: 161–175.

27. Birchenhall C, Lin J-S (2002) Learning and convergence to Pareto optimal-
ity. In: Chen S-H. (ed.) Genetic Algorithms and Genetic Programming in
Computational Finance. Kluwer, Boston, MA: 419–440.

28. Bonabeau E (2003) Econometrics of agent-based models. Proc. 2nd Lake
Arrowhead Conf. Human Complex Systems (Keynote Speech), 19–22 March,
Lake Arrowhead, CA.

582 S.-H. Chen

29. Bower J, Bunn D (2001) Experimental analysis of the efficiency of uniform-
price versus discriminatory auctions in the England and Wales electricity
market. J. Economic Dynamics and Control, 25: 561–592.

30. Boyle S, Guerin S, Kunkle D (2005) An application of multi-agent simulation
to policy appraisal in the criminal justice system. In: Chen S-H, Jain LC,
Tai C-C (eds.) Computational Economics: A Perspective from Computational
Intelligence. Idea Group, Hershey, PA: 228–234.

31. Bullard J, Duffy J (1998) A model of learning and emulation with artificial
adaptive agents. J. Economic Dynamics and Control, 22: 179–207.

32. Bullard J, Duffy J (1998) Learning and the stability of cycles. Macroeconomic
Dynamics, 2(1): 22–48.

33. Bullard J, Duffy J (1999) Using genetic algorithms to model the evolution of
heterogeneous beliefs. Computational Economics, 13(1): 41–60.

34. Cacho O, Simmons P (1999) A genetic algorithm approach to farm investment.
Australian J. Agricultural and Resource Economics, 43(3): 305–322.

35. Chan N, LeBaron B, Lo A, Poggio T (1999). Agent-based models of finan-
cial markets: a comparison with experimental markets. Unpublished Working
Paper, MIT Artificial Markets Project, MIT, MA.

36. Chen J, Xu D (1998) An economic forecasting system based on recurrent neural
networks. In: Proc. IEEE Intl. Conf. Systems, Man, and Cybernetics, 14–18
October, San Diego, CA. IEEE Press, New York, NY, 2: 1762–1767.

37. Chen S-H (1997) On the artificial life of the general economic system (I): the
role of selection pressure. In: Hara F, Yoshida K (eds.) Proc. Intl. Symp. System
Life, 21–22 July, Tokyo, Japan: 233–240.

38. Chen S-H (2000) Toward an agent-based computational modeling of bar-
gaining strategies in double auction markets with genetic programming. In:
Leung K-S, Chan L-W, Meng H (eds.) Intelligent Data Engineering and Auto-
mated Learning – IDEAL 2000: Data Mining, Financial Engineering, and
Intelligent Agents, Lecture Notes in Computer Science 1983. Springer-Verlag,
Berlin: 517–531.

39. Chen S-H (ed.) (2002) Evolutionary Computation in Economics and Finance.
Physica-Verlag, Berlin.

40. Chen S-H (ed.) (2002) Genetic Algorithms and Genetic Programming in
Computational Finance. Kluwer, Boston, MA.

41. Chen S-H, Chie B-T (2004) Agent-based economic modeling of the evolution of
technology: the relevance of functional modularity and genetic programming.
Intl. J. Modern Physics B, 18(17–19): 2376–2386.

42. Chen S-H, Chie B-T (2005) A functional modularity approach to agent-based
modeling of the evolution of technology. In: Namatame A, Kaizouji T, Aruka Y
(eds.) The Complex Networks of Economic Interactions: Essays in Agent-Based
Economics and Econophysics, Lecture Notes in Economics and Mathematical
Systems 567, Springer-Verlag, 165–178.

43. Chen S-H, Chie B-T (2007) Lottery markets design, micro-structure, and
macro-behavior: An ACE approach. J. Economic Behavior and Organization,
(in press).

44. Chen S-H, He H (2003) Searching financial patterns with self-organizing maps.
In: Chen S-H, Wang P (eds.) Computational Intelligence in Economics and
Finance. Springer-Verlag, Berlin: 203–216.

Computational Intelligence in Agent-Based Computational Economics 583

45. Chen S-H, Huang Y-C (2007) Risk preference, forecasting accuracy and sur-
vival dynamics: simulations based on a multi-asset agent-based artificial stock
market. J. Economic Behavior and Organization. (in press).

46. Chen S-H, Kuo T-W (1999) Towards an agent-based foundation of financial
econometrics: an approach based on genetic-programming artificial markets.
In: Banzhaf W, Daida J, Eiben A, Garzon M, Honavar V, Jakiela M, Smith R
(eds.) Proc. Genetic and Evolutionary Computation Conf., Morgan Kaufmann,
San Mateo, CA, 2: 966–973.

47. Chen S-H, Liao C-C (2002) Price discovery in agent-based computational
modeling of artificial stock markets. In: Chen S-H (ed.) Genetic Algorithms
and Genetic Programming in Computational Finance. Kluwer, Boston, MA:
333–354.

48. Chen, S-H, Liao C-C (2004) Behavior finance and agent-based computational
finance: toward an integrating framework. J. Management and Economics, 8.

49. Chen S-H, Liao C-C (2005) Agent-based computational modeling of the stock
price-volume relation. Information Sciences, 170: 75–100.

50. Chen S-H, Tai C-C (2006) On the selection of adaptive algorithms in ABM: a
computational-equivalence approach. Computational Economics, 28(1): 51–69.

51. Chen S-H, Wang P (eds.) (2003) Computational Intelligence in Economics and
Finance. Springer-Verlag, Berlin.

52. Chen S-H, Yeh C.-H (1996) Genetic programming and the efficient mar-
ket hypothesis. In: Koza J, Goldberg D, Fogel D, Riolo R (eds.) Genetic
programming 1996: Proc. 1st Annual Conf. MIT Press, Cambridge, MA: 45–53.

53. Chen S-H, Yeh C-H (1996) Genetic programming learning and the cobweb
model. In: Angeline P (ed.) Advances in Genetic Programming 2. MIT Press,
Cambridge, MA: 443–466.

54. Chen S-H, Yeh C-H (1997) Toward a computable approach to the efficient mar-
ket hypothesis: an application of genetic programming. J. Economic Dynamics
and Control, 21: 1043–1063.

55. Chen S-H, Yeh C-H (1997) Modeling speculators with genetic programming.
In: Angeline P, Reynolds R, McDonnell J, Eberhart R (eds.) Evolutionary
Programming VI, Lecture Notes in Computer Science 1213. Springer-Verlag,
Berlin: 137–147.

56. Chen S-H, Yeh C-H (1999) Modeling the expectations of inflation in the OLG
model with genetic programming. Soft Computing, 3(2): 53–62.

57. Chen S-H, Yeh C-H (2000) Simulating economic transition processes by genetic
programming. Annals Operation Research, 97: 265–286.

58. Chen S-H, Yeh C-H (2001) Evolving traders and the business school with
genetic programming: a new architecture of the agent-based artificial stock
market. J. Economic Dynamics and Control, 25: 363–393.

59. Chen S-H, Yeh C-H (2002) On the emergent properties of artificial stock mar-
kets: the efficient market hypothesis and the rational expectations hypothesis.
J. Economic Behavior and Organization, 49(2): 217–239.

60. Chen S-H, Duffy J, Yeh C-H (2001) Equilibrium selection via adaptation: using
genetic programming to model learning in a co-ordination game. Electronic J.
Evolutionary Modeling and Economic Dynamics. 1: 1002.

61. Chen, S-H, Lee W-C, Yeh C-H (1999) Hedging derivative securities with
genetic programming. Intl. J. Intelligent Systems in Accounting, Finance and
Management, 8(4): 237–251.

584 S.-H. Chen

62. Chen S-H, Liao C-C, Chou P-J (2007) On the plausibility of sunspot equi-
libria: simulations based on agent-based artificial stock markets. J. Economic
Interaction and Coordination, (in press).

63. Chen S-H, Yeh C-H, Liao C-C (2002) On AIE-ASM: Software to simulate
artificial stock markets with genetic programming. In: Chen S-H (ed.) Evolu-
tionary Computation in Economics and Finance. Physica-Verlag, Heidelberg,
Germany: 107–122.

64. Chen T, Chen H (1995) Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to
dynamical systems. IEEE Trans. Neural Networks, 6: 911–917.

65. Chidambaran N, Lee C, Trigueros J (2000) Option pricing via genetic program-
ming. In: Abu–Mostafa Y, LeBaron B, Lo A, Weigend A (eds.) Computational
Finance – Proc. 6th Intl. Conf. MIT Press, Cambridge, MA: 583–598.

66. Cliff D, Bruten J (1997) Minimal-intelligence agents for bargaining behaviors
in market-based environments. Technical Report 97-91, Hewlett-Packet Lab.

67. Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector
Machines – and Other Kernel-Based Learning Methods. Cambridge University
Press, UK.

68. Das N (2003) Hedge fund classification using k-means method. EconPapers,
204: 284.

69. Dawid H (1996) Learning of cycles and sunspot equilibria by genetic
algorithms. J. Evolutionary Economics, 6(4): 361–373.

70. Dawid H (1999) On the convergence of genetic learning in a double auction
market. J. Economic Dynamics and Control, 23: 1544–1567.

71. Deboeck G, Kohonen T (1998) Visual Explorations in Finance with
Self-Organizing Maps. Springer-Verlag, Berlin.

72. Duffy J (2001) Learning to speculate: experiments with artificial and real
agents. J. Economic Dynamics and Control, 25: 295–319.

73. Duffy J (2006) Agent-based models and human-subject experiments. In: Tesfat-
sion L, Judd K (eds.) Handbook of Computational Economics 2. North Holland,
Amsterdam, The Netherlands.

74. Dugundji E, Gulyas L (2003) Empirical estimation and multi-agent-based sim-
ulation of a discrete choice model with network interaction effects. In: Macal C,
North M, Sallach D (eds.) Proc. Agent 2003 Conf. on Challenges in Social Sim-
ulation, 2–4 October, University of Chicago. Argonne National Laboratory,
Chichago, IL: 437–453.

75. Eberhart R, Simpson P, Dobbins R (1996) Computational Intelligence PC
Tools. Academic Press, Boston, MA.

76. Elman J (1990) Finding structure in time. Cognitive Science, 14: 179–211.
77. Episcopos A, Davis J (1996). Predicting returns on Canadian exchange rates

with artificial neural networks and EGARCHM-M model. Neural Computing
and Applications, 4:168–174.

78. Fernández-Rodŕıguez F, Sosvilla-Rivero S, Andrada-Félix J (2003) Nearest-
neighbour predictions in foreign exchange markets. In: Chen S-H, Wang P
(eds.) Computational Intelligence in Economics and Finance. Springer-Verlag,
Berlin: 297–325.

79. Fogel D (1995) Evolutionary Computation – Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscatawy NJ.

80. Fogel L (1964) On the Organization of Intellect. PhD Thesis, University of
California at Los Angeles, CA.

Computational Intelligence in Agent-Based Computational Economics 585

81. Franke R (1998) Coevolution and stable adjustments in the cobweb model. J.
Evolutionary Economics, 8(4): 383–406.

82. Fogel L, Owens A, Walsh M (1966) Artificial Intelligence through Simulated
Evolution. Wiley, New York, NY.

83. Frels J, Heisler D, Reggia J (2003) Standard-scape: An agent-based model of
adoption with incomplete information and network externalities. In: Chen K,
Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N, Kerre E,
Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J (eds.) Proc.
7th Joint Conf. Information Sciences, 26–30 September, Cary, NC: 1219–1222.

84. Gately E (1996) Neural Networks for Financial Forecasting. Wiley, New York,
NY.

85. Gode D, Sunder S (1993) Allocative efficiency of markets with zero-intelligence
traders: market as a partial substitute for indiviudal rationality. J. Political
Economy, 101(1): 119–137.

86. Grandmont J-M (1985) On endogeneous competitive business cycles.
Econometrica, 53: 995–1045.

87. Grossklags J, Schmidt C (2006) Software agents and market (in)efficiency: a
human trader experiment. IEEE Trans. Systems, Man, and Cybernetics, Part
C, 36(1): 56–67.

88. Grossman S (1976) On the efficiency of competitive stock markets where
traders have diverse information. J. Finance, 31: 573–585.

89. Grossman S, Stiglitz J (1980) On the impossibility of informationally efficient
markets. American Economic Review, 70: 393–408.

90. Hann T, Steurer E (1996). Much ado about nothing? Exchange rate fore-
casting: Neural networks vs. linear models using monthly and weekly data.
Neurocomputing, 10: 323–339.

91. Holland J, Holyoak K, Nisbett R (1986) Induction: Processes of inference,
learning and discovery (computational models of cognition and perception).
MIT Press, Cambridge, MA.

92. Holland J, Miller J (1991) Artificial adaptive agents in economic theory.
American Economic Review, 81(2): 365–370.

93. Hollans H, Munneke H. (2003) Housing markets and house price appreciation:
An Interacity Analysis. Working paper. University of Georgia.

94. Izumi K, Ueda K (1999) Analysis of dealers’ processing financial news based
on an artificial market approach. J. Computational Intelligence in Finance, 7:
23–33.

95. Jordan M (1986) Serial order: A parallel distributed processing approach.
Technical Report 8604. Institute for Cognitive Science, University of California.

96. Kareken J, Wallace N (1981) On the indeterminacy of equilibrium exchange
rate. Quarterly J. Economics, 96: 207–222.

97. Katz M, Shapiro C (1985) Network externalities, competition, and
compatibility. American Economic Review, 75: 424–440.

98. Keber C (1999) Genetically derived approximations for determining the implied
volatility. OR Spektrum, 21: 205–238.

99. Keber C (2000) Option valuation with the genetic programming approach. In:
Abu-Mostafa Y, LeBaron B, Lo A, Weigend A (eds.) Computational Finance –
Proc. 6th Intl. Conf. MIT Press, Cambridge MA.

100. Kiyotaki N, Wright R (1989) On money as a medium of exchange. J. Political
Economy, 97: 927–954.

586 S.-H. Chen

101. Kohonen T (1982) Self-organized foundation of topologically correct feature
maps. Biological Cybernetics, 43: 59–69.

102. Kohonen T (1995) Self-Organizing Maps. Springer-Verlag, Berlin.
103. Koyama Y, Sato H, Matusi H, Nakajima Y (2005) Report on UMIE 2004

and summary of U-Mart experiments based on the classification of submitted
machine agents. In: Terano T, Kita H, Kaneda T, Arai K, Deghchi H (eds.)
Agent-Based Simulation: From Modeling Methodologies to Real-World Appli-
cations, (Springer Series on Agent-Based Social Systems 1), Springer-Verlag,
Tokyo: 158–166.

104. Koza J (1992) Genetic programming: on the programming of computers by
means of natural selection. MIT Press, Cambridge, MA.

105. Koza J (1992) A Genetic approach to econometric modeling. In: Bourgine P,
Walliser B (eds.) Economics and Cognitive Science. Pergamon Press, Oxford,
UK: 57–75.

106. Kramer M (1990) Nonlinear principal analysis using autoassociative neural
networks. AIChE J., 37(2): 233–243.

107. Krugman P (1996) The Self-Organizing Economy. Blackwell, Cambridge, MA.
108. Kuan C-M, Liu T (1995) Forecasting exchange rates using feedforward and

recurrent neural networks. J. Applied Econometrics, 10: 347–364.
109. LeBaron B (1999) Building financial markets with artificial agents: Desired

goals and present techniques. In: Karakoulas G (ed.) Computational Markets.
MIT Press, Cambridge, MA.

110. LeBaron B (2001) Evolution and time horizons in an agent based stock market.
Macroeconomic Dynamics, 5: 225–254.

111. LeBaron B, Arthur W, Palmer R (1999) Time series properties of an artificial
stock market. J. Economic Dynamics and Control, 23: 1487–1516.

112. Lensberg T (1999) Investment behavior under Knightian uncertainty – an
evolutionary approach. J. Economic Dynamics and Control, 23: 1587–1604.

113. Lettau M (1997) Explaining the facts with adaptive agents: the case of mutual
fund flows. J. Economic Dynamics and Control, 21(7): 1117–1147.

114. Lucas R (1986) Adaptive behavior and economic theory. In: Hogarth R,
Reder M (eds.) Rational choice: The contrast between economics and
psychology. University of Chicago Press, IL: 217–242.

115. MacQueen J (1967) Some methods for classification and analysis of multi-
variate observations. In: LeCam LM, Neyman N (eds.) Proc. 5th Berkeley
Symp. Mathematical Statistics and Probability. University of California Press,
Berkeley, CA, 1: 281–297.

116. Mandic D, Chambers J (2001). Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures, and Stability. Wiley, New York, NY.

117. Marimon R, McGrattan E, Sargent T (1990) Money as Medium of Exchange
in an Economy with Artificially Intelligent Agents. J. Economic Dynamics and
Control, 14: 329–373.

118. Marshall A (1961) Principles of Economics (9th (variorum) ed., with
annotations by CW Guillebaud). Macmillan, London, UK.

119. McNelis P (2005). Neural Networks in Finance: Gaining Predictive Edge in the
Market. Elesvier, Burlington, MA.

120. Midgley G (2005) Systemic intervention for community involvement in complex
policy. In: Proc. 1st Intl. Workshop Complexity and Policy Analysis, 22–24
June, Cork, Ireland.

Computational Intelligence in Agent-Based Computational Economics 587

121. Muth J (1961) Rational expectations and the theory of price movements.
Econometrics, 29: 315–335.

122. Nakajima R (2003) Measuring peer effects in youth smoking behavior. In:
Chen K, Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov
N, Kerre E, Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu
J (eds.) Proc. 7th Joint Conf. Information Sciences, 26-30 September, Cary,
NC: 1206–1210.

123. Neely C, Weller P, Ditmar R (1997) Is technical analysis in the foreign
exchange market profitable? A genetic programming approach. J. Financial
and Quantitative Analysis, 32(4): 405–427.

124. North M (2003) Applying computational Intelligence to economic policy. In:
Chen K, Chen S-H, Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N,
Kerre E, Leong H-V, Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J
(eds.) Proc. 7th Joint Conf. Information Sciences, 26-30 September, Cary, NC:
1231–1234.

125. Nicolaisen J, Smith M, Petrov V, Tesfatsion L (2000) Concentration and capac-
ity effects on electricity market power. In: Alzala A (ed.) Proc. 2000 Congress
Evolutionary Computation, IEEE Society Press, Piscataway, NJ: 1041–1047.

126. Nicolaisen J, Petrov V, Tesfatsion L (2001) Market power and efficiency in a
computational electricity market with discriminatory double-auction pricing.
IEEE Trans. Evolutionary Computation, 5(5): 504–523.

127. Palmer R, Arthur W, Holland J, LeBaron B, and Tayler P (1994). Artificial
economic life: a simple model of a stock market. Physica D, 75: 264–274.

128. Qian Y (2006) k-means algorithm and its application for clustering compa-
nies listed in Zhejiang province. WIT Trans Information and Communication
Technologies, 37: 35–44.

129. Rechenberg I (1965) Cybernetic Solution Path of an Experimental Problem.
Royal Aircraft Establishment, Library Translation 1122, August.

130. Refenes A (1995) Neural Networks in the Capital Markets. Wiley, New York,
NY.

131. Refenes A, Zapranis A (1999) Principles of Neural Model Identification,
Selection and Adequacy: With Applications in Financial Econometrics.
Springer-Verlag, Berlin.

132. Sargent T (1993) Bounded Rationality in Macroeconomics. Oxford University
Press, UK.

133. Sato H, Kawachi S, Namatame A (2003) The statistical properties of price
fluctuations by computer agents in a U-Mart virtual future market simulator.
In: Terano T, Dehuchi H, Takadama K (eds.) Meeting the Challenge of Social
Problems via Agent-Based Simulation. Springer-Verlag, Tokyo: 67–76.

134. Schwefel H (1965) Kybernetische Evolution als Strategies der Experimentellen
Forschung in der Strömungstechnik. Diploma Thesis, Technical University of
Berlin.

135. Schewfel H (1995) Evolution and Optimum Seeking. Wiley, New York, NY.
136. Shadbolt J, Taylor J (2002) Neural Networks and the Financial

Markets-Predicting, Combining, and Portfolio Optimisation. Springer-Verlag,
Berlin.

137. Shi S, Xu L, Liu B (1999) Improving the acuracy of nonlinear combined
forecasting using neural networks. Expert Systems with Applications, 16: 49–54.

138. Simon HA (1997) Models of Bounded Rationality, Vol. 3. MIT Press,
Cambridge, MA.

588 S.-H. Chen

139. Smith V, Suchanek G, Williams A (1988) Bubbles, crashes, and endogenous
expectations in experimental spot asset markets. Econometrica, 56(6): 1119–
1152.

140. Suykens J, Vandewalle J (1998) The K.U. Leuven time series prediction com-
petition. In: Suykens J, Vandewalle J (eds.) Nonlinear Modeling: Advanced
Black-Box Techniques. Kluwer, Boston, MA: 241–253.

141. Szpiro G (1997) Forecasting chaotic time series with genetic algorithms.
Physical Review E, 55: 2557–2568.

142. Szpiro G (1997) The emergence of risk aversion. Complexity, 2: 31–39.
143. Tay N, Linn S (2001) Fuzzy inductive reasoning, expectation formation and the

behavior of security prices. J. Economic Dynamics and Control, 25: 321–361.
144. Tayler P (1995) Modeling artificial stock markets using genetic algorithms.

In: Goonatilake S, Treleaven P (eds.) Intelligent Systems for Finance and
Business. Wiley, New York, NY: 271–287.

145. Terano T, Shiozawa Y, Deguchi H, Kita H, Matsui H, Sato H, Ono I,
Kakajima Y (2003), U-Mart: An artificial market testbed for economics and
multiagent systems. In: Terano T, Dehuchi H, Takadama K (eds.) Meeting
the Challenge of Social Problems via Agent-Based Simulation. Springer-Verlag,
Tokyo: 53–66.

146. Tirole J. (1982) On the possibility of speculation under rational expectations.
Econometrica, 50: 1163–1182.

147. Trippi R, Turban E. (1993) Neural Networks in Finance and Investing. Irwin
148. Tsuji M, Kawamura H, Ohuchi A (2003) Measuring the effect of indirect net-

work externality in VCR standardization process. In: Chen K, Chen S-H,
Cheng H-D, Chiu D, Das S, Duro R, Jiang Z, Kasabov N, Kerre E, Leong H-V,
Li Q, Lu M, Romay MG, Ventura D, Wang P-P, Wu J (eds.) Proc. 7th Joint
Conf. Information Sciences, 26–30 September, Cary, NC: 1215–1218.

149. Vapnik V (1998) Statistical Learning Theory. Wiley, New York, NY.
150. Vapnik V (1998) The support vector method of function estimation. In:

Suykens J, Vandewalle J (eds.) Nonlinear Modeling: Advanced Black-Box
Techniques. Kluwer, Boston, MA: 55–85.

151. Vriend N (2001) On two types of GA-Learning. In: Chen S-H (ed.) Evolu-
tionary Computation in Economics and Finance. Physica-Verlag, Heidelberg,
Germany: 233–243.

152. Waldrop M (1992) Complexity: The Emerging Science at the Edge of Order
and Chaos. Simon and Schuster, New York, NY.

153. Wei W-X, Jiang Z-H (1995) Artificial neural network forecasting model for
exchange rate and empirical analysis. Forecasting, 2: 67–69.

154. Weigend A, Huberman B, Rumelhart D (1992) Predicting sunspots and
exchange rates with connectionist networks. In: Casdagli M, Eubank S (eds.)
Nonlinear Modeling and Forecasting. Addison-Wesley, Reading, MA: 395–432.

155. Westerhoff F, Reitz S (2003) Nonlinearities and cyclical behavior: The
role of chartists and fundamentalists. Studies in Nonlinear Dynamics and
Econometrics, 7(4): Article 3.

156. White H (1988) Economic prediction using neural networks: The case of IBM
daily stock returns. In: Proc. IEEE Intl. Conf. Neural Networks 2, 24–27 July,
San Diego, CA. IEEE Press, New York, NY: 451–458.

157. White H (1992) Artificial Neural Networks–Approximation Theory and
Learning Theory. Blackwell, Cambridge, MA.

Computational Intelligence in Agent-Based Computational Economics 589

158. Wu B (1995) Model-free forecasting for nonlinear time series (with application
to exchange rates). Computational Statistics and Data Analysis, 19: 433–459.

159. Wu S, Bhattacharyya S (2005) Minimal intelligence Agents in double auction
markets with speculators. In: Chen S-H, Jain LC, Tai C-C (eds.) Computa-
tional Economics: A Perspective from Computationl Intelligence. Idea Group,
Hershey, PA: Chapter IV.

160. Yang J. (2002) The efficiency of an artificial double auction stock market
with neural learning agents. In: Chen S-H. (ed.) Evolutionary Computation
in Economics and Finance. Physica-Verlag, Heidelberg, Germany: 87–107.

161. Yeh C-H, Chen S-H (2001) Toward an integration of social learning and indi-
vidual learning in agent-based computational stock markets: The approach
based on population genetic programming. J. Management and Economics, 5.

162. Yeh C-H, Chen S-H (2001) Market diversity and market efficiency: The
approach based on genetic programming. J. Artificial Simulation of Adaptive
Behavior, 1(1): 147–167.

163. Zirilli J (1996) Financial Prediction Using Neural Networks. Thomson, London,
UK.

Resources

1 Key Books

Arthur W, Holland J, LeBaron B, Palmer R, Tayler P (1997) Asset pricing
under endogenous expectations in an artificial stock market. In: Arthur W,
Durlauf S, Lane D (eds.) The Economy as an Evolving Complex System II.
Addison-Wesley, Reading, MA: 15–44.

Axelrod R (1997) Advancing the art of simulation in the social sciences.
In: Conte R, Hegselmann R, Terna P (eds.) Simulating Social Phenomena.
Springer-Verlag, Berlin: 21–40.

Chen S-H (ed.) (2002) Evolutionary Computation in Economics and Finance.
Physica-Verlag, Berlin.

Chen S-H (ed.) (2002) Genetic Algorithms and Genetic Programming in Com-
putational Finance. Kluwer, Boston, MA.

Fogel L, Owens A, Walsh M (1966) Artificial Intelligence through Simulated
Evolution. Wiley, New York, NY.

Koza J (1992) A Genetic approach to econometric modeling. In: Bourgine P,
Walliser B (eds.) Economics and Cognitive Science. Pergamon Press, Oxford,
UK: 57–75.

LeBaron B (1999) Building financial markets with artificial agents: Desired
goals and present techniques. In: Karakoulas G (ed.) Computational Markets.
MIT Press, Cambridge, MA.

Lucas R (1986) Adaptive behavior and economic theory. In: Hogarth R, Reder
M (eds.) Rational choice: The contrast between economics and psychology.
University of Chicago Press, IL: 217–242.

592 S.-H. Chen

2 Key Survey/Review Articles

Arifovic J (1994) Genetic algorithms learning and the cobweb model. J. Eco-
nomic Dynamics and Control, 18(1): 3–28.

Bullard J, Duffy J (1998) A model of learning and emulation with artifi-
cial adaptive agents. J. Economic Dynamics and Control, 22: 179–207.

Holland J, Miller J (1991) Artificial adaptive agents in economic theory. Amer-
ican Economic Review, 81(2): 365–370.

LeBaron B (2001) Evolution and time horizons in an agent based stock mar-
ket. Macroeconomic Dynamics, 5: 225–254.

LeBaron B, Arthur W, Palmer R (1999) Time series properties of an arti-
ficial stock market. J. Economic Dynamics and Control, 23: 1487–1516.

3 Journals

Computational Economics

Intl. J. Intelligent Systems in Accounting, Finance and Management

J. Computational Intelligence in Finance

J. Economic Dynamics and Control

J. Evolutionary Economics

J. Financial Economics

J. Monetary Economics

4 Key International Conferences/Workshops

4.1 Economics

Computational Intelligence in Economics and Finance (CIEF)

Intl. Conf. Computing in Economics and Finance (CEF)

Computational Intelligence in Agent-Based Computational Economics 593

Intl. Conf. Economic Science with Heterogeneous Interacting Agents (ESHIA)

World Conference on Social Simulation (WCSS)

4.2 Agents

Annual Conference on Neuroeconomics

Intl. ESA Conf. Experimental Economics (Economic Science Association)

International Workshop on Agent-Based Approaches in Economic and Social
Complex Systems (AESCS)

North American Association for Computational Social and Organizational
Sciences (NAACSOS)

5 (Open Source) Software

MASON: Multi-Agent Simulator
http://cs.gmu.edu/ eclab/projects/mason/

MATLAB
http://www.mathworks.com/

NetLogo
http://ccl.northwestern.edu/netlogo/

Repast
http://repast.sourceforge.net/

Sociodynamica
http://atta.labb.usb.ve/Klaus/Programas.htm

StarLogo
http://education.mit.edu/starlogo/

Swarm
http://www.swarm.org/wiki/Main Page

594 S.-H. Chen

6 Data Bases

COMPUSTAT
https://www.compustatresources.com/support/index.html

CRSP
http://www.crsp.com/products/stocks.htm

DatAnalysis
http://www.deakin.edu.au/library/search/title/datanalysis.php

Datastream
http://www.datastream.com/

Global Financial Data
http://www.globalfinancialdata.com/

Yahoo! Finance
http://finance.yahoo.com/

