## American Economic Association

Minimax Play at Wimbledon: Comment<br>Author(s): Shih-Hsun Hsu, Chen-Ying Huang and Cheng-Tao Tang<br>Source: The American Economic Review, Vol. 97, No. 1 (Mar., 2007), pp. 517-523<br>Published by: American Economic Association<br>Stable URL: http://www.jstor.org/stable/30034408<br>Accessed: 22/07/2014 04:16

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.


American Economic Association is collaborating with JSTOR to digitize, preserve and extend access to The American Economic Review.

# Minimax Play at Wimbledon: Comment 

By Shih-Hsun Hsu, Chen-Ying Huang, and Cheng-Tao Tang*

In a recent contribution, Mark Walker and John Wooders (2001) analyzed serve choices in Grand Slam tennis matches to provide an empirical test of the mixed strategy equilibrium. They argued convincingly that unlike subjects in laboratories, professional players have sufficient experience to play games well, and that they are also highly motivated to win these games. ${ }^{1}$ Their results indicated that there were no statistical differences in win rates for male players across various strategies, which is consistent with the equilibrium prediction. They fairly noted, however, that even the top male players tended to switch from one strategy to another too often, resulting in serial dependence.

This paper reexamines the results of Walker and Wooders (2001) by collecting and analyzing a broader dataset, including men's, women's, and juniors' matches. We find that the support of the minimax hypothesis is stronger. The plays in our data pass all of the tests in Walker and Wooders (2001) and therefore are more consistent with the theory of equilibrium

[^0]than those in Walker and Wooders (2001). In short, the two hypotheses implied by the equilibrium, i.e., the equal probability of winning serve directions and the serial independence of serves, are borne out in our data.

## I. Data

Our original dataset is comprised of three major group matches (men, women, and juniors), which are either collected from videotapes or from first-hand observations. We have ten men's matches, nine women's matches, and eight juniors' matches. Since each match has four point games (depending on the server and the serving court), we have 40 men's, 36 women's, and 32 juniors' point games. All matches for men and women are from Grand Slam finals involving top-level players over the past two decades. It would therefore be fair to say that everyone within the sample is a highly motivated player. Since it is difficult to obtain data on junior players, the matches within the juniors' group include the finals, quarterfinals, and second-round matches in both tournaments and Grand Slams. ${ }^{2}$ In accordance with the rules of tennis, men's Grand Slam matches can last for up to five sets, while women's and juniors' matches can last for up to three sets. (Tables $1-3$ summarize the data. ${ }^{3}$ )

[^1]
## II. Replicating Walker and Wooders' (2001) Tests

We follow Walker and Wooders (2001) to model each point in a point game by a two-bytwo payoff matrix.

| $s \backslash r$ | $L$ | $R$ |
| :---: | :---: | :---: |
| $L$ | $\pi_{L L}$ | $\pi_{L R}$ |
| $R$ | $\pi_{R L}$ | $\pi_{R R}$ |

Let $L$ stand for the direction of left of the receiver and $R$ for right of the receiver. For each point, the server has to decide in which direction to serve. The receiver has to guess simultaneously whether the serve will be to his left or right. In each box $\pi_{s r}$ denotes the server's probability of winning the point, where subscripts $s \in\{L, R\}$ and $r \in\{L, R\}$, respectively, denote the choices made by the server and the receiver for that point. Since the game is constant-sum, $1-\pi_{s r}$ is the probability that the receiver wins. Following Walker and Wooders (2001), the same payoff matrix applies to each point in a given point game.

This game has a unique mixed-strategy Nash equilibrium when

$$
\begin{aligned}
& \pi_{L L}<\pi_{L R}, \pi_{L L}<\pi_{R L}, \pi_{R R}<\pi_{L R} \\
& \text { and } \pi_{R R}<\pi_{R L}
\end{aligned}
$$

This condition implies that when the receiver guesses correctly which direction the server will serve, the receiver is better prepared and, hence, his probability of winning is higher. Equilibrium theory from an analysis of the match implies two testable predictions. First, since the equilibrium is mixed, the probability of winning should be the same for each of the server's pure strategies. Second, since the server should maximize his probability of winning every point in a match, he should play out the equilibrium strategy at every point. Therefore his serve choices should be independently and identically distributed. ${ }^{4}$

## A. The Test for the Equal Probability of Winning

Following Walker and Wooders (2001), we conduct both the Pearson chi-square goodness-

[^2]of-fit test and the Kolmogorov-Smirnov test (henceforth, KS test) to see whether each of the server's pure strategies yields an equal probability of winning. Since these tests have been fully discussed in Walker and Wooders (2001), we directly report our results.

The first parts in Tables 1-3 summarize the results of the Pearson test. At the conventional 5or 10-percent significance level, the hypothesis of the equal probability of winning hardly can be rejected for any of the groups. The number of rejections in the men's group (two at 5 percent, and six at 10 percent) is slightly higher than the number of rejections in the women's group (none at 5 percent and one at 10 percent) or the juniors' group (one at 5 percent and four at 10 percent).

In examining whether the data in each group are consistent with equilibrium theory, we perform both the Pearson joint test and the KS test. ${ }^{5}$ Using the Pearson joint test, we find that the corresponding $p$-values are 0.067 for male players, 0.716 for female players, and 0.551 for juniors. The $p$-value for all 108 point games is 0.299 . Therefore, for male players, the hypothesis of the equal probability of winning can be rejected at the 10 -percent significance level. The null hypothesis predicting an equal probability of winning fares well for both female and junior players, however. It also fares well if we consider all 108 point games together. As for the KS test, the four lefthand panels in Figure 1 present a visual comparison, illustrating the cumulative distribution function (henceforth, CDF) of the $p$-values associated with Pearson's statistics for point games in a group and the CDF of a uniform distribution. The KS statistics are 0.778 for men, 0.577 for women, 0.646 for juniors, and 0.753 for all 108 point games, all of which are far from the critical value at either the 5 -percent or 10 -percent significance level. ${ }^{6}$ In brief, except for the result of the

[^3]KS Test for Equal Winning Probabilities







Figure 1. Kolmogorov-Smirnov Test

Pearson joint test for men, we cannot reject the null hypothesis that, jointly, players in each group are behaving in accordance with equilibrium. These findings are consistent with Walker and Wooders (2001).

## B. The Test for Serial Independence

Walker and Wooders (2001) used the runs test to examine serial independence. Recall that a run is the maximal string of consecutive iden-

Table 1-Test of Equal Winning Probabilities and Runs Test in Men’s Tennis

| Index match | Server | Court | Serve direction |  | Total | Points won |  | Win rate |  | Pearson statistic | $p$-value | Runs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L | R |  | L | R | L | R |  |  | $r_{i}$ | $-1)$ | $F\left(r_{i}\right)$ |
| 180 WIMBLEDON | Borg | Ad | 15 | 74 | 89 | 10 | 51 | 0.667 | 0.689 | 0.029 | 0.864 | 27 | 0.529 | 0.741 |
| 280 WIMBLEDON | Borg | Deuce | 32 | 57 | 89 | 26 | 36 | 0.813 | 0.632 | 3.174 | 0.075** | 44 | 0.638 | 0.715 |
| 380 WIMBLEDON | McEnroe | Ad | 45 | 30 | 75 | 29 | 19 | 0.644 | 0.633 | 0.010 | 0.922 | 42 | 0.863 | 0.908 |
| 480 WIMBLEDON | McEnroe | Deuce | 47 | 38 | 85 | 31 | 29 | 0.660 | 0.763 | 1.086 | 0.297 | 51 | 0.951 | 0.970** |
| 580 U.S. OPEN | McEnroe | Ad | 42 | 36 | 78 | 23 | 27 | 0.548 | 0.750 | 3.450 | 0.063** | 42 | 0.395 | 0.476 |
| 680 U.S. OPEN | McEnroe | Deuce | 60 | 28 | 88 | 38 | 16 | 0.633 | 0.571 | 0.309 | 0.579 | 32 | 0.031 | 0.050 |
| 780 U.S. OPEN | Borg | Ad | 23 | 53 | 76 | 15 | 33 | 0.652 | 0.623 | 0.060 | 0.806 | 34 | 0.548 | 0.639 |
| 880 U.S. OPEN | Borg | Deuce | 27 | 53 | 80 | 18 | 27 | 0.667 | 0.509 | 1.797 | 0.180 | 33 | 0.139 | 0.207 |
| 985 ROLAND GARROS | Wilander | Ad | 36 | 12 | 48 | 23 | 8 | 0.639 | 0.667 | 0.030 | 0.862 | 18 | 0.285 | 0.396 |
| 1085 ROLAND GARROS | Wilander | Deuce | 18 | 36 | 54 | 10 | 18 | 0.556 | 0.500 | 0.148 | 0.700 | 26 | 0.563 | 0.669 |
| 1185 ROLAND GARROS | Lendl | Ad | 39 | 9 | 48 | 20 | 6 | 0.513 | 0.667 | 0.697 | 0.404 | 19 | 0.903 | 1.000 |
| 1285 ROLAND GARROS | Lendl | Deuce | 30 | 19 | 49 | 13 | 9 | 0.433 | 0.474 | 0.077 | 0.782 | 27 | 0.748 | 0.839 |
| 1389 WIMBLEDON | Becker | Ad | 32 | 31 | 63 | 29 | 16 | 0.906 | 0.516 | 11.743 | 0.001* | 32 | 0.400 | 0.502 |
| 1489 WIMBLEDON | Becker | Deuce | 41 | 25 | 66 | 29 | 15 | 0.707 | 0.600 | 0.805 | 0.370 | 28 | 0.116 | 0.173 |
| 1589 WIMBLEDON | Lendl | Ad | 50 | 35 | 85 | 27 | 23 | 0.540 | 0.657 | 1.166 | 0.280 | 45 | 0.698 | 0.773 |
| 1689 WIMBLEDON | Lendl | Deuce | 60 | 31 | 91 | 39 | 19 | 0.650 | 0.613 | 0.122 | 0.727 | 44 | 0.650 | 0.725 |
| 1789 U.S. OPEN | Becker | Ad | 48 | 10 | 58 | 31 | 4 | 0.646 | 0.400 | 2.090 | 0.148 | 15 | 0.076 | 0.184 |
| 1889 U.S. OPEN | Becker | Deuce | 44 | 27 | 71 | 27 | 15 | 0.614 | 0.556 | 0.234 | 0.629 | 37 | 0.693 | 0.781 |
| 1989 U.S. OPEN | Lendl | Ad | 34 | 22 | 56 | 19 | 16 | 0.559 | 0.727 | 1.617 | 0.203 | 29 | 0.585 | 0.693 |
| 2089 U.S. OPEN | Lendl | Deuce | 33 | 26 | 59 | 18 | 21 | 0.545 | 0.808 | 4.463 | 0.035* | 28 | 0.245 | 0.337 |
| 2192 AUSTRALIAN OPEN | Courier | Ad | 34 | 18 | 52 | 22 | 12 | 0.647 | 0.667 | 0.020 | 0.888 | 32 | 0.988 | 0.994* |
| 2292 AUSTRALIAN OPEN | Courier | Deuce | 30 | 20 | 50 | 20 | 12 | 0.667 | 0.600 | 0.231 | 0.630 | 29 | 0.850 | 0.912 |
| 2392 AUSTRALIAN OPEN | Edberg | Ad | 40 | 6 | 46 | 24 | 3 | 0.600 | 0.500 | 0.215 | 0.643 | 11 | 0.213 | 0.529 |
| 2492 AUSTRALIAN OPEN | Edberg | Deuce | 26 | 16 | 42 | 17 | 8 | 0.654 | 0.500 | 0.973 | 0.324 | 22 | 0.135 | 0.253 |
| 2595 ROLAND GARROS | Muster | Ad | 27 | 8 | 35 | 21 | 4 | 0.778 | 0.500 | 2.333 | 0.127 | 15 | 0.672 | 0.878 |
| 2695 ROLAND GARROS | Muster | Deuce | 30 | 8 | 38 | 23 | 5 | 0.767 | 0.625 | 0.654 | 0.419 | 14 | 0.479 | 0.615 |
| 2795 ROLAND GARROS | Chang | Ad | 38 | 2 | 40 | 22 | 0 | 0.579 | 0.000 | 2.573 | 0.109 | 5 | 0.146 | 1.000 |
| 2895 ROLAND GARROS | Chang | Deuce | 21 | 24 | 45 | 16 | 12 | 0.762 | 0.500 | 3.268 | 0.071** | 29 | 0.940 | 0.968 |
| 2995 U.S. OPEN | Sampras | Ad | 19 | 38 | 57 | 11 | 29 | 0.579 | 0.763 | 2.054 | 0.152 | 27 | 0.510 | 0.639 |
| 3095 U.S. OPEN | Sampras | Deuce | 30 | 28 | 58 | 20 | 24 | 0.667 | 0.857 | 2.870 | 0.090** | 28 | 0.256 | 0.350 |
| 3195 U.S. OPEN | Agassi | Ad | 41 | 13 | 54 | 31 | 11 | 0.756 | 0.846 | 0.463 | 0.496 | 27 | 0.989 | 1.000* |
| 3295 U.S. OPEN | Agassi | Deuce | 35 | 25 | 60 | 21 | 14 | 0.600 | 0.560 | 0.096 | 0.757 | 26 | 0.106 | 0.163 |
| 3300 AUSTRALIAN OPEN | Agassi | Ad | 30 | 25 | 55 | 19 | 12 | 0.633 | 0.480 | 1.304 | 0.254 | 22 | 0.031 | 0.056 |
| 3400 AUSTRALIAN OPEN | Agassi | Deuce | 32 | 28 | 60 | 23 | 21 | 0.719 | 0.750 | 0.075 | 0.785 | 38 | 0.959 | 0.978** |
| 3500 AUSTRALIAN OPEN | Kafelnikov | Ad | 28 | 24 | 52 | 15 | 14 | 0.536 | 0.583 | 0.119 | 0.730 | 24 | 0.172 | 0.255 |
| 3600 AUSTRALIAN OPEN | Kafelnikov | Deuce | 31 | 27 | 58 | 21 | 15 | 0.677 | 0.556 | 0.910 | 0.340 | 30 | 0.461 | 0.568 |
| 3701 WIMBLEDON | Ivanisevic | Ad | 48 | 26 | 74 | 30 | 21 | 0.625 | 0.808 | 2.628 | 0.105 | 33 | 0.279 | 0.377 |
| 3801 WIMBLEDON | Ivanisevic | Deuce | 60 | 23 | 83 | 41 | 17 | 0.683 | 0.739 | 0.246 | 0.620 | 28 | 0.035 | 0.057 |
| 3901 WIMBLEDON | Rafter | Ad | 27 | 32 | 59 | 20 | 24 | 0.741 | 0.750 | 0.007 | 0.935 | 33 | 0.721 | 0.802 |
| 4001 WIMBLEDON | Rafter | Deuce | 31 | 33 | 64 | 22 | 23 | 0.710 | 0.697 | 0.012 | 0.911 | 29 | 0.130 | 0.190 |


| Joint test | 1414 | 1076 | 2490 | 914 | 689 | 0.646 | 0.640 | 54.157 | 0.067 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notes: Each row corresponds to a point game. We index each point game from 1 to 40 . Each row contains the following information in order: (1) the index of the point game, (2) the match and year of the point game, (3) the server, (4) the serving court, (5) the number of times the server chooses $L$, (6) the number of times the server chooses $R$, (7) the total number of serves, (8) the number of times the server chooses $L$ and wins, (9) the number of times the server chooses $R$ and wins, (10) the proportionate number of times the server wins if he chooses $L$, (11) the proportionate number of times that the server wins if he chooses $R$, (12) the Pearson statistic and its $p$-value, (13) the number of runs, (14) the probability of having the number of runs one less than that in (13) or even fewer, and (14) the probability of having the number of runs equal to that in (13) or fewer. Note that the winner of each match is indicated in bold type.

* Denotes rejection at 5 percent.
** Denotes rejection at 10 percent.

Table 2-Test of Equal Winning Probabilities and Runs Test in Womens' Tennis

| Index match | Server | Serve direction |  |  |  | Points <br> won |  | Win rate |  | Pearson statistic | $p$-value | Runs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Court | L | R | Total | L | R | L | R |  |  |  | $\begin{gathered} F\left(r_{i}\right. \\ 1) \end{gathered}$ | $F\left(r_{i}\right)$ |
| 185 AUSTRALIAN OPEN | Navratilova | Ad | 21 | 20 | 41 | 17 | 13 | 0.810 | 0.650 | 1.328 | 0.249 |  | 0.831 | 0.898 |
| 285 AUSTRALIAN OPEN | Navratilova | Deuce | 22 | 14 | 36 | 12 | 4 | 0.545 | 0.286 | 2.338 | 0.126 |  | 0.689 | 0.800 |
| 385 AUSTRALIAN OPEN | Evert | Ad | 18 | 16 | 34 | 9 | 8 | 0.500 | 0.500 | 0.000 | 1.000 |  | 0.946 | 0.975 |
| 485 AUSTRALIAN OPEN | Evert | Deuce | 5 | 32 | 37 | 2 | 17 | 0.400 | 0.531 | 0.298 | 0.585 |  | 0.466 | 0.610 |
| 587 WIMBLEDON | Navratilova | Ad | 21 | 7 | 28 | 17 | 6 | 0.810 | 0.857 | 0.081 | 0.776 |  | 0.281 | 0.502 |
| 687 WIMBLEDON | Navratiova | Deuce | 29 | 6 | 35 | 17 | 3 | 0.586 | 0.500 | 0.151 | 0.698 |  | 0.331 | 0.647 |
| 787 WIMBLEDON | Graf | Ad | 13 | 16 | 29 | 7 | 11 | 0.538 | 0.688 | 0.677 | 0.411 |  | 0.671 | 0.793 |
| 887 WIMBLEDON | Graf | Deuce | 11 | 20 | 31 | 8 | 13 | 0.727 | 0.650 | 0.194 | 0.660 |  | 0.905 | 0.963 |
| 987 U.S. OPEN | Navratiova | Ad | 25 | 12 | 37 | 14 | 9 | 0.560 | 0.750 | 1.244 | 0.265 |  | 0.148 | 0.259 |
| 1087 U.S. OPEN | Navratilova | Deuce | 24 | 10 | 34 | 16 | 9 | 0.667 | 0.900 | 1.975 | 0.160 |  | 0.133 | 0.252 |
| 1187 U.S. OPEN | Graf | Ad | 13 | 11 | 24 | 8 | 6 | 0.615 | 0.545 | 0.120 | 0.729 |  | 0.273 | 0.433 |
| 1287 U.S. OPEN | Graf | Deuce | 12 | 14 | 26 | 6 | 10 | 0.500 | 0.714 | 1.254 | 0.263 |  | 0.430 | 0.594 |
| 1392 ROLAND GARROS | Seles | Ad | 34 | 15 | 49 | 23 | 6 | 0.676 | 0.400 | 3.293 | 0.070** |  | 0.810 | 0.903 |
| 1492 ROLAND GARROS | Seles | Deuce | 29 | 22 | 51 | 16 | 13 | 0.552 | 0.591 | 0.078 | 0.780 |  | 0.096 | 0.155 |
| 1592 ROLAND GARROS | Graf | Ad | 33 | 27 | 60 | 14 | 16 | 0.424 | 0.593 | 1.684 | 0.194 | 29 | 0.282 | 0.376 |
| 1692 ROLAND GARROS | Graf | Deuce | 36 | 27 | 63 | 17 | 17 | 0.472 | 0.630 | 1.539 | 0.215 |  | 0.270 | 0.362 |
| 1792 U.S. OPEN | Seles | Ad | 13 | 13 | 26 | 7 | 6 | 0.538 | 0.462 | 0.154 | 0.695 |  | 0.919 | 0.966 |
| 1892 U.S. OPEN | Seles | Deuce | 18 | 9 | 27 | 13 | 7 | 0.722 | 0.778 | 0.096 | 0.756 |  | 0.939 | 0.984 |
| 1992 U.S. OPEN | Sanchez | Ad | 9 | 25 | 34 | 2 | 10 | 0.222 | 0.400 | 0.916 | 0.339 |  | 0.828 | 0.947 |
| 2092 U.S. OPEN | Sanchez | Deuce | 21 | 12 | 33 | 12 | 8 | 0.571 | 0.667 | 0.290 | 0.590 |  | 0.145 | 0.246 |
| 2197 WIMBLEDON | Hingis | Ad | 26 | 14 | 40 | 14 | 8 | 0.538 | 0.571 | 0.040 | 0.842 |  | 0.668 | 0.794 |
| 2297 WIMBLEDON | Hingis | Deuce | 15 | 29 | 44 | 8 | 16 | 0.533 | 0.552 | 0.013 | 0.908 |  | 0.454 | 0.598 |
| 2397 WIMBLEDON | Novotna | Ad | 14 | 20 | 34 | 8 | 12 | 0.571 | 0.600 | 0.028 | 0.868 |  | 0.966 | 0.987* |
| 2497 WIMBLEDON | Novotna | Deuce | 29 | 14 | 43 | 13 | 10 | 0.448 | 0.714 | 2.686 | 0.101 |  | 0.814 | 0.905 |
| 2599 ROLAND GARROS | Graf | Ad | 22 | 21 | 43 | 13 | 10 | 0.591 | 0.476 | 0.568 | 0.451 |  | 0.985 | 0.994* |
| 2699 ROLAND GARROS | Graf | Deuce | 23 | 20 | 43 | 14 | 12 | 0.609 | 0.600 | 0.003 | 0.954 |  | 0.831 | 0.899 |
| 2799 ROLAND GARROS | Hingis | Ad | 36 | 9 | 45 | 14 | 6 | 0.389 | 0.667 | 2.250 | 0.134 |  | 0.515 | 0.636 |
| 2899 ROLAND GARROS | Hingis | Deuce | 32 | 18 | 50 | 17 | 10 | 0.531 | 0.556 | 0.027 | 0.869 |  | 0.217 | 0.312 |
| 2900 U.S. OPEN | V. Williams | Ad | 11 | 21 | 32 | 5 | 14 | 0.455 | 0.667 | 1.347 | 0.246 |  | 0.510 | 0.654 |
| 3000 U.S. OPEN | V. Williams | Deuce | 17 | 20 | 37 | 10 | 13 | 0.588 | 0.650 | 0.149 | 0.699 |  | 0.096 | 0.168 |
| 3100 U.S. OPEN | Davenport | Ad | 14 | 14 | 28 | 8 | 11 | 0.571 | 0.786 | 1.474 | 0.225 |  | 0.280 | 0.427 |
| 3200 U.S. OPEN | Davenport | Deuce | 10 | 21 | 31 | 4 | 12 | 0.400 | 0.571 | 0.797 | 0.372 |  | 0.331 | 0.478 |
| 3302 AUSTRALIAN OPEN | Capriati | Ad | 13 | 29 | 42 | 6 | 16 | 0.462 | 0.552 | 0.293 | 0.588 |  | 0.107 | 0.180 |
| 3402 AUSTRALIAN OPEN | Capriati | Deuce | 20 | 22 | 42 | 11 | 13 | 0.550 | 0.591 | 0.072 | 0.789 |  | 0.442 | 0.569 |
| 3502 AUSTRALIAN OPEN | Hingis | Ad | 33 | 16 | 49 | 17 | 6 | 0.515 | 0.375 | 0.850 | 0.357 |  | 0.245 | 0.366 |
| 3602 AUSTRALIAN OPEN | Hingis | Deuce | 26 | 23 | 49 | 16 | 9 | 0.615 | 0.391 | 2.452 | 0.117 |  | 0.078 | 0.128 |
| Joint test |  |  | 748 | 639 | 1387 | 415 | 370 | 0.555 | 0.579 | 30.758 | 0.716 |  |  |  |

Note: Each column contains the same information as noted in Table 1, except the index runs from 1 to 36.
tical serve directions. The idea is to find the number of runs in the list of the direction of serves according to the order observed. If there are too many runs, then players switch directions too often to be random. On the other hand, if there are too few runs, then they switch direction too infrequently to be random. We omit the details of the test. Walker and Wooders
(2001) found that there were too many runs in male players' choices, which led to their conclusion that even the best tennis players tend to switch from one direction to another too often, resulting in serial dependence. Our results are quite different, with the null hypothesis being rejected in only a few point games in our dataset. The results are reported in the second parts

Table 3-Test of Equal Winning Probablitites and Runs Test in Juniors' Tennis

| Index match | Server | Court | Serve direction |  | Total | Points won |  | Win rate |  | Pearson statistic | $p$-value | Runs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L | R |  | L | R | L | R |  |  | $r_{i}$ | $F\left(r_{i}-1\right)$ | $F\left(r_{i}\right)$ |
| 196 AVVENIRE TOURNAMENT | Middleton | Ad | 17 | 10 | 27 | 11 | 5 | 0.647 | 0.500 | 0.564 | 0.453 | 12 | 0.189 | 0.320 |
| 296 AVVENIRE TOURNAMENT | Middelton | Deuce | 22 | 11 | 33 | 17 | 7 | 0.773 | 0.636 | 0.688 | 0.407 | 18 | 0.771 | 0.866 |
| 396 AVVENIRE TOURNAMENT | Kalvaria | Ad | 21 | 8 | 29 | 12 | 4 | 0.571 | 0.500 | 0.120 | 0.730 | 10 | 0.077 | 0.156 |
| 496 AVVENIRE TOURNAMENT | Kalvaria | Deuce | 11 | 15 | 26 | 8 | 7 | 0.727 | 0.467 | 1.766 | 0.184 | 9 | 0.016 | 0.042** |
| 500 WIMBLEDON | Salerni | Ad | 8 | 8 | 16 | 3 | 4 | 0.375 | 0.500 | 0.254 | 0.614 | 10 | 0.595 | 0.786 |
| 600 WIMBLEDON | Salerni | Deuce | 8 | 9 | 17 | 3 | 7 | 0.375 | 0.778 | 2.837 | 0.092** | 10 | 0.500 | 0.702 |
| 700 WIMBLEDON | Perediynis | Ad | 6 | 8 | 14 | 2 | 4 | 0.333 | 0.500 | 0.389 | 0.533 | 5 | 0.028 | 0.086 |
| 800 WIMBLEDON | Perediynis | Deuce | 10 | 6 | 16 | 3 | 1 | 0.300 | 0.167 | 0.356 | 0.551 | 9 | 0.497 | 0.706 |
| 902 AVVENIRE TOURNAMENT | Gonzalez | Ad | 13 | 11 | 24 | 5 | 7 | 0.385 | 0.636 | 1.510 | 0.219 | 12 | 0.273 | 0.433 |
| 1002 AVVENIRE TOURNAMENT | Gonzalez | Deuce | 9 | 13 | 22 | 6 | 4 | 0.667 | 0.308 | 2.764 | 0.096** | 11 | 0.305 | 0.472 |
| 1102 AVVENIRE TOURNAMENT | Sanchez | Ad | 15 | 6 | 21 | 7 | 3 | 0.467 | 0.500 | 0.019 | 0.890 | 11 | 0.668 | 0.871 |
| 1202 AVVENIRE TOURNAMENT | Sanchez | Deuce | 13 | 9 | 22 | 4 | 2 | 0.308 | 0.222 | 0.196 | 0.658 | 11 | 0.305 | 0.472 |
| 1303 AUSTRALIAN OPEN <br> (Qrt) | Baqhdatis | Ad | 9 | 7 | 16 | 9 | 4 | 1.000 | 0.571 | 4.747 | 0.029* | 7 | 0.108 | 0.231 |
| 1403 AUSTRALIAN OPEN (Qrt) | Baqhdatis | Deuce | 10 | 12 | 22 | 9 | 9 | 0.900 | 0.750 | 0.825 | 0.364 | 12 | 0.425 | 0.605 |
| 1503 AUSTRALIAN OPEN (Qrt) | Evans | Ad | 12 | 8 | 20 | 5 | 5 | 0.417 | 0.625 | 0.833 | 0.361 | 14 | 0.920 | 0.971 |
| 1603 AUSTRALIAN OPEN (Qrt) | Evans | Deuce | 18 | 6 | 24 | 12 | 2 | 0.667 | 0.333 | 2.057 | 0.151 | 10 | 0.392 | 0.569 |
| 1703 AUSTRALIAN OPEN (2nd) | Bauer | Ad | 19 | 12 | 31 | 11 | 6 | 0.579 | 0.500 | 0.185 | 0.667 | 15 | 0.319 | 0.466 |
| 1803 AUSTRALIAN OPEN (2nd) | Bauer | Deuce | 6 | 27 | 33 | 5 | 17 | 0.833 | 0.630 | 0.917 | 0.338 | 12 | 0.673 | 0.792 |
| 1903 AUSTRALIAN OPEN (2nd) | Kerber | Ad | 28 | 12 | 40 | 13 | 3 | 0.464 | 0.250 | 1.607 | 0.205 | 20 | 0.747 | 0.840 |
| 2003 AUSTRALIAN OPEN (2nd) | Kerber | Deuce | 21 | 20 | 41 | 12 | 11 | 0.571 | 0.550 | 0.019 | 0.890 | 19 | 0.173 | 0.264 |
| 2103 AUSTRALIAN OPEN (2nd) | Dellacqua | Ad | 18 | 7 | 25 | 15 | 5 | 0.833 | 0.714 | 0.446 | 0.504 | 13 | 0.741 | 0.908 |
| 2203 AUSTRALIAN OPEN (2nd) | Dellacqua | Deuce | 21 | 6 | 27 | 15 | 3 | 0.714 | 0.500 | 0.964 | 0.326 | 8 | 0.062 | 0.139 |
| 2303 AUSTRALIAN OPEN | Kim | Ad | 6 | 28 | 34 | 4 | 17 | 0.667 | 0.607 | 0.074 | 0.785 | 10 | 0.216 | 0.347 |
| 2403 AUSTRALIAN OPEN (2nd) | Kim | Deuce | 13 | 21 | 34 | 8 | 10 | 0.615 | 0.476 | 0.624 | 0.429 | 16 | 0.282 | 0.415 |
| 2503 AUSTRALIAN OPEN <br> (2nd) | Scherer | Ad | 11 | 7 | 18 | 7 | 5 | 0.636 | 0.714 | 0.117 | 0.732 | 9 | 0.296 | 0.484 |
| $\begin{aligned} & 2603 \text { AUSTRALIAN OPEN } \\ & \text { (2nd) } \end{aligned}$ | Scherer | Deuce | 11 | 9 | 20 | 6 | 6 | 0.545 | 0.667 | 0.303 | 0.582 | 15 | 0.955 | 0.985** |
| 2703 AUSTRALIAN OPEN (2nd) | Cvetkovic | Ad | 6 | 6 | 12 | 4 | 3 | 0.667 | 0.500 | 0.343 | 0.558 | 7 | 0.392 | 0.608 |
| 2803 AUSTRALIAN OPEN (2nd) | Cvetkovic | Deuce | 6 | 7 | 13 | 5 | 4 | 0.833 | 0.571 | 1.040 | 0.308 | 9 | 0.733 | 0.879 |
| 2903 AUSTRALIAN OPEN <br> (2nd) | Tsonga | Ad | 11 | 5 | 16 | 10 | 4 | 0.909 | 0.800 | 0.374 | 0.541 | 9 | 0.626 | 0.846 |
| 3003 AUSTRALIAN OPEN (2nd) | Tsonga | Deuce | 8 | 10 | 18 | 6 | 7 | 0.750 | 0.700 | 0.055 | 0.814 | 4 | 0.000 | 0.003* |
| 3103 AUSTRALIAN OPEN (2nd) | Feeney | Ad | 14 | 6 | 20 | 7 | 3 | 0.500 | 0.500 | 0.000 | 1.000 | 13 | 0.956 | 1.000** |
| 3203 AUSTRALIAN OPEN (2nd) | Feeney | Deuce | 12 | 8 | 20 | 4 | 6 | 0.333 | 0.750 | 3.333 | 0.068** | 11 | 0.480 | 0.663 |
| Joint test |  |  | 413 | 338 | 751 | 248 | 185 | 0.600 | 0.547 | 30.327 | 0.551 |  |  |  |

Note: Each column contains the same information as noted in Table 1, except the index runs from 1 to 32.
of Tables 1-3. At the 5 -percent significance level, there are two rejections for male players and two rejections for female players, both as a result of too many runs, and one rejection for junior players as a result of too few runs. At the 10 -percent significance level, there are four rejections for male players and two rejections for female players, both as a result of too many runs, and four rejections for juniors (two for too many runs and two for too few runs). It is interesting to note that of all these rejections, only junior players violate the null hypothesis as a result of too few runs (switching direction too infrequently).

As for the joint test, the KS statistics of the joint null hypothesis, that the serves are serially independent within a group, are 0.778 for men, 0.797 for women, and 0.544 for juniors. If we consider all 108 point games together, the KS statistic is 0.903 . The $p$-values of these KS statistics are all far from the rejection region under the conventional significance level. ${ }^{7}$ The four right-hand panels in Figure 1 offer a visual comparison of the uniform CDF and the CDF of the $p$-values associated with the runs test for point games in a group. In sum, we cannot reject the null hypothesis that, jointly, serves within each group are serially independent. This is

[^4]more consistent with the theory of equilibrium than the result of the runs test in Walker and Wooders (2001). ${ }^{8}$

## REFERENCES

Chiappori, Pierre-André, Steven D. Levitt, and Timothy Groseclose. 2002. "Testing Mixed-Strategy Equilibria when Players Are Heterogeneous: The Case of Penalty Kicks in Soccer." American Economic Review, 92(4): 1138-51.
Gibbons, Jean Dickinson, and Subhabrata Chakraborti. 2003. Nonparametric Statistical Inference. New York: Marcel Dekker.
Palacios-Huerta, Ignacio. 2003. "Professionals Play Minimax." Review of Economic Studies, 70(2): 395-415.
Walker, Mark, and John Wooders. 2000. "Equilibrium Play in Matches: Binary Markov Games. University of Arizona, Working Paper 00-12.
Walker, Mark, and John Wooders. 2001. "Minimax Play at Wimbledon." American Economic Review, 91(5): 1521-38.

[^5]
[^0]:    * Hsu: Department of Economics, National Taiwan University, 21 Hsu Chow Road, Taipei, Taiwan (e-mail: d89323002@ntu.edu.tw); Huang: Department of Economics, National Taiwan University, 21 Hsu Chow Road, Taipei, Taiwan (e-mail: chenying@ntu.edu.tw); Tang: Department of Economics, Brown University, Box B, Providence, RI 02912 (e-mail: Cheng-Tao_Tang@brown.edu). We have benefited a great deal from the very detailed and useful comments of a referee, two coeditors of this journal, and seminar participants at Academia Sinica, Chinese University of Hong Kong, the Institute for Advanced Studies, Kellogg, National Taiwan University, Rutgers University, and the 2004 Econometric Society North American Summer Meeting. All errors are our own. Financial support from the NSC grant 92-2415-H-002-018 is gratefully acknowledged.
    ${ }^{1}$ Pierre-Andre Chiappori, Steven Levitt, and Timothy Groseclose (2002) and Ignacio Palacios-Huerta (2003) examined datasets based on penalty kicks in professional soccer games. Since a typical tennis match can last for a considerable period of time, while penalty kicks in soccer rarely occur, the strategic situation tennis players encounter may differ from what soccer players face. Specifically, papers analyzing penalty kicks typically have to pool several matches to get enough data. For this reason, we compare our results to those in Walker and Wooders (2001).

[^1]:    ${ }^{2}$ There are a few games missing at the beginning of three juniors' matches. These are Salerni versus Perediynis (Wimbledon 2000), Scherer versus Cvetkovic (Australian Open 2003) and Tsonga versus Feeney (Australian Open 2003). This does not, however, affect the continuity of our data.
    ${ }^{3}$ Three matches in Walker and Wooders (2001) are also included in our dataset. They are Borg versus McEnroe (Wimbledon 1980), McEnroe versus Borg (US Open 1980), and Sampras versus Agassi (US Open 1995). The number of serves and the number of choices of $R$ and $L$ that we record, however, are slightly different from those in Walker and Wooders (2001). We suspect that this occurs because we use a slightly different standard in defining $L$ and $R$. Despite this slight difference, we record our data using the same criterion throughout all matches.

[^2]:    ${ }^{4}$ For details, see Walker and Wooders (2000).

[^3]:    ${ }^{5}$ The KS test is informative in deciding how the data are generated. See Jean Dickinson Gibbons and Subhabrata Chakraborti (2003, 148).
    ${ }^{6}$ The critical values of the KS statistic are as follows. For the sample size of 108 point games, the critical value is 1.36 at the 5-percent level and 1.22 at the 10 -percent level. For the sample size of 40 point games, the critical value is 1.328 at the 5 -percent level and 1.195 at the 10 -percent level. For the sample size of 36 point games, the critical value is 1.326 at the 5 -percent level and 1.194 at the 10 -percent level. For the sample size of 32 point games, the critical value is 1.324 at the 5-percent level and 1.194 at the 10 -percent level.

[^4]:    ${ }^{7}$ Refer to footnote 6 for the critical values of the KS statistics.

[^5]:    ${ }^{8}$ Alternatively, the other statistic of interest is the length of the longest run. The idea is that a run of extreme length can be used as a criterion for rejection of randomness. In our data, the rejection number based on this is three for men, two for women and two for juniors at the 10 -percent significance level. In brief, the result that players' behaviors are serially independent still holds.

