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Abstract It is foreseen that more and more music objects
in symbolic format and multimedia objects, such as audio,
video, or lyrics, integrated with symbolic music representa-
tion (SMR) will be published and broadcasted via the Inter-
net. The SMRs of the flowing songs or multimedia objects
will form a music stream. Many interesting applications based
on music streams, such as interactive music tutorials, dis-
tance music education, and similar theme searching, make
the research of content-based retrieval over music streams
much important. We consider multiple queries with error tol-
erances over music streams and address the issue of approxi-
mate matching in this environment. We propose a novel
approach to continuously process multiple queries over the
music streams for finding all the music segments that are sim-
ilar to the queries. Our approach is based on the concept of
n-grams, and two mechanisms are designed to reduce the
heavy computation of approximate matching. One mecha-
nism uses the clustering of query n-grams to prune the query
n-grams that are irrelevant to the incoming data n-gram. The
other mechanism records the data n-gram that matches a
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query n-gram as a partial answer and incrementally merges
the partial answers of the same query. We implement a pro-
totype system for experiments in which songs in the MIDI
format are continuously broadcasted, and the user can specify
musical segments as queries to monitor the music streams.
Experiment results show the effectiveness and efficiency of
the proposed approach.

Keywords Music stream · Continuous query processing ·
Event stream · Approximate matching · Lower bounding

1 Introduction

Recent researches [4,5] revealed the importance of integrat-
ing the symbolic music representation (SMR) with multi-
media objects for the new music-related applications and
projects, such as music education and interactive entertain-
ment. Moreover, the composers are used to producing their
works by writing down the scores, and the symbolic for-
mat can represent the scores in a more precise and musi-
cal way than other formats. To distribute, share, and receive
music in a symbolic format is convenient for the content dis-
tributors, musicians, and users to interchange, annotate, and
edit the music objects. Therefore, it is foreseen that more
and more music objects in symbolic format and multime-
dia objects, such as audio, video, or lyrics, integrated with
SMR will be published and broadcasted via the Internet for
various services. Based on SMR, various approaches [46]
have been proposed to provide an efficient and effective ser-
vice for content-based music retrieval. The key issues of
these approaches include the music representations, index
structures, query processing methods, and similarity mea-
surements. While most researchers focus on content-based
retrieval for static music databases, we concentrate our atten-
tion on content-based retrieval in the streaming environment.
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Various applications can adopt the approach of content-
based retrieval in the streaming environment. Consider the
applications of interactive music tutorials and distance educa-
tion at music school. The students may be requested to com-
pose their own music works by utilizing the popular themes
and phrases of the classical masterpieces in the Baroque ages.
The students can play their works on the piano or other
instruments, or write down their scores. The notes played
by a student or the written scores will be transformed into
the symbolic format, such as MIDI files [37] or MusicXMLs
[41], and then continuously sent to the server for examin-
ing whether the work of the student satisfies the teacher’s
requirements. The server works with a query database that
contains the themes and phrases that the teacher asks for as
well as a knowledge database that contains the music theo-
ries derived from the original classical masterpieces. For each
incoming music work, the server can identify which themes
and phrases in the query database are included. Furthermore,
the knowledge of the original classical masterpieces, such
as music structure, chord, and composing techniques is then
compared with the music work of the student. The results
of the comparison will be immediately returned to the stu-
dents so that they can further improve their works based on
the related music theories. The teacher will also receive the
music work of a student as well as the corresponding results
to further guide the student by annotating and editing this
music work. There could be a lot of music works of the stu-
dents continuously flowing into the server. How to efficiently
deal with the flowing music works will be an important
issue.

Consider the applications of similar theme searching and
music copy detection for composers, users, and publishers.
The most important thing the composers care about is that
whether their works are similar to other existing works. The
composers can issue the original themes and phrases on the
website for investigation. The website will confirm whether
the incoming music work contains any published themes
or phrases. Since there could be thousands of new music
work produced each day, the website may require an effi-
cient approach to process the incoming music works. Simi-
larly, the users who listen to the music channels via Internet
can send specific music segments as queries for searching
interesting songs. Publishers can also monitor the themes of
their works by continuously checking the scores of the multi-
media objects whether passing through the selected routers or
being shared via websites. The streaming environment could
be formed with the songs broadcasted via the Internet or
the multimedia objects passing through the selected routers,
servers, and websites. The SMRs of the flowing songs or
multimedia objects will form a music stream. Therefore, the
problem to be solved in this paper is regarded as content-
based retrieval over music streams. To request content-based
retrieval over music streams, the user can issue the interesting

music segments as the queries. Such a music segment can be
the incipit or refrain of the music object. As time goes by,
the user will receive the notifications from the system when a
music segment close to the previously issued query occurs on
the music stream. Furthermore, the multimedia object con-
taining the interesting music segment can be continuously
identified as the music stream flows.

Various problems in the streaming environment have been
discussed in the literature [20]. Data in new applications,
such as web accesses, financial tickers, network packets, and
sensor data [13,56], are all in the form of continuous streams,
called data stream. The music stream that we deal with is
one kind of data stream. To support the new applications,
continuous query (CQ) is designed to allow the users to get
new results from a data stream without having to issue the
same query repeatedly. Most of the data stream management
systems (DSMSs) [7,11,24,40] support the CQs that have
SQL-like syntax and the enhanced support for windows [10].
However, the SQL-based CQ cannot express the queries well
in the form of music segments. Therefore, we design another
kind of CQ for the problem of content-based retrieval over
music streams.

To keep the property of continuity for music segments, we
design a new kind of CQ, named the sequence query (SQ),
as a sequence of events, where an event denotes the set of
notes played at the same time [16,32]. This pitch representa-
tion is also named homophonic reduction [46], assuming the
independence among the notes with overlapping duration.
The pitch information is the most perceptual property in the
SMR for the users [15]. In pitch representation, the pitch val-
ues are non-negative integers and smaller than 128 following
the MIDI standard [37], which is the most popular SMR. For
example, in the SQ specified as 〈60〉〈64, 67〉〈62〉〈65, 69〉, the
second event 〈64, 67〉 indicates that the notes with pitches 64
and 67 in the MIDI format are played simultaneously. Sim-
ilarly, the music stream can be regarded as an event stream,
which is a continuous and infinite sequence of events. For an
SQ, the answers will be all the data segments on the event
streams that are exactly the same as the SQ itself. That is,
the exact answers of a SQ must preserve the order between
the events of the SQ as well as the content in each event.
However, in most of cases, exact answers cannot satisfy the
users’ requirements. There are several reasons to provide
the answers that are similar to the SQ for the user, not only
the exact answers. First, it is often difficult for the user to pre-
cisely specify what she/he wants to find on the music streams.
Second, a music work may become a variation by adding
some grace notes. Third, a familiar theme could be adopted
by different music pieces with some variations. Therefore, it
is necessary for the user to specify an SQ followed by an error
bound for approximate matching. The error bound indicates
the maximal allowable difference between the SQ and the
qualified answer on the event stream.
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For approximate matching, we have to determine a suit-
able distance measure first. In this paper, we adopt the edit
distance as the distance measure. The edit distance [27,42]
is commonly used in string matching to measure the dif-
ference between two strings. Various applications, such as
music retrieval, root-cause analysis, speech recognition, pla-
giarism detection, and DNA alignment [32,38,43,50], use
the edit distance as their similarity measures. For the prob-
lem we consider, the edit distance is intuitive for revealing
the difference between two musical segments and is simple
for users to understand. Incorporating specific music char-
acteristics, such as tonality or strong beats in the distance
measure may make the measurement of the similarity more
accurate; however, it has not yet been proved. Therefore, in
this paper we focus on the basic form of edit distance and
treat further evaluation of the returned results as an option of
post-processing. The edit distance between two strings is the
minimum cost of editing operations, i.e., insertion, deletion,
and replacement, required to transform one string into the
other [14]. Based on the edit distance, given a query and an
error bound, a data segment on the event stream is defined as
an approximate answer of the query if the distance does not
exceed the error bound. Similarly, given a data segment on
the event stream, we also define that a query is an approxi-
mate match of the data segment under the same condition. In
summary, we use the edit distance as the similarity measure
and formulate our problem as follows:

Given a set of SQs, each has its own error bound, how
to continuously monitor the event streams and report all the
segments that are approximate answers of certain SQs as
soon as the segments arrive?

In some circumstances, one music piece may be reported
redundantly if it contains more than one music segment close
to the same query. For the application of searching interesting
songs, we simply skip the redundant notifications for the user.
For other applications such as similar theme searching and
music copy detection, it will be necessary to reveal all the
segments that are close to the query in order not to miss any
dubiety.

In this paper, we develop a novel approach for content-
based retrieval over music streams to deal with the proposed
problem that has not yet been solved. To the best of our
knowledge, our approach is the first one to consider this
problem. Our approach is based on the assumption that each
music piece or multimedia object is accompanied with its
SMR. Recent music-related applications and projects [4,5]
support this assumption. Our approach addresses the two
new issues that the traditional approaches of content-based
music retrieval never encounter, i.e., simultaneous process-
ing of multiple queries and unbounded amount of data. For
the streaming environment, we adopt the concept of n-gram
indexing so that the SQs can be organized in an efficient

way, especially when the lengths of the SQs are different.
Due to the essential difference between static databases and
streaming environment, no existing n-gram indexing meth-
ods [47,49,57] can solve our problem. Moreover, most of
them are designed for exact matching instead of approxi-
mate matching. We develop several techniques to reduce the
computation cost by sharing the computation among SQs,
reducing the number of data segments to be checked, and
keeping the intermediate results for reuse. These techniques
are designed based on the characteristics of n-gram index-
ing and will be further discussed in Sect. 2. Formal proofs
are also provided to demonstrate the correctness of the pro-
posed techniques. Therefore, our approach guarantees that no
approximate answer of an SQ will be lost. Experiment results
show the effectiveness and the efficiency of our approach on
a prototype system in which real songs in the MIDI format
are continuously broadcasted.

The rest of the paper is organized as follows. In Sect. 2,
the overview of our approach for multiple SQs processing
on the event stream is provided. The three major compo-
nents, i.e., query manager, pruning mechanism, and merging
mechanism, and the associated properties are presented in
Sects. 3, 4, and 5, respectively. To evaluate the effectiveness
and efficiency, we build a prototype system to provide the
service of searching music segments over music streams by
our approach. The experiment results in Sect. 6 show that
our approach performs well under the real-time and scalabil-
ity requirements. In Sect. 7, the related works are discussed.
Finally, we conclude the paper with some future works in
Sect. 8.

2 Basic idea and system architecture

To introduce our approach, we first define two terms. The
length of a query/data segment stands for the number of
events in it, and the size of an event refer to the number
of notes in it. The main idea of our approach is to design an
efficient indexing method for both multiple queries process-
ing and approximate matching. For this purpose, the con-
cept of n-gram indexing is adopted. We decompose the SQ
into disjoint parts with length n, called the query n-grams.
On the other hand, we slide a window on the event stream
to extract each data segment with length n, called the data
n-gram. Note that the data n-grams can be partially overlap-
ping. Comparing the data n-gram with each query n-gram
is a straightforward but inefficient solution. For efficiency,
our idea here is to greedily prune a set of query n-grams
for an incoming data n-gram by only one step of checking.
To accomplish this goal, we initially divide similar query
n-grams from all SQs into a cluster and derive the summariza-
tion of each cluster. Then we compute the distance between
the incoming data n-gram and the summarization of a cluster,
which is referred to as restricted edit distance. The restricted
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edit distance is proved shorter than or equal to the minimum
distance between the data n-gram and any query n-gram in
the cluster. If the restricted edit distance is larger than all the
error bounds of the involved SQs in the cluster, every query
n-gram in the cluster will not be an approximate match of the
data n-gram and therefore can be pruned. We guarantee that
no approximate answer will be lost if we discard any query
n-gram for the data n-gram based on the result. Accordingly,
the computation can be reduced. The formal definitions of the
summarization and the restricted edit distance will be given
in Sects. 3 and 4, respectively.

Since the number of data n-grams on the event stream to be
checked is huge, the cost of computing the distance between a
data segment and each SQ will be high. Our approach takes
the advantages of the n-gram indexing to reduce the num-
ber of data segments to be checked and to keep the inter-
mediate results for reuse as less as possible. Initially, we
set the length of n-gram (the value of n) to be larger than
the error bound ε of any SQ. Suppose the SQ has m query
n-grams. To come out with the final answer, we have to find
out each approximate answer for each query n-gram. A data
segment that consists of only (m − 1) approximate answer
of the (m − 1) query n-grams will exceed the error bound ε.
Moreover, the m query n-grams of the SQ are in sequential
order. We conclude that the approximate answer of the i th
query n-gram is worthy of being recorded only if there exist
(i − 1) data n-grams that are the approximate answers of the
1st, . . . (i − 1)-th query n-grams, respectively. This finding
motivates us to develop a mechanism that can incrementally
merge the approximate answers of the query n-grams of the
SQ and decide whether the data segment after merging (called
partial answer) is worthy to be maintained. Moreover, the
data segments whose lengths are far from the SQ are unnec-
essary to be checked. The length difference between the SQ
and its answer implies the minimum number of insertions or
deletions in the edit distance, which cannot exceed the error
bound ε, either. Therefore, for the SQ with length L , only
the data segments with lengths in [L − ε, L + ε] should be
considered. All these techniques assist our approach to keep
only the data segments that are possible to be the final answer
of the SQ and guarantee that no answer will be lost.

Since the data segments on the event stream may overlap,
the computation on the overlap will be redundant. To avoid
redundant computation, we keep the information of the dis-
tance between a data n-gram and a query n-gram when the
distance is computed for the first time. The information can
be used to estimate the minimum distance between the sub-
sequent data segment containing the data n-gram and the SQ
containing the query n-gram. We guarantee that the estimated
minimum distance is always equal to or less than the actual
distance. Therefore, no answer will be lost if we prune the
data segment when the estimated minimum distance is above
the error bound of the SQ.

Pruning

Mechanism

Merging

Mechanism

Filtering Engine

Query

Manager

Final 
Answers

Data n-gram
(sliding window)

Event Stream

Sequence 
Queries

Query n-gram 
(non-overlap)

Fig. 1 The system architecture of our approach

As shown in Fig. 1, our approach consists of three com-
ponents. The query manager consumes a set of SQs and pro-
duces the clusters constituted by their query n-grams as a
result. The clusters together with their summarizations are
then sent to the pruning mechanism. In addition, the query
manager also creates a query buffer for each query n-gram to
maintain the partial answers. As the data n-grams continu-
ously flow in, the pruning mechanism takes each data n-gram
to search the clusters for finding all the query n-grams that
are its approximate matches. If the restricted edit distance is
larger than the maximum of the error bounds in the cluster, all
the query n-grams in the cluster can be skipped. Otherwise,
for each query n-gram in the cluster, the data n-gram is sent
to the corresponding query buffer for further processing.

For each data n-gram sent to a query buffer, the merging
mechanism examines whether it needs to be merged with the
partial answers generated from the prior query n-grams in
the same SQ. The merging operation occurs only if the esti-
mated distance between the merged result and the SQ does
not exceed the error bound of the SQ. The estimated distance
is obtained by using the intermediate results computed from
the associated partial answer, and the currently computed dis-
tance between the data n-gram and the corresponding query
n-gram. After the merging operation, a new partial answer
is generated by merging the partial answer with the data
n-gram, and then put into the query buffer for merging with
the approximate answers of the subsequent query n-grams in
the same SQ.

Note that we present the approach for one music stream
in the following sections, and this approach can easily be
extended for multiple music streams. Moreover, this
approach can be extended to deal with the pitch variation
(transposition) for music retrieval. If we want to find the
pitch variations of a query, we can add the extended queries,
which are the pitch variations of the original query with
f semitones. The f value can be decided by the user. For
example, if the query is 〈60〉〈64, 67〉〈62〉〈65, 69〉, the
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extended query with one semitone will be 〈61〉〈65, 68〉〈63〉
〈66, 70〉. Note that f can also be a negative integer. This
approach can also be applied to a broader area of applications
by using the contour representation, i.e., the first-order inter-
val, for polyphonic music introduced in [32]. The first-order
interval collects the differences in pitch scales between two
consecutive events. Accordingly, an event sequence can be
transformed into a first-order interval sequence. Since a first-
order interval sequence follows the definition of the event
sequence, our algorithm can be directly applied.

3 Query manager

The query manager processes the set of SQs in four steps,
which are separately described below:

3.1 SQ decomposition

Each SQ is decomposed into disjoint query n-grams, where
the predetermined parameter n is set to be larger than the
maximum among the error bounds of all the SQs. Moreover,
each query n-gram is associated with a local error bound,
which is set as the error bound of the SQ. It is possible that
the length of an SQ is not the multiple of n. In that case, we
append a number of special events 〈$〉 to lengthen the SQ
into a multiple of n. The special event is regarded as an exact
match of any event. For example, given n = 3 and SQ =
〈a,b,c〉〈b,d〉〈a,b,d〉〈e,f〉〈a,c〉, one special event is appended
and two query n-grams 〈a,b,c〉〈b,d〉〈a,b,d〉 and 〈e,f〉〈a,c〉〈$〉
are obtained.

3.2 Query n-gram clustering

Given a system-defined threshold µ, all the query n-grams
are classified into clusters so that the edit distance between
two query n-grams in the same cluster does not exceed µ. We
introduce the edit distance used in the following. Let ai and b j

be the events on two sequences S1 and S2, respectively. Since
an event is a set of values, we adopt the Jaccard coefficient
[51] to measure the similarity between ai and b j , denoted as
SI M(ai , b j ).

SI M(ai , b j ) =
∣
∣ai ∩ b j

∣
∣

∣
∣ai ∪ b j

∣
∣

(1)

where |X | denotes the size of a set X .

Definition 1 (Edit distance) The edit distance between two
even sequences S1 and S2, denoted as edit-DI S(S1, S2), is
the minimum cost of edit operations required to transform
S1 into S2 [14]. Let λ denote the null character. Three edit
operations and the corresponding costs [32] are defined as
follows:

3/2

1/2

3/2

2

3

4
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3/23/2234<e,f>
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5/21/2123<a,b,d>
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Fig. 2 The matrix for computing edit-DIS(S1, S2)

Deletion: cost(ai , λ) = 1

Insertion: cost(λ, b j ) = 1

Replacement: cost(ai, bj) = 1 − SI M(ai , b j )

(2)

In the literature, the dynamic-programming method [54]
is commonly used to compute the edit distance. In the
following, we use two event sequences S1 = 〈a,b,c〉〈b,d〉
〈a,b,d〉〈e,f〉〈a,c〉 and S2 = 〈a,b,c〉〈b,d〉〈a,c,d〉〈e,f〉〈a,e〉 to
show how it works. In Fig. 2, S1 and S2 are placed in the
1st column and the 1st row, respectively. The arithmetical
series in the 2nd column and the 2nd row are filled as the ini-
tial values. The remaining cells in the matrix are then filled
from the top-left corner to the bottom-right corner. Let S(i)
be the prefix of S with i events and Ci, j denote the cell
corresponding to the i th event in S1 and the j th event in
S2. The value of Ci, j means the edit distance between S1(i)
and S2( j). For instance, C3,2 is filled with the edit distance
between 〈a,b,c〉〈b,d〉〈a,b,d〉 and 〈a,b,c〉〈b,d〉, i.e., 1. Using the
dynamic-programming method, the cell Ci, j is filled with
the minimum of three values, Ci, j−1 + cost(λ, b j ), Ci−1, j +
cost(ai , λ), and Ci−1, j−1 + cost(ai , b j ). For example, the
value of C5,3 (7/3) is obtained from three values, C5,2 +
cost(λ, 〈a, c, d〉), C4,3+cost(〈a,c〉, λ), and C4,2+cost(〈a,c〉,
〈a,c,d〉).

Since an SQ can be registered at any moment, we develop
an algorithm that clusters the query n-grams one by one.
Initially, the first query n-gram forms a new cluster. Let the
query n-gram to be clustered be denoted as QNG. If there
exist some clusters, for each cluster, the minimum and the
maximum of the edit distances between QNG and the query
n-grams in the same cluster are computed. The clusters whose
maximum values do not exceed µ are then selected. If there is
no such cluster, QNG itself forms a new cluster. Otherwise,
among the selected clusters, QNG is assigned to the cluster
whose minimum value is the smallest. After clustering, all
the query n-grams in a cluster are stored as an inverted list.

Example 1 Let µ be set to 5/2. Consider the following query
n-grams to be clustered.

• QNG1 = 〈a,b,c〉〈b,d〉〈a,b,d〉〈e,f〉〈a,c〉
• QNG2 = 〈a,b,c〉〈b,d〉〈a,c,d〉〈e,f〉〈a,e〉
• QNG3 = 〈a,b,c〉〈b,d〉〈a,d〉〈e,f〉〈a,e〉
• QNG4 = 〈a,b,c〉〈b,d〉〈a,b,c,d〉〈e,f〉〈a,c〉
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• QNG5 = 〈a,b,c〉〈e,f〉〈a〉〈e〉〈c〉
• QNG6 = 〈a,b,c〉〈e,f〉〈a,d〉〈e〉〈a,c〉

Initially, a cluster C1 is created to accommodate QNG1.
Since the edit distance between QNG2 and QNG1 is 7/6
(<µ) as shown in Fig. 2, QNG2 is assigned to C1. For QNG3,
since edit-DIS(QNG3, QNG1)(= 1) is larger than edit-DIS
(QNG3, QNG2)(= 1/3) and does not exceed µ, QNG3 is
also assigned to C1. For QNG4, because the maximum of
the edit distances between it and all the query n-grams in C1

is edit-DIS(QNG4, QNG3) (= 7/6), QNG4 is assigned to C1,
too. However, QNG5 itself forms a new cluster because the
maximum of the distances between it and each query n-gram
in C1 is edit-DIS(QNG5, QNG3) (= 11/4), which is higher
than µ. After that, the maximum of the edit distances between
QNG6 and all the query n-gram in C1 is 2, while the max-
imum corresponding to C2 is 1. QNG6 is finally assigned
to C2 because the minimum between QNG6 and C2 (=1) is
smaller than that between QNG6 and C1 (=11/6).

3.3 Cluster summarization

In addition to the query n-grams, for each cluster, two pieces
of summary information are also recorded. One is a sequence
of n events, called the virtual n-gram, where each event
is the union of all the corresponding events in the query
n-grams in the cluster. The other is the maximum of all the
local error bounds of the query n-grams in the cluster, called
the global error bound. Moreover, each event in a virtual
n-gram is followed by the attributes MAX and MIN. For
the i th event in the virtual n-gram, MAX (MIN) means the
maximum (minimum) size of the i th events in all the query
n-grams in the cluster.

The virtual n-gram, together with the MAX and MIN
attributes, forms the summarization of the cluster. From the
summarization, we can derive all the query n-grams that form
the cluster, although some n-grams that do not belong to the
cluster may also be mistaken. Pruning unmatched query
n-grams in a cluster by computing the restricted edit distance
between the data n-gram and the summarization is proved
safe in Sect. 4.

Example 2 Suppose the local error bounds of QNG1, QNG2,
QNG3, and QNG4 in Example 1 are 2, 2, 3, and 3, respec-
tively. Since they constitute the cluster C1, we produce the
virtual n-gram VNG1 for C1 as shown in Fig. 3. VNG1 is a
sequence of five events, where the i th event in VNG1 is the
union of all the i th events in the four query n-grams. There-
fore, the 1st event of VNG1 is 〈a,b,c〉 with MAX 3 and MIN 3.
Similarly, the 3rd event of VNG1 is 〈a,b,c,d〉 with MAX 4 and
MIN 2. As a result, VNG1 is 〈a,b,c〉〈b,d〉〈a,b,c,d〉〈e,f〉〈a,c,e〉,
where each event is followed by the corresponding MAX and
MIN values.

VNG1

QNG1

QNG2

QNG3

QNG4

E11

E21

E31

E41

3 2 2 2 2

3 2 4 2 2

VE1 VE2 VE3 VE4 VE5

MAX

MIN

(Global error bound =3)

(Local error bound =2)

(Local error bound =2)

(Local error bound =3)

(Local error bound =3)

3 2 2 2 2

3 2 4 2 2

VE1 VE2 VE3 VE4 VE 5

Fig. 3 The construction of a virtual n-gram (n = 5)

3.4 Query Buffer Creation

For each SQ composed of m query n-grams, we allocate m
query buffers in the same order as that of the correspond-
ing query n-grams in the SQ. The kth query buffer keeps
the partial answers, obtained by merging the k approximate
answers of the first k query n-grams of the SQ. The use of
query buffers will be detailed in Sect. 5.

4 Pruning Mechanism

The pruning mechanism is designed to act like the indexing
mechanism in the traditional DBMS in order to find all the
approximate matches for each data n-gram. By utilizing the
cluster summarization, the pruning mechanism computes
the restricted edit distance between the data n-gram and each
cluster. If it is above the global error bound, all the query
n-grams in the cluster cannot be the approximate matches
and are then pruned. In this way, the cost on distance com-
putation is greatly reduced.

To compute the restricted edit distance as desired, a sim-
plest approach is to compute the edit distance between the
data n-gram and every n-gram that can be derived from the
cluster summarization. Unfortunately, some n-grams that are
not in the cluster may also be mistaken. Notice that in this
case the resultant edit distance is still guaranteed less than or
equal to the edit distance of every query n-gram in the cluster
and can be set as the restricted edit distance. Furthermore,
this simplest approach will also suffer from the heavy cost
of distance computation. Therefore, we propose an original
approach with much less computation cost to compute the
restricted edit distance for each cluster.

For the ease of presentation, in the rest of this paper we
denote a query n-gram in the cluster C, the virtual n-gram of
C, and a data n-gram as QNG, VNG, and DNG, respectively.
When computing the edit distance, the insertion and deletion
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costs are fixed to 1, where as the replacement cost is variable
according to the similarity between events. This motivates us
to design a new cost function to substitute the replacement
cost in Eq. (2) when computing the distance between DNG
and VNG. For distinction, we denote the edit distance based
on the new cost function as RE-DIS (DNG, VNG), which is
used as the restricted edit distance.

Let the i th events in QNG and VNG be denoted as QEi
and VEi , respectively. In addition, MAXi and MINi are the
summary information associated with VEi . For each event in
DNG, denoted DE, the replacement cost between it and VEi ,
can be decided by using MAXi and MINi . From Eq. (2), the
new cost(DE, VEi ) for RE-DIS(DNG, VNG) should be the
upper bound of SIM(DE, QEi ) for all QEi in C. Therefore,
we aim at finding a possible QEi in C so that |DE ∩ QEi | is
maximized and |DE ∪ QEi | is minimized, i.e., the value of
|DE ∩ QEi |/|DE ∪ QEi | is maximized. In the following, we
present two observations and then consider three cases of the
new cost function for replacement.

Observation 1 Maximize|DE ∩ QEi |
For each QEi in C, since QEi ⊆ VEi , we have that |DE ∩

QEi | ≤ |DE∩VEi |. Moreover, |DE∩QEi | ≤ MAXi because
|QEi | ≤ MAXi . Therefore, for a possible QEi in C, the upper
bound of |DE ∩ QEi | cannot be set to a value larger than the
minimum of |DE ∩ VEi | and MAXi .

Observation 2 Minimize|DE ∪ QEi |
For each QEi in C, since DE ∪ QEi ⊇ DE, we have that

|DE ∪ QEi | ≥ |DE|. Moreover, because |QEi | ≥ MINi and
|DE ∪ QEi | = |DE| + |QEi | − |DE ∩ QEi |, we have |DE ∪
QEi | ≥ |DE| + MINi − |DE ∩ QEi |, where the last term is
the minimum of |DE ∩ VEi | and MAXi by Observation 1.
Therefore, for a possible QEi in C, the lower bound of |DE∪
QEi | cannot be set to a value smaller than the maximum of
|DE| and |DE| + MINi − minimum{|DE ∩ VEi |, MAXi }.

Based on the two observations, the new cost function can
be defined as one of the following three cases.

Case 1: MINi ≤ |DE ∩ VEi | ≤ MAXi

Since |DE ∩ VEi | ≤ MAXi , by Observation 1, we set the
numerator to |DE ∩ VEi |. Moreover, since MINi ≤ |DE ∩
VEi |, we have |DE| + MINi − minimum{|DE ∩ VEi |,
MAXi } ≤ |DE|. By Observation 2, we set the denomina-
tor to |DE|. As a result, cost(DE, VEi ) is set to 1 −(|DE ∩
V Ei |/|DE |).
Case 2: |DE ∩ VEi | > MAXi

Since |DE ∩ VEi | > MAXi , by Observation 1, we set the
numerator to MAXi . Moreover, since |DE ∩ VEi | > MINi ,
like Case 1, we set the denominator to |DE|. As a result,
cost(DE, VEi ) is set to 1 − (MAXi/|DE |).
Case 3: |DE ∩ VEi | < MINi

Since |DE∩VEi | < MAXi , like Case 1, we set the numer-
ator to |DE ∩ VEi |. Moreover, since |DE ∩ VEi | < MINi ,

we have |DE| + MINi − minimum{|DE ∩ VEi |, MAXi } >

|DE|. By Observation 2, we set the denominator to |DE| +
MINi − minimum{|DE ∩ VEi |, MAXi }, i.e., |DE| + MINi -
|DE ∩ VEi |. As a result, cost(DE, VEi ) is set to 1 − (|DE ∩
VEi |/(|DE| + MINi − |DE ∩ VEi |)).

To sum up, the replacement cost of RE-DIS(DNG, VNG)
is formulated as follows:

cost (DE, VEi )

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − |DE∩ VEi |
|DE| , if MINi ≤ |DE ∩ VEi | ≤ MAXi

1 − MAXi
|DE| , if |DE ∩ VEi | > MAXi

1 − |DE ∩ VEi |
|DE|+MINi −|DE∩VEi | , if |DE ∩ VEi | < MINi

(3)

Definition 2 (Restricted edit distance) The restricted edit
distance between a data n-gram DNG and a virtual n-gram
VNG, denoted as RE-DIS(DNG, VNG), is the minimum cost
of the edit operations between the DNG and the n-grams
derived from VNG. Let ai and b j be the i th event on DNG
and the j th event on the n-gram derived from VNG, respec-
tively. Let λ denote the null character. The edit operations
and the corresponding costs are defined as follows:

Deletion: cost(ai , λ) = 1

Insertion: cost(λ, b j ) = 1

Replacement: cost(ai , b j ) based on Eq. (3)

Recall the clustering of query n-grams in Sect. 3.2. For a
query n-gram, we decide its cluster by computing its edit
distance from every existing query n-gram. When the num-
ber of query n-grams increases, the clustering process can
be time-consuming. An alternative way is to use the virtual
n-grams and assign the query n-gram to the cluster with the
minimum restricted edit distance. Similarly, if the minimum
restricted edit distance exceeds µ, the query n-gram forms
a new cluster. Although it is more efficient, the clusters can
be looser. Therefore, we adopt the prior way of clustering in
this paper.

We use Fig. 4 to illustrate the concept of restricted edit
distance. Suppose each gray point in Fig. 4 is an n-gram and
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C2

AA

B

X

d2

Z

Y

d3

d1

C1

C

A

BB

X

d2

Z

Y

d3

Fig. 4 The basic concept of restricted edit distance
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there are two clusters C1 and C2. If data n-gram A arrives,
we need an efficient way to check each cluster to see whether
it can be pruned. For C1, its minimum distance from A is d1

and can be derived if we construct the black point X based on
the virtual n-gram of C1 and the associated MAX and MIN
values. Although X may not be a real query n-gram in C1, d1

is guaranteed to be smaller than the distance between A and
any query n-gram in C1. In this way, our approach can make
the decision by checking only the virtual n-gram instead of
all the query n-grams in C1. For C1, we can construct Y in
the same way although Y happens to be a real query n-gram.
In fact, d1 and d2, respectively, stand for the restricted edit
distances of C1 and C2 from A. If data n-gram B arrives, we
may construct another point Z for C1 to derive the restricted
edit distance between B and C1.

Based on Eq. (3), we derive two properties describing the
relationship between the edit distance and the restricted edit
distance. Property 1 says that the replacement cost between
the data event and the virtual event is equal to or less than that
between the data event and every query event contained in
the virtual event. Moreover, Property 2 says that the restricted
edit distance between the data n-gram and the virtual n-gram
is equal to or less than the edit distance between the data
n-gram and every query n-gram in the cluster to which the
virtual n-gram belongs. Their proofs are shown respectively
in the following.

Property 1 cost(DE, VEi ) in RE-DIS(DNG, VNG) ≤
cost(DE, QEi ) in edit-DIS(DNG, QNG),∀QEi of QNG in
C.

Proof Following Eq. (2) and Eq. (3) finds an upper bound
of SIM(DE, QEi ), ∀QEi in C, which is to find the maximum
of |DE ∩ QEi |/|DE ∪ QEi | from each possible QEi in C.
For each of the three cases in Eq. (3), we prove the claim as
follows:

Case 1: MIN ≤ |DE ∩ VEi | ≤ MAX

Since QEi ⊆ VEi ,∀QEi in C ⇒ |DE ∩ QEi | ≤ |DE ∩
VEi |,∀QEi in C; Moreover, DE ∪ QEi ⊇ DE,∀QEi in
C ⇒ |DE ∪ QEi | ≥ |DE|,∀QEi in C; Thus, 1 − (|DE ∩
VEi |/|DE|) ≤ 1 − (|DE ∩ VEi |/|DE ∪ QEi |) ≤ 1 − (|DE ∩
QEi |/|DE ∪ QEi |) = 1 − SIM(DE, QEi ),∀QEi in C.

Case 2: |DE ∩ VEi | > MAX

Since |QEi | ≤ MAX,∀QEi in C ⇒ |DE ∩ QEi | ≤
MAX < |DE ∩ VEi |,∀QEi in C; like Case 1, |DE ∪ QEi | ≥
|DE|,∀QEi in C; Therefore, 1−(MAX/|DE|) ≤ 1−(MAX/

|DE ∪ QEi |) ≤ 1 − (|DE ∩ QEi |/|DE ∪ QEi |) = 1 −
SIM(DE, QEi ),∀QEi in C.

Case 3: |DE ∩ VEi | < MIN

Since |DE ∩ VEi | < MAX ⇒ like Case 1, |DE ∩ QEi | ≤
|DE ∩ VEi |,∀QEi in C; Moreover, |QEi | ≥ MIN,∀QEi in
C ⇒ |DE ∪ QEi | = |DE| + |QEi | − |DE ∩ QEi | ≥ |DE| +

MIN−|DE∩QEi | ≥ |DE|+MIN−|DE∩VEi |,∀QEi in C;
Therefore, 1− (|DE∩VEi |/(|DE|+MIN−|DE∩VEi |)) ≤
1 − (|DE ∩ VEi |/|DE ∪ QEi |) ≤ 1 − (|DE ∩ QEi |/|DE ∪
QEi |) = 1 − SIM(DE, QEi ),∀QEi in C.

Property 2 RE-DIS(DNG, VNG)≤ edit-DIS(DNG,QNG),

∀QNG in C.

Proof Following Definition 1, ∀QNG in C, we can find a
sequence of edit operators O = 〈O1O2, . . . , On〉 that has the
minimal cost, i.e., edit-DIS(DNG, QNG), to transform DNG
into QNG. Let DO be the cost for transforming DNG into
VNG by using O and the cost function in Eq. (3). Among
the operators in O, the insertion and deletion costs in DO

are the same as those in edit-DIS(DNG, QNG). Owing to
Property 1, the replacement cost is smaller in DO. Therefore,
DO ≤ edit-DIS(DNG, QNG), ∀QNG in C. Since we compute
RE-DIS(DNG, VNG) in either of the following two cases,
we prove the claim for each case:

Case 1: If O incurs the minimal cost in transforming DNG
into VNG, RE-DIS(DNG, VNG) = DO ≤ edit-DIS(DNG,
QNG), ∀QNG in C.

Case 2: If using O to transform DNG into VNG does
not incur the minimum cost, there must exist a sequent of
edit operators so that RE-DIS(DNG, VNG) < DO ≤ edit-
DIS(DNG, QNG), ∀QNG in C.

Example 3 Assuming that VNG1 in Example 2 is associ-
ated with a series of [MIN,MAX] pairs, [3,3], [2,2], [2,4],
[2,2], and [2,2]. Given a data n-gram DNG = 〈a,b,c〉〈b,d〉
〈a,b,d〉〈e,f〉〈a,c,e〉, the matrix for computing RE-DIS(DNG,
VNG1) is shown in Fig. 5. Note that the replacement cost
in Eq. (3) is used. For instance, in C3,3, Case 1 is applied
because |〈a,b,d〉 ∩ 〈a,b,c,d〉| is in the range [2,4]. Moreover,
in C5,5, Case 2 is applied because |〈a,c,e〉 ∩ 〈a,c,e〉| = 3 is
larger than MAX5 = 2. It verifies that the restricted edit dis-
tance (=1/3) will not exceed the edit distance computed from
the query n-gram QNG2 (=5/6), which can be computed by
the method described in Sect. 3.2.

If each SQ is composed of only one query n-gram, prun-
ing a cluster of query n-grams by the restricted edit distance
is safe because no answer will be lost due to Property 2.
However, for the SQ composed of more than one query
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Fig. 5 The RE-DIS(DNG, VNG1) matrix
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Fig. 6 Two paths crossing the matrix for computing edit-DIS(DNG,
QNG1)

n-gram, it is unsafe to prune a cluster of query n-grams just
because the restricted edit distance exceeds the global error
bound. The reason can be seen from the computation of the
edit distance between a data n-gram and a query n-gram. Sup-
pose that an SQ is composed of two query n-grams QNG1 and
QNG2. At the left-hand side of Fig. 6, the value of Cn,n in the
matrix indicates edit-DIS(DNG, QNG1). At the right-hand
side of Fig. 6, we assume that P1 is a path with the minimum
cost from the top-left corner to the bottom-right corner in this
matrix. Although the value of Cn,n in P1 exceeds the error
bound of the SQ, it is unsafe to prune QNG1. Let FA and P ,
respectively, denote a final answer of SQ that includes DNG
and a path with the minimum cost from the top-left corner
to the bottom-right corner in the matrix for computing edit-
DIS(FA, SQ). If P contains P2 instead of P1, FA will be lost.
As a result, even though the value of Cn,n exceeds the error
bound, DNG still has a chance to be a partial answer of the
SQ when the value of Cn,n−1 does not exceed the error bound.
Therefore, we have to further check some cells in the matrix
for computing the edit distance and select the minimum as
the lower bound for safely pruning a query n-gram.

Example 4 For simplicity, each event in this example has
only one item. Let SQ consist of QNG1 = 〈a〉〈b〉〈c〉〈d〉〈e〉
and QNG2 = 〈m〉〈n〉〈o〉〈p〉〈q〉. The error bound is 1. A
data segment D is 〈b〉〈c〉〈d〉〈e〉〈m〉〈n〉〈o〉〈p〉〈q〉, where DNG1

and DNG5 are 〈b〉〈c〉〈d〉〈e〉〈m〉 and 〈m〉〈n〉〈o〉〈p〉〈q〉, respec-
tively. In this example, we skip discussing the processing of
DNG2, DNG3, and DNG4 for brevity. The matrices for com-
puting edit-DIS(DNG1, QNG1) and edit-DIS(DNG5, QNG2)
are illustrated in Fig. 7, respectively. In the first matrix, if we
only consider the value in C5,5, DNG1 will not form a partial
answer of the SQ because the value in C5,5 (=2) exceeds the
error bound. However, if we skip DNG1 at this moment, we
will eventually miss D in the final answers. Therefore, we
take the minimum among the three cells C4,5, C5,5 and C5,4

as the criterion to be checked. Since in this case the minimum
(1) does not exceed the error bound, DNG1 will be kept in
the query buffer of QNG1, and the final answer D can be
identified as we merge DNG1 with DNG5.
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Fig. 7 A path crossing two matrices

Since the restricted edit distance is a lower bound of the
edit distance between the data n-gram and each query
n-gram in the cluster, the above scenario can also be applied
to the matrix for computing the restricted edit distance for
each cluster. The cells that we have to check, including cell
Cn,n, are named the acceptable cells, and can be located via a
formula as follows. Let the global error bound be denoted as
δ. Since the path of a final answer must cross the boundaries
at the right or the bottom of the matrix, the acceptable cells
must be a subset of the cells in the last row or the last col-
umn of the matrix. Among these cells, all the cells Ci,j, where
i < n−δ or j < n−δ, cannot be the acceptable cells because
any path crossing them must incur the insertion or deletion
cost higher than δ. Namely, only the remaining cells should
be considered as the acceptable cells. As a result, the cluster
of query n-grams can be safely pruned only if all the val-
ues in these acceptable cells exceed the global error bound.
Therefore, we choose the minimum value in acceptable cells
as the global distance, denoted as global-DIS(DNG, VNG).

global- DIS(DNG,VNG)

= MINIMUM{V (Ci, j )|Ci, j belongs to M(DNG,VNG),

(i = n, n − δ ≤ j ≤ n) ∨ ( j = n, n − δ ≤ i < n)}
where M(DNG, VNG) is the matrix for computing

RE-DIS(DNG, VNG)

δ is the global error bound

V (Ci, j ) is the value of Ci, j

(4)

Following Eq. (4), we derive Lemma 1, saying that the global
distance between the data n-gram and the virtual n-gram must
be equal to or less than the distance between the data n-gram
and every query n-gram in the cluster to which the virtual
n-gram belongs. Therefore, no answer will be lost and the
correctness of the pruning mechanism is guaranteed.

Lemma 1 ∀QNG in C, global-DIS(DNG, VNG) ≤ edit-
DIS(DNG, QNG).
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Proof Following Eq. (4), it is obvious that global-DIS
(DNG,VNG) ≤ RE-DIS(DNG,VNG) and then by Property 2
it leads to the claim.

5 Merging mechanism

Whenever a query n-gram is identified as an approximate
match of the incoming data n-gram, the pruning mechanism
sends a copy of the data n-gram to the corresponding query
buffer in the merging mechanism. The query buffers of each
SQ aim at collecting all the data n-grams received from the
pruning mechanism to form the candidate answers of the SQ.
Since a candidate answer of the SQ can be composed of mul-
tiple data n-grams that arrive at different time, the merging
mechanism is designed in such a way that the data n-grams
can be incrementally merged and kept as the partial answers.
Moreover, a data n-gram can be an approximate answer of
more than one query n-gram of the same SQ. Therefore, the
merging mechanism may use a data n-gram to grow different
partial answers of the same SQ simultaneously.

In our approach, the length of the n-gram, n, is set to
be larger than the error bound of any SQ. It follows that
any segment on the event stream, which does not contain an
approximate match of any query n-gram in the SQ, is impos-
sible to be an answer of the SQ. Therefore, only the candidate
answers generated from query buffers must be examined. For
the SQ composed of m query n-grams, there will be m query
buffers, which are numbered with the order of query n-grams
in the SQ. The kth query buffer keeps every partial answer
that merges the k approximate answers corresponding to the
first k query n-grams of the SQ.

When a data n-gram is sent to the kth query buffer of an
SQ, four criteria are used in series to check whether it can be
merged with any partial answer in the (k − 1)th query buffer
to form a new partial answer in the kth query buffer. The
common idea behind the criteria is that the estimated lower
bound of the edit distance between the new partial answer
and the SQ cannot exceed the error bound of the SQ. More-
over, the computation results for the kth query buffer can be
reused to estimate the lower bounds for the partial answers
in the (k + 1)th query buffer. In this way, the costs on dis-
tance computation and the estimation of the lower bound
are greatly reduced. In the following, we introduce the five
steps of how a query buffer deals with a data n-gram. The
first four steps correspond to the four criteria, respectively,
and the last step is to handle the new partial answers gener-
ated. For the ease of presentation, we denote the k-th query
n-gram in an SQ as QNGk and the prefix of SQ with the
first k query n-grams as SQ1..k . Without loss of generality,
we assume that the SQ associated with an error bound ε has
m query buffers and the incoming data n-gram, denoted as
DNG, is sent to the k-th query buffer, denoted as QBk . The
treatments for the initialization and completion in the first

and the last query buffers (QB1 and QBm) will also be noted
in the subsequent discussions. In addition, the partial answer
that currently exists in QBk−1 is denoted as PAk−1, where as
the new answer that merges DNG and PAk−1 is denoted as
PAk−1 ⊕ DNG.

Step 1: Existence of PAk−1

Since the query buffers follow the order of query n-grams
in the SQ, it can be seen that every partial answer in QBk
must have a corresponding partial answer in QBk−1 and the
latter always appears earlier than the former. Therefore, this
step is to check whether there is any partial answer in QBk−1.
If not, DNG is discarded and no partial answer is generated.
Note that this check is skipped when k = 1.

Step 2: Lengths of PAk−1 ⊕ DNG and SQ1..k

As afore mentioned, the difference between the length of
the SQ and that of its answer implies a lower bound of their
edit distance. Therefore, for each partial answer in QBk−1,
we merge it with DNG and compare the length of the merged
result with that of SQ1..k , i.e. n ×k. If this difference exceeds
ε, this partial answer is ignored because it will never be a part
of any approximate answer of the SQ. Note that this check
is also skipped when k = 1.

Step 3: Distance between DNG and QNGk

For the same reason we discussed in Sect. 4, it is unsafe
to ignore DNG just because the edit distance between DNG
and QNGk exceeds ε. Instead, we have to check the accept-
able cells, as defined in Eq. (4), in the matrix for computing
edit-DIS(DNG, QNGk) and select the minimum as the esti-
mate, which is called the local distance and denoted as local-
DIS(DNG, QNGk). If this estimate exceeds the error bound,
DNG is discarded and no partial answer is generated. Note
that this step is executed for any k. We provide the formula
for computing the local distance as follows:

local -DIS(DNG,QNGk)

= MINIMUM{V (Ci, j )|Ci, j belongs to M(DNG,QNGk),

(i = n, n − ε ≤ j ≤ n) ∨ ( j = n, n − ε ≤ i < n)}
(5)

where M(DNG,QNGk) is the matrix for computing edit-DIS

(DNG, QNGk)

ε is the error bound

V (Ci, j )is the value ofCi, j

Following Eq. (5), we derive Property 3, saying that the
local distance between the data n-gram and the query n-gram
must be equal to or less than the edit distance between them.

Property 3 local-DIS(DNG, QNG) ≤ edit-DIS(DNG,

QNG),∀QNG.

Proof Following Eq. (5), it is obvious that this claim is true,
because the cell Cn,n in the edit-DIS(DNG, QNG) matrix is
always included in the acceptable cells for computing local-
DIS(DNG, QNG).
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Fig. 8 Computation of the
partial distance

(a)

overlap=1

(b)

contact

(c)

gap=1

(d)

path concept of (a) 

(e)

path concept of (b) 

(f)

path concept of (c) 

q p r

QNG1

QNG2

q
a b

c

b’a’

p r

c’

QNG1

QNG2

q p r

QNG1

QNG2

da b
c

a’

q p r

c’
b’

QNG1

QNG2

q p r

QNG1

QNG2

d ea b
c

q p r

c’
b’a’

QNG1

QNG2

Step 4: Distance between PAk−1 ⊕ DNG and SQ1..k

Like Steps 1 and 2, this check is skipped when k = 1.
For the ease of presentation, we use an example for k = 2
as shown in Fig. 8 to explain this check. The error bound is
set to 1 and therefore each matrix only has three acceptable
cells. Assume that the data n-gram DNG1 has been kept as a
partial answer in the query buffer of QNG1, and the values
in the cells a, b, c are recorded. If the data n-gram DNG is
sent to the query buffer of QNG2, by the previous step we
will obtain local-DIS(DNG, QNG2). As shown in Fig. 8a–
c, there are three types of temporal relationships between
DNG1 and DNG, including overlap, contact, and gap. For
each type, with the same idea of the acceptable cells, we
estimate the lower bound of the minimum among the three
cells a′, b′, c′. If this estimate exceeds the error bound, this
merged result (DNG1 ⊕ DNG) is ignored because it can-
not be a part of any approximate answer of the SQ. We
call such an estimate the partial distance and denote it as
part − DIS(DNG1 ⊕ DNG, SQ1..2). For efficiency, we pro-
pose a method to compute the partial distance using only the
values of the cells a, b, c and local-DIS(DNG, QNG2).

Since the error bound is 1, only the cells colored are
involved in the estimation of the partial distance. The goal is
to find a path with the minimum cost from the top-left corner
to either of the cells a′, b′, c′. It can be seen that this path
must pass cell p or cell q. Moreover, since the data n-grams
can be partially overlapped, the computation can be redun-
dant. For instance, a path that passes cell p and ends at cell b′
in Fig. 8a is equivalent to the path that passes cell q and ends
at cell a′ in Fig. 8b. To avoid the redundancy, we propose
the path concept as indicated in Fig. 8d–f to limit the paths
considered at each check to only the ones passing cell p, i.e.,
the cell C1,1 in the edit-DIS(DNG, QNG2) matrix. If the path
with the minimum cost is the one passing cell q, it still can
be found at later checks. In the following, we take Fig. 8 as a

running example to show how to compute the partial distance
for each type.
Type A: Overlap

As Fig. 8(a) depicts, DNG overlaps with DNG1. By
Eq. (5), local-DIS(DNG, QNG2) means the minimum cost of
a path from cell p to either of the cells a′, b′ and c′. Moreover,
a path passing cell p must pass either cell a or cell b, while
the value in each of these cells stands for the minimum cost
of a path from the top-left corner to it. Since the minimum
cost of a path from cell a(b) to cell p is 0 (1, the deletion
cost), the partial distance can be formulated as:

part-DIS(DNG1 ⊕DNG, SQ1..2)

= minimum{V(a), V(b)+1}+ local-DIS(DNG, QNG2)

(6)

Note that if the number of overlaps exceeds the error bound,
this merged result can be ignored directly.

Type B: Contact
As shown in Fig. 8b, cell p is the contact of the two matri-

ces. Unlike the previous type, a path passing cell p must pass
either cell b or cell d, while the value of cell d is unknown.
Fortunately, we can compute a lower bound of it from the
cells c and b because a path passing cell d must pass either
cell b or cell c. The minimum cost of a path from cell c(b) to
cell d is 0 (1, the insertion cost), and thus the value of cell d
is set to minimum{V(c), V(b)+ 1}. Since the minimum cost
of a path from cell b (d) to cell p is 0 (1, the deletion cost),
the partial distance can be formulated as:

part-DIS(DNG1 ⊕DNG, SQ1..2)

= minimum{V(b), V(d) + 1} + local-DIS(DNG, QNG2)

(7)
Type C: Gap

As shown in Fig. 8c, there is a gap between the arrival
times of DNG and DNG1. A path passing cell p must pass
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either cell d or cell e, where the values of both cells are
unknown. Following the previous type, we can compute both
lower bounds of the value of cell d, minimum{V(c), V(b)+
1}, and the value of cell e, minimum{V(c)+ 1, V(d)+ 1}.
Since the minimum cost of a path from cell d (e) to cell p is 0
(1, the deletion cost), the partial distance can be formulated
as:

part-DIS(DNG1 ⊕ DNG,SQ1..2)

= minimum{V(d), V(e) + 1}+local-DIS(DNG, QNG2)

(8)

Note that if the number of gaps exceeds the error bound,
this merged result can be ignored directly, and the partial
answer DNG1 is also removed. The reason for the latter is
that the gap between DNG1 and any of the subsequent data
n-grams will be getting larger, and no partial answer can be
generated in the future. Notice that Eqs. (6) and (8) can be
easily generalized to the cases with their overlaps or gaps
larger than 1.

Following Eqs. (6), (7), and (8), we get Lemma 2. It says
that, for any query and k > 1, we need not merge the incom-
ing data n-gram, which is the approximate answer of QNGk ,
with a partial answer in QBk−1 if the partial distance between
the new partial answer (PAk−1 ⊕ DNG) and the prefix of
SQ with the first k query n-grams (SQ1..k) exceeds the error
bound of the query.

Lemma 2 In each type, it is safe to ignore PAk−1 ⊕ DNG if
part-DIS(PAk−1 ⊕ DNG, SQ1..k) > ε,∀PAk−1 in QBk−1.

Proof Without loss of generality, we use the example in Fig. 8
again. In this example, we set k = 2 and ε = 1. In each type,
the paths considered at each check are limited to the ones
passing cell p. Since the path with the minimum cost can
either pass cell p or not, we prove the claim for each case as
follows:

Case 1 If the path as desired passes cell p, according to
Property 3, part-DIS(DNG1⊕DNG, SQ1..2), must be smaller
than or equal to edit-DIS(DNG1 ⊕DNG, SQ1..2). Therefore,
if the partial distance exceeds ε, it is safe to ignore DNG1 ⊕
DNG because merging DNG1 ⊕ DNG with subsequent data
n-grams will not result in a final answer of the SQ.

Case 2 If the path as desired does not pass cell p, it must
exist in one of the latter checks. Take Fig. 8a as an example.
Suppose that the path with the minimum cost passes cell r
instead of cell p and this path ends at cell b′ in Fig. 8a. It is safe
to ignore DNG1 ⊕ DNG because this merged result, i.e., the
value of cell a′ in Fig. 8b, will be taken back at a latter check.

As aforementioned, the first four steps are used in series
to check whether an incoming data n-gram can be merged
with a previous partial answer. We decide the order of the
four steps by making a compromise between the pruning

effect and the computation cost. Step 1 is undoubtedly the
fastest step because only one query buffer should be checked.
However, if we only use Step 1 for pruning, there will be
many unnecessary candidates retained for the final check,
e.g., too long candidates. The pruning effect is improved if
Steps 2 and 3 are also included. Compared with the length
difference for Step 2, the distance computation by dynamic
programming in Step 3 is obviously more time-consuming.
This distinction leads to the current order of the two steps.
Step 4 is the most complicated out of the four, because Since
it needs the computation results of Step 3 to estimate the
required distances, we let it be the last step for pruning.

Step 5: Generation of PAk−1 ⊕ DNG in QBk

After the four checks are passed, a partial answer, PAk−1⊕
DNG, is generated and stored in QBk . For k = 1, this step is
to directly store DNG as a partial answer in QBk . For k = m,
this step is not to store anything into the query buffer. Instead,
a candidate answer is produced, and the edit distance between
it and the SQ is computed to determine whether it can be a
final answer. Moreover, from the matrix for computing this
edit distance, we also check every prefix of the candidate
answer with lengths in [L − ε, L − 1], where L is the length
of the candidate answer, to see whether it is a final answer. In
this way, more than one final answer can be obtained via only
one computation of the edit distance. Note that redundant
answers produced at different time can be identified with a
simple check.

To guarantee that no approximate answer of a query will
be lost, we provide Theorem 1 as follows:

Theorem 1 For each SQ, all the final answers on the event
stream are included in the set of candidate answers produced
by our approach.

Proof For an SQ with the error bound ε and length L , only
the data segments with lengths in [L−ε, L+ ε] on the event
stream can be an answer. Monitoring all the data segments
with lengths in [L−ε, L+ ε] on the event stream can ensure
the claim because all possible answers are included in the set
of candidate answers. From this viewpoint, the two mecha-
nisms in our approach act like filters to reduce the number
of candidate answers by eliminating as early as possible the
ones that cannot be final answers. Therefore, what we need
to prove is that using our mechanisms will not result in false
elimination of any final answer. Assume that a final answer
FA of the SQ is not in the set of candidate answers. It implies
that a data n-gram DNG in FA, corresponding to the query
n-gram QNGk in the SQ, is falsely pruned by one of the two
mechanisms.

Case 1 Pruning mechanism
In the pruning mechanism, DNG is discarded only if the

cluster containing QNGk is pruned. In this situation, from
Lemma 1, edit-DIS(DNG, QNGk) exceeds ε and therefore
edit-DIS(FA, SQ) also exceeds ε. This leads to a contradiction.
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Case 2 Merging mechanism
In the merging mechanism, DNG is discarded only if for

each partial answer PAk−1 in QBk−1 of the SQ, which is
contained in FA, PAk−1 ⊕ DNG is pruned due to either of
the criteria used in the first four steps.

Step 1: In this step, DNG is discarded directly if there is
no partial answer in QBk−1 of the SQ. It also means that no
data segment on the event stream can be merged with DNG
to form an approximate answer of SQ1..k . This leads to the
same contradiction in Case 1.

Step 2: In this step, PAk−1 ⊕ DNG is pruned only if the
difference between its length and SQ1..k exceeds ε. It implies
that edit-DIS(FA, SQ) must be larger than ε and therefore
leads to the same contradiction in Case 1.

Step 3: In this step, DNG is discarded directly if local-
DIS(DNG, QNGk) exceeds ε. By Property 3, edit-DIS(DNG,
QNGk) is also larger than ε. Therefore, the same contradic-
tion in Case 1 can be drawn.

Step 4: In this step, PAk−1 ⊕ DNG is pruned only if part-
DIS(PAk−1 ⊕ DNG, SQ1..k) exceeds ε. By Lemma 2, there
are two cases to consider. For Case 1, edit-DIS(DNG1 ⊕
DNG, SQ1..k) is larger than ε and therefore edit-DIS(FA,SQ)
will also large than ε. This leads to a contradiction. For
Case 2, we can still obtain FA by merging PAk−1 with the
subsequent data n-gram to fit Case 1. According to the proofs
in Steps 1, 2, and 3, such a data n-gram will not be pruned.
This also leads to a contradiction.

6 Experimental evaluation

In this section, a series of experiments are performed to
demonstrate the efficiency as well as the scalability of our
approach compared with a naïve approach. In addition, we
also illustrate how the two parameters, the length of n-gram
(n) and the clustering threshold (µ), influence the perfor-
mance of our approach. Since we consider the symbolic
music data in the stream environment, no distortion will occur
in the concerned music stream. Moreover, we exclude the
noises that may arise during the data transmission from the
sender to the receiver because such noise hardly exists in
the symbolic music stream in the real situation. According
to the problem definition, all the music segments within the
error tolerance of a range query are regarded as the desired
answers. In the experiments, the correctness of our approach
is guaranteed because all the music segments within the given
error tolerance of an SQ are derived.

6.1 Experiment setting

We implement a prototype system to construct a stream-
ing environment with multiple music streams. To simulate a
music stream, we randomly play 100 songs in the MIDI for-
mat as the testing data. The genres of the 100 songs include

Blues, Classical, Country, Folk, Jazz, and etc. The total time
to play all the 100 songs is about 2,6805 s whereas the total
number of events is 168,283. Note that music objects in the
format of SMR, such as MusicXML [41], are also allowable.
We also implement a translator in the system to continuously
receive the music objects and transform each SMR into the
pitch representation to form the corresponding event stream.
Since it takes less than a second to obtain the pitch repre-
sentation from each SMR, this transformation time is not
included in the experiment results.

The user can issue any musical segments as the SQs via the
interface of the system. Thereafter, the system continuously
monitors the music stream and notifies the user when songs
on the music stream contain a segment close to the issued
SQ. To evaluate our approach, all the SQs in the experiments
are extracted from the 100 songs. There are two steps of
query generation in our experiments. In the first step, each
SQ is a music segment with length 24 randomly selected
from the 100 songs. If the SQ is selected from the refrain
part or repeating phrases of a song, we may likely find the
approximate answers (i.e., the music segments within the
error tolerance of the SQ) in the same song. Moreover,
the approximate answers may also occur in other songs. In
the second step, each SQ is slightly adjusted according to the
corresponding error bound ε as follows. We first randomly
select ε events from the selected SQ, and then remove a sym-
bol from each of the selected events to generate a new SQ for
the experiments. If the length of the newly generated SQ is
less than 24, we concatenate the event(s) behind the original
SQ with the adjusted SQ to fulfill the length requirement. The
length of n-gram (n) and the clustering threshold (µ) influ-
ence the performance of our approach and will be discussed
in Sects. 6.4 and 6.5, respectively.

A naïve approach is implemented as a benchmark for eval-
uating the performance of our approach. Since the length
of each SQ is 24 and their error bounds (ε) are equal, the
lengths of the final answers must be in [24−ε, 24+ε]. The
naïve approach uses a sliding window with length 24+ε on
the event stream and continuously extracts the most recent
events to form a candidate answer. For each candidate answer,
the edit distance between it and each SQ is calculated with
the cost functions in Definition 1. Note that for each candi-
date answer and each SQ, only one computation is sufficient
to determine whether the candidate answer and its prefixes
with lengths in [24−ε, 23+ε] can be the final answers of the
corresponding SQ. The two approaches are implemented in
C++ and run on the PC with Pentium 4 CPU of 2.80 GHz and
512 MB memory.

6.2 Experiments on real-time requirement

Since our approach is operated in the streaming environment,
the most important criterion on efficiency is to demonstrate
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Fig. 9 The processing time for different numbers of SQs by our
approach

whether our approach can meet the real-time requirement.
In our system, a new data n-gram will be generated when a
new event arrives. Based on the system architecture shown in
Fig. 1, an incoming data n-gram will trigger both the pruning
mechanism and the merging mechanism at once. Therefore,
we measure the processing time of a data n-gram when a new
event arrives.

In the first experiment, we try different numbers of SQs
from 500, 750, 1,000, 1,250, to 1,500. The error bound of
each SQ is set to 2. In addition, the parameter n is set to 6,
and in this case each SQ is decomposed into 4 query n-grams.
We measure the average processing time (Avg), the minimum
processing time (Min), and the maximum processing time
(Max) of our approach when a new event arrives.

The results are depicted as a histogram in Fig. 9, where
the x-axis indicates the number of SQs and the y-axis indi-
cates the processing time. Under the same condition, the
average processing time (N_Avg), the maximum processing
time (N_Max), and the minimum processing time (N_Min)
of the naïve approach are measured and shown in Fig. 10.
Our approach outperforms the naïve approach significantly,
especially as the number of SQs increases. The excessive
processing time of the naïve approach results from two parts.
First, the computation for different SQs is not shared. Sec-
ond, the naïve approach spends too much time on processing
the data segments that are impossible to be the approximate
answers. Therefore, the N_Avg grows linearly with the num-
ber of SQs. On the contrary, we develop several techniques
to significantly reduce the processing time, including shar-
ing the computation among similar query n-grams, pruning
the unmatched data n-grams as soon as possible, and reusing
the intermediate results as much as possible. In the real-time
environment, a realistic approach should be able to process
an incoming data n-gram in time without any delay. In the
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Fig. 10 The processing time for different numbers of SQs by the naïve
approach

above experiments, a new event arrives at the system for every
159 ms on average. The results in Fig. 10 reveal that the naïve
approach will not be able to process a data n-gram in time
even for only 1,000 SQs. However, our approach takes only
24 ms on average under the same condition. Therefore, based
on the discussion above, the processing time of our approach
is reasonable and practical for real-time requirement.

To study the case when the length of each SQ may be
different, we produce 500 SQs with lengths 12, 18, and 24,
respectively. The setting of other parameters is the same as
the above experiments. The Avg is about 27.23 ms while
the N_Avg is about 263.46 ms. Our approach still outper-
forms the naïve approach in this situation. Compared with the
Avg of the previous experiment for 1,500 SQs (see Fig. 9),
the Avg of this experiment is shorter. The number of query
n-grams in this experiment is 4,500 whereas the number of
query n-grams in the previous experiment for 1,500 SQs is
6,000. Since the two experiments use the same clustering
threshold, the number of clusters generated in this experiment
is no doubt smaller. It follows that the number of clusters to
be examined in the pruning mechanism is also reduced in this
experiment. It is known that to generate the final answer of an
SQ with longer length, more partial answers have to be kept
and checked. Accordingly, the number of partial answers to
be checked in the merging mechanism is also reduced in this
experiment.

6.3 Experiments on scalability

To demonstrate the scalability of our approach, we compare
the total processing time of the two approaches for different
numbers of SQs and the results are shown in Fig. 11. Note
that the horizontal line stands for the total playing time of the
100 songs, which is about 7.5 h. As Fig. 11 indicates, the total
processing time of the naive approach increases dramatically
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Fig. 11 Total processing time for different numbers of SQs on one
music stream

as the number of the SQs increases, while the total process-
ing time of our approach presents little difference among the
increasing number of SQs. When the number of SQs attains
1250, the naïve approach takes 11.3 h to process the music
stream while our approach only needs 84.3 min (recall that
there are 168,283 events.) That is, the user has to wait for
additional 10 h to receive the notification of the last song
if we adopt the naïve approach. Such delay is inapplica-
ble for the applications we introduced. On the contrary, our
approach can provide reasonable response time for the users
in the same condition. The results verify that the performance
of our approach remains satisfactory as the number of SQs
increases.

Furthermore, we tried monitoring different numbers of
music streams to demonstrate the scalability of our approach
in another dimension. Each music stream is formed with
the same 100–songs, but in different order. The setting of
the other parameters is the same as the above experiments.
Figure 12 shows the total processing time for different num-
ber of SQs while monitoring one, two, and three music
streams. The total processing time on three music streams is
about three times of the total processing time on one music
stream. This result indicates that our approach can handle
multiple music streams with only a little overhead to identify
the source stream of the incoming data n-grams.

6.4 Experiments on influence of parameter µ

Based on the proposed pruning mechanism, the results of
query n-gram clusters may affect the performance of the
pruning mechanism, and thus may also impact the perfor-
mance of our approach. Choosing a suitable clustering thresh-
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old can make the individual classes tighter and maintain
a reasonable number of clusters simultaneously. However,
the setting of the clustering threshold is not easy because it
depends on the distribution of all SQs and the streaming data,
which is dynamic. Figure 13 shows the results by varying the
clustering threshold in the case of 1,500 SQs. The parame-
ters n and ε are set to 6 and 2, respectively. Our observation
on this experiment is that we should choose a medium value
relative to the length of the n-gram as the clustering thresh-
old. The reason is that if µ is smaller, the number of clusters
will increase, and thus the processing time of the pruning
mechanism will become worse. On the other hand, if µ is
larger, the clusters will become loose and thus the effect of
the pruning mechanism will diminish. Moreover, the perfor-
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Table 1 Time ratios on varied ε

Error bound 1 2 3 4 5

Time ratio 1 1.07 1.20 1.32 1.58

Table 2 Time ratios on varied n
Parameter n 6 8 12

Time ratio 1 2.58 4.49

mance of the merging mechanism will also be decreased if
too many data n-grams pass the pruning mechanism. Note
that re-clustering all the existing query n-grams whenever a
new query arrives might be one solution to further reduce the
number of clusters and tighten the individual clusters. How-
ever, the clustering costs so much that makes it inapplicable
to the real applications.

6.5 Experiments on influence of parameter n

Since our approach is based on the concept of n-grams,
choosing a suitable value of n is an important issue. To
observe how this parameter influences our approach, two
experiments are performed as follows. In the first experi-
ment, we generate 1,500 SQs, set n to a constant 6, and run
our approach by varying the error bound ε from 1 to 5. The
error bound is set to only those values smaller than 6 because
our approach will become ineffective to prune a cluster of
query n-grams if ε is not below n. Taking the processing
time for ε = 1 as the denominator, we have the relative time
ratios shown in Table 1. The result shows that the time ratio
grows with ε, and it means that the performance is getting
worse when ε is set closer to n. The reason is that when the
error bound ε is closer to length n, more data n-grams are
sent to the merging mechanism and therefore increases the
number of partial answers. We conclude that the length n
should not be too close to the error bound ε.

From above, it seems that we should set the value of n as
large as possible. However, this is not always true. In the fol-
lowing experiment, we generate 1,500 SQs, set ε to constant
2, and run our approach by varying the parameter n from 6, 8,
to 12. Taking the processing time for n = 1 as the denomina-
tor, we have the relative time ratios shown in Table 2, where
the time ratio grows with n. The reason is that as n grows, the
number of the clusters is getting larger and the cost of dis-
tance computation becomes heavier. Therefore, we conclude
that a good choice of n should be as small as possible.

From these two experiments, there is a tradeoff for the
selection of the parameter n. If n is smaller, i.e., closer to ε, the
overhead that the merging mechanism incurs will increase.
On the other hand, if n is larger, the overhead that the pruning
mechanism incurs will increase.

7 Related works

Several major research areas, DNA sequence alignment, time
series analysis, repetitive pattern discovery, query-by-
humming systems, content-based music retrieval, content-
based audio identification, and data stream management, are
related to our approach. The related works are introduced
and compared with our approach as follows.

In the area of DNA sequence alignment, the researchers
consider the event sequence where each event consists of
a single symbol (A, T, C, or G). The BLAST [1,45] is the
most popular tool to deal with the string matching over DNA
sequences; however, false negatives may occur when using
this tool. Differently, our approach guarantees no false pos-
itive and no false negative. To consider the problem of sub-
string matching in large databases for genetic data or web
data, another approach [27] is proposed to map the symbolic
substrings of the data into vectors in a numerical space with
the help of wavelet coefficients, and then index the coef-
ficients for fast retrieval. If we apply it to the polyphonic
music addressed in this study, the dimensions of the vectors
can be even larger than the length of the original string due
to the variety of events. This situation will seriously affect
the performance of query processing and thus this approach
is not suitable for our problem.

In the area of time series analysis, the researchers [18,39,
48] consider the sequence of real numbers, in which each
number represents a value at a time point. Since a time series
is usually long, the computation cost can be significant. The
most common solution is to map the time series into the fre-
quency domain using Fourier transform first, and then use the
first few coefficients to filter out the dissimilar data. However,
these techniques cannot be directly applied to our problem
because we consider a sequence of symbols instead of real
numbers. Due to the differences of problem definitions and
data formats, the transformation process, similarity measures
(time-warping distance or Euclidean distance), and the corre-
sponding pruning mechanisms introduced in these researches
are not suitable for our problem.

The problem of finding the repetitive patterns in symbolic
sequences has been discussed in [21] with the suffix tree-
based solution provided. In a suffix tree, each path repre-
sents a pattern and each leaf node keeps all the positions of
the corresponding pattern. After traversing the suffix tree, all
the exact repetitive patterns can be extracted. In [26], two
approaches are proposed to discover the non-trivial repeti-
tive patterns, which are not contained in any other repetitive
patterns. These two approaches are developed for extracting
exact repetitive patterns. To find approximate repetitive pat-
terns on monophonic music, another approach [33] is pro-
posed to transform all the music segments in music works
into histogram vectors. The histogram vector keeps the indi-
vidual counts of distinct events in the music segment. The
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histogram vectors are then used to estimate the lower bound
of the edit distance between two music segments. The his-
togram vectors are first indexed in a modified R*-tree [3]
and then each of them is regarded as a range query to find its
approximate repetitive patterns through the index. Unfortu-
nately, the dimensions of the histogram vectors can be huge
for polyphonic music and the retrieval on the R*-tree will be
inefficient. Therefore, this approach is also not suitable for
the content-based retrieval over polyphonic music streams.

Providing efficient ways of content-based retrieval on a
huge amount of music data in the format of SMR, such as
MIDI [37] and MusicXML [41], has been an important topic
for years. The main issues include the music representations
and indexing methods. To represent music object, various
features [46,52], such as pitch, interval, rhythm, chord, and
contour, can be easily extracted from SMR. For efficient
query processing, different indexing methods, such as n-gram
indexing, list-based indexing, and tree-based indexing, have
also been introduced [14,25].

“Query by humming” is a special case of content-based
music retrieval [19,28,35]. The humming is transcribed into
a sequence of discrete notes, and the “contour” information
extracted from the notes is regarded as the input query. The
focus of these works is how to segment a humming into dis-
crete notes. Techniques for string matching can be adopted
to enhance the performance of query processing. However,
the conventional methods, such as the suffix tree [44] and the
n-gram index [17] will generate a complex and costly index
for searching owing to the variety of events in polyphonic
music [32]. Therefore, these techniques are not suitable for
our problem.

Since music works are usually polyphonic, recent resear-
ches focus on content-based retrieval for polyphonic music.
In this aspect, the naïve way is to transform [53] a polyphonic
work/musical segment into a monophonic one and then apply
the techniques for monophonic music. Such approaches
include Themefinder [30] and Meldex [36]. However, the
transformation from the polyphonic music to the monophonic
one is not accurate and is not applicable to every kind of music
[46]. Therefore, these researches cannot solve our problem
of finding the answers for the polyphonic music segments.

Without transforming the polyphonic music to the mono-
phonic one, the system named SEMEX [31] extends the well-
known shift-or algorithm [55] to find all the segments from
the polyphonic music database, which contains the given
monophonic query. The design of SEMEX cannot deal with
the polyphonic query. By contrast, PROMS [12] directly sup-
ports the polyphonic query by using the inverted-file to record
the occurrence of each note in the polyphonic music database.
Unfortunately, this system is suitable for exact matching
but inefficient for approximate matching. Dovey [16] pro-
poses another algorithm for approximate matching based on
dynamic programming. The definition of the approximate

answer in [16] is much different from ours. The approx-
imate answer they consider is a sequence of events of a
music object that contains the query. Therefore, the users
are required to give precise queries, which is not convenient
to the users. Moreover, this approach suffers from the long
length of a music work and the large number of music works
in the database. Recently, Liu [32] proposes a novel method
to efficiently retrieve k music works that contain segments
most similar to the user query based on the edit distance.
Since the kNN problem is quite different from the problem
discussed in this paper, the pruning techniques developed
in [32] cannot be applied. All the previous works focus on
the content-based retrieval on static music databases. Due to
the essential difference between static databases and stream-
ing environment, all the works mentioned above cannot be
applied to solve our problem. Moreover, they do not deal with
the issues about simultaneous processing of multiple queries
and the unbounded amount of data, either.

Different from content-based music retrieval, content-
based audio identification deals with the audio files. Audio
fingerprinting is the most popular technique for content-based
audio identification. There are two principal components in
the audio systems, i.e., computing the audio fingerprint and
searching the fingerprint database. An audio fingerprint is
regarded as the summary composed by the features of an
audio object. Different features [6,9,23], such as Fourier
coefficients, Mel-Frequency Cepstral Coefficients, and
MCLT Coefficients, are adopted in the literatures. However,
these coefficients are usually complicated for the users. It
will be difficult for the users to set suitable thresholds for
content-based audio identification if they do not understand
the used fingerprint model, the discriminative information of
the query, the similarity of the fingerprints in the database,
and the database size [8].

To avoid linearly scanning the whole fingerprint database,
certain access methods are developed in the literatures. Based
on the assumption that a piece of a query’s fingerprint is
free from error, Haitsma et al. [22,23] propose an index by
creating a lookup table for all the possible hash values of the
fingerprint pieces and each entity of the lookup table points
to the positions of the songs with the same fingerprint piece.
For each query, the positions of all involved fingerprint pieces
are located to generate the candidate songs for searching. If
the number of the fingerprint pieces of a query is defined as
256, the answers retrieved will also consist of 256 successive
fingerprint pieces. No insertion or deletion of a fingerprint
piece is allowed. To solve our problem, the editing operators,
i.e., insertion, deletion, and replacement, are necessary to
measure the edit distance between the query and the data.
As a result, the proposed method in [22,23] cannot solve our
problem, in which the lengths of the query and the answer
can be different. Moreover, the assumption is also infeasible
for the applications introduced in this paper.
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In [9], the audio fingerprint, called AudioDNA, is desig-
ned, which is a sequence of symbols. The matching algorithm
[45] developed for biological gene sequences are adopted
to speed up the comparison between the subsequences of
AudioDNA from an audio stream and the fingerprints in the
database. To reduce the search space, the algorithm first finds
the exact matches of the short subsequences of the query and
then utilizes the positions of these exact matches to generate
the possible approximate answers. As a result, false negatives
may occur. This algorithm is suitable for the DNA sequence
comparison because a DNA sequence is a sequence of events
and each event consists of a single symbol. If we apply it to
the sequences in which an event can contain more than one
symbol, the number of false negatives could be huge. Differ-
ent from this matching algorithm, our approach guarantees
no false positive and no false negative.

Various problems in the streaming environment have been
discussed in the literature [20]. Data in new applications, such
as web accesses, financial tickers, network packets, and sen-
sor data [13,56], are all in the form of data streams. To support
the new applications, continuous query (CQ) is designed to
allow the users to get new results from a data stream with-
out having to issue the same query repeatedly. Most of the
data stream management systems (DSMSs) currently in use
[7,11,24,40] support tuple-based data streams and CQs that
have SQL-like syntax and the enhanced support for windows
[10]. That is, a CQ is composed of relational operators, such
as selection and join [20]. However, the querying facilities
they provide cannot be used in the applications with com-
plex data types such as the content-based retrieval over music
streams. The reason is that those systems process the incom-
ing data individually [2,10,29,34] without well addressing
the issues about the temporal relationship among data, which
is the characteristic of music data. Therefore, the techniques
developed for the existing DSMSs cannot be applied to our
problem. To keep the property of continuity of music seg-
ments, we define the music segment as a sequence of events
and a query describing a music segment as the sequence query
(SQ). SQ is not SQL-based but is another kind of continuous
query in our approach.

Consequently, we conclude that these related works can-
not deal with our problem adequately. Different from these
related works, our approach is the first to solve the problem
of content-based retrieval over music steams with a consid-
eration of the two important issues in the steaming environ-
ment, i.e., simultaneous processing of multiple queries and
unbounded amount of data.

8 Conclusion

Motivated by the interesting applications in the environment
with music streams, we study the problem of monitoring
the event stream for continuously answering a set of SQs.

A novel approach extending the n-gram indexing techniques
to the streaming environment is proposed, and two efficient
mechanisms based on several bounding criteria are designed
for pruning the candidate answers as much as possible. In
the pruning mechanism, we propose a novel summarization
technique for each cluster of n-grams and provide a bound-
ing criterion to prune the clusters without any answer. In
the merging mechanism, we propose a systematic way to
maintain the partial answers of each query and also provide
several bounding criteria to prune the partial answers as early
as possible. With the reduction of the search space, both the
mechanisms reduce the computation cost and space usage.
The effectiveness of these mechanisms is formally proved
and verified via the experiments conducted in a simulated
streaming environment using real music data. Moreover, the
results also show the great efficiency of our approach.

Based on the experiment results, our approach can deal
with thousands of SQs on single music stream. However,
as the number of SQs becomes huge, we might reach the
limitation of computing resource of a personal computer. To
overcome such problem, we can combine the idea of par-
allel processing with our approach. On one hand, the query
n-gram clusters are distributed into several computers, which
serve to monitor the music streams and perform the pruning
mechanism. On the other hand, another computer gathers
the results of approximate matches from different computers
and then come out with the final results through the merg-
ing mechanism. In the near future, we will further consider
the resource-limited environment. If there is no sufficient
resource to support the parallel processing under the real-
time requirement, a load shedding mechanism that can selec-
tively ignore the incoming data n-grams or focus on the query
n-grams of more importance will be required.

If there are many music streams to be monitored, the num-
ber of data n-grams to be processed in a unit time could
be large. For efficiency, we can process a batch of the data
n-grams at one time. For a number of data n-grams that arrive
during a time period, we can also divide them into clusters
as we process the query n-grams. In the pruning mechanism,
we can estimate the minimum distance between the summa-
rization of the data n-gram cluster and the summarization of
the query n-gram cluster to see whether we can prune the
entire cluster. The more similar the data n-grams are, the less
computation will be needed. However, the clustering of the
newly added data n-grams suffers from run-time overhead.
The investigation of the tradeoff between the computation
sharing and the overhead of clustering is one of our future
works.
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