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The concept of a prototypical melody has been proposed to characterize sets of 

similar musical segments in a composition. In musicology, the degree of importance as-
sociated with a prototypical melody is proportional to the number of musical segments 
similar to it. In this paper, a novel approach is developed to extract all the prototypical 
melodies in a musical work. Our approach considers each music segment as a prototypi-
cal melody candidate and utilizes edit distance to isolate a set of music segments that are 
similar to this candidate. To expedite the process, a lower bounding mechanism is used 
to estimate the number of similar musical segments for each candidate to eliminate im-
possible options. Furthermore, the approach is extended to facilitate the extraction of all 
prototypical melodies in a set of musical works. Analysis is carried out on a real data set, 
and the results indicate significantly improved performance in average response time 
relative to existing approaches.   
 
Keywords: prototypical melody, approximate repeating pattern, lower-bounding mecha-
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1. INTRODUCTION 
 

The extraction of musical features from the raw data of a composition is fundamen-
tal to content-based music retrieval and style analysis. Most classical works of music are 
composed according to the traditional structures of musical form in which two basic rules 
are observed: the hierarchical rule and the repetition rule [8]. The hierarchical rule 
stipulates that compositions are formed hierarchically; a music work consists of move-
ments, a movement consists of sentences, a sentence consists of phrases, and a phrase 
consists of figures. The repetition rule maintains that there exist specific sequences of 
notes, known as motives, repeating in a movement. For example, the well-known motive 
“G-G-G-Eb” repeatedly appears in Beethoven’s Symphony No. 5. The repetition rule also 
manifests in other musical genres such as pop, where the refrain relies heavily on these 
recurring motives. In previous works [6], a sequence of notes appearing more than once 
in a composition has been designated as a repeating pattern. In structure and style analy-
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sis, there is consensus that repetition is an almost universal characteristic [8, 17]. The 
short length of repeating patterns, coupled with the ubiquity of this musical feature, lend 
to their utility in content-based music retrieval, satisfying both efficiency and effective-
ness requirements. 

The problem of finding all the repeating patterns from a string has been discussed in 
[5], with suffix-tree based solutions proposed wherein each path of the tree represents a 
pattern and each leaf node preserves the position of a corresponding pattern located 
within the string; by traversing the suffix-tree, all repeating patterns can be extracted. 
These approaches consider the patterns represented by different paths to be distinct. As a 
result, only precisely repeating patterns can be found. Two approaches based on correla-
tive-matrix and string-join techniques have been proposed by Hsu, Liu and Chen to ex-
tract exact repeating patterns from musical compositions [6]. The former approach en-
tails the alignment of notes along the x- and y-axes to form a correlative matrix in order 
to discern repeating patterns. The latter approach combines shorter repeating patterns 
into longer ones, and excludes impossible candidates in the process. In the work of Shih 
et al. [16] a musical score is segmented into bars, which are further encoded to improve 
the efficiency of repeating pattern extraction. Except for the encoding mechanism, the 
approach also adopts the string-join technique, joining shorter repeating patterns into 
longer ones. 

One the other hand, a pattern may repeatedly appear in a work of music with some 
variations. A popular approach to coordinating and understanding such variations is rec-
ognizing the prototypical melody, which is an abstraction of the composition to which 
musical segments of similar form correspond [15]. The prototypical melody has a sub-
stantial impact on the way melodic structures are memorized by the human brain. Pien-
imäki [12] considered musical transposition at length, and adopted a text-mining algo-
rithm to extract all the longest unique repeating patterns – those which are not contained 
in any others. This approach permits the extracted patterns to be discontinuous in the 
context of a work of music; shorter candidates are initially generated, unqualified options 
are removed and remaining candidates are combined to form longer patterns. Experi-
ments show that the execution time of this approach is considerable due to the large 
number of candidates to be examined. Rolland [13] proposes a flexible similarity meas-
ure for musical segments and a dynamic-programming method for extracting approxi-
mate repeating patterns. A musical segment is regarded as a point on a graph, and the 
similarity between each point is computed. All prototypical melodies are subsequently 
resolved by counting the number of similar musical segments for each point on the graph. 
This approach incurs substantial computational overhead in determining the similarity 
between music segments. Several generalized but efficient algorithms for approximate 
string matching can be found in [9], and a new search procedure for approximate string 
matching over suffix trees is proposed in [14]. 

In this paper, we consider each music segment as a candidate prototypical melody, 
or approximate repeating pattern (ARP). Two constraints, the maximum and minimum 
pattern lengths, are set to filter out candidates that are not of interest. For each candidate 
identified, edit distance and threshold parameters are used to identify all musical seg-
ments that are similar to the candidate. Based on the number of similar music segments 
and the manner in which they overlap, ARP candidates are either accepted or rejected. 
Efficiency considerations necessitated the design of a modified R*-tree to exclude im-
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possible candidates prior to the computation of edit distances. We adopt a filtering 
method that uses a distance measure to approximate the edit distance by which the num-
ber of segments to be examined for each ARP candidate is reduced. The similar filtering 
techniques have been presented in the literature [3, 11]. Since it is difficult to ascertain 
appropriate values for the above constraints and thresholds, an interactive environment is 
necessary to enable these parameters to be tuned without rerunning the entire process; the 
modified R*-tree we have developed fulfills this requirement. In addition to these ARP 
extraction techniques, we consider the approximate repeated pattern in a set of musical 
compositions (G_ARP) and extend our method to efficiently extract the G_ARP. 

The remainder of this paper is organized as follows. In section 2, we define the ap-
proximate repeating pattern and formulate the ARP and G_ARP extraction problems. 
Section 3 delineates our approach to solving these extraction problems, and section 4 
presents and discusses experimental results. Finally, section 5 concludes the paper and 
avenues for future research are exposed. 

2. PROBLEM FORMULATION 

The problem of prototypical melody extraction has been defined in the work of Rol-
land [13], where patterns composed of musical segments are termed star-type patterns. 
In such a pattern, the single segment to which all others are related over a predefined 
threshold is referred to as the pivot. This paper regards the pivot as a prototypical melody 
if it is the origin of a star-type pattern. Several constraints will now be specified in the 
formulation of our problem. 

2.1 Data Representation 

Notes in a melodic composition possess two critical properties: pitch and duration. 
Each note in a symbolic music file (e.g. MIDI) can therefore be represented as a triple (p, 
s, e) where p is the pitch value, s is the start time (note on), and e is the end time (note 
off). As a result, a music file results in an ordered list of triples sorted by the note-on time, 
i.e. (p1, s1, e1), (p2, s2, e2), …, (pn, sn, en) where s1 ≤ s2 ≤ … ≤ sn. Two musical pieces 
whose notes have matching pitch values are often considered to be the same despite 
variations in note duration. In light of this, the importance of pitch order supersedes that 
of precise time intervals. Moreover, since two melodies with the same pitch contours are 
considered equivalent, the following defined intervals are implemented. 

 
Definition 2.1 Pitch String: A pitch string P = (p1, p2, …, pm) is the ordered list of pitch 
values pi, where m is the string length denoted |P| = m. 
 
Definition 2.2 Interval String: An interval string of a pitch string P = (p1, p2, …, pm) is 
defined as D = (d1, d2, …, dm-1), where di = pi+1 − pi, 1 ≤ i < m and di is called an interval. 

The set of all the distinct interval values in D is denoted ∑D, and size is defined as 
|∑D|. Fig. 1 presents examples of a pitch string and an interval string. 

 
Definition 2.3 Interval Segment: An interval segment S[i:j] is the substring of an inter-
val string D = (d1, d2, …, dn) from i to j such that S[i:j] = (di, di+1, …, dj). 
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Fig. 2. Selected entries of one ricercare (Francesco da 
Milano: monothematic lute ricercare from the 
Cavalcanti Lutebook, f. 71v). 

 Fig. 3. Evolution of diatonic-pitch pattern. 

 

Pitch String:  67,64,64,      65,62,62,       60,62,64,65,67,67,67
Interval String: -3,  0,    +1,   -3,  0,     -2,  +2,+2,+1,+2, 0, 0  

Fig. 1. A pitch string and an interval string. 

For simplicity of expression, the terms string and segment are taken to mean inter-
val string and interval segment, respectively. 
 
2.2 Approximate Repeating Patterns 

 
If no constraint is implemented in isolating repeating patterns, superfluous patterns 

may be extracted and be of little interest to a user due, for instance, to excessive length or 
brevity. Therefore, we define several constraints to filter out unimportant music patterns 
as follows. 

Overly long segments tend to contain duplicate information, while excessively short 
segments may not furnish sufficient information pertaining to musical semantics. There-
fore, allowing users to specify constraints on pattern length will reduce the unnecessary 
computational costs associated with the generation of duplicate information or large 
volumes of very short segments. In this paper, two constraints are imposed on the pattern 
length: the maximum length (max_len) and the minimum length (min_len). As a result, 
segments are generated from a given string using a sliding window whose scope is de-
fined by min_len and max_len. For example, given a string (a, b, c, d), the qualified seg-
ments are (a, b), (b, c), (c, d), (a, b, c) and (b, c, d) when min_len = 2 and max_len = 3. 
The edit distance [5] is a well known tool in the measurement of melodic similarity [2, 
15] and for this reason is adopted in computing the degree of similarity between two seg-
ments. 

The example in Fig. 2 shows five variants of a prototypical melody produced by edit 
operations, which are audibly related entries of one ricercare for lute. As shown in Fig. 3, 
they can be regarded as the stages in the evolution of a diatonic motif through a series of 
edit operations of total distance 2 [15]. 

 A (meas. 4)

 B (meas. 7)

 C (meas. 19)

 D (meas. 25)

 E (meas. 28)  
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Definition 2.4 Edit Distance: Based on the definition presented in [5], the three types of 
edit operations that transform segment P (denoted p1, …, pm) into segment Q (denoted 
q1, …, qn) are insertion, deletion, and replacement. The edit distance between segments P 
and Q is the minimum number of edit operations required to transform P into Q, and is 
denoted edit(P, Q). 

The similarity degree between two segments depends on the edit distance, which is 
normalized between 0 and 1. 

 
Definition 2.5 Similarity Measure: Given two segments P and Q, the similarity be-
tween them is sim(P, Q)= 1 − (edit(P, Q)/max(|P|, |Q|)), where |P| and |Q| are the respec-
tive lengths of P and Q. 
 
Definition 2.6 Similar Segments: Given a similarity threshold λ, 0 ≤ λ ≤ 1, a segment P 
is similar to Q if sim(P, Q) ≥ λ. 

When two similar segments overlap to a high degree, they can be treated as one 
segment. To quantify this consideration, we define the overlapping degree as follows. 
 
Definition 2.7 Overlapping Degree: Given two similar segments S[a:b] and S[c:d] where 
a ≤ c ≤ b, the overlapping degree of is (b − c + 1)/min(b − a + 1, d − c + 1) if b < d. Oth-
erwise it is equal to 1. 

Since the overlapping degree depends on the segment length, a variable threshold is 
used to restrict the maximum overlapping degree among the similar segments. 

 
Definition 2.8 Overlapping Threshold: An overlapping threshold for two similar seg-
ments I and J is OIJ = min(|I|, |J|) * ρ , where |I| and |J| are the segment lengths and ρ is 
the overlapping threshold ratio, 0 ≤ ρ ≤ 1. 
 
Definition 2.9 Extension of a Pivot: Given a pivot P and the set of all similar segments 
S, an extension of P (denoted Ext(P)) is a subset of S where every pair of segments in it 
satisfies the overlapping threshold condition. The number of segments in an extension is 
called the support, and denoted |Ext(P)|. 
 

For applications in music classification [7], placing a constraint on the minimum 
number of occurrences for a repeating pattern in a work of music ensures that discovered 
patterns are of particular significance. In this paper, the constraint on the support of an 
extension is called the support threshold, and is denoted min_sup. 

 
Definition 2.10 Approximate Repeating Pattern: A pivot P meets the definition of an 
ARP if there exists at least one Ext(P) satisfying the support threshold condition, with 
|Ext(P)| ≥ min_sup. 
 
Definition 2.11 Problem of ARP Extraction: Extract all ARPs for a given musical 
string where min_len, max_len, λ, ρ and min_sup are defined. 

A particular prototypical melody and its associated segments may appear in multiple 
compositions, and often multiple times therein. Such familiar melodies (patterns) can be 
used to establish the character of a work of music, and may enhance appreciation of the 
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piece by highlighting the composer’s allusion to a recognizable milieu. Moreover, these 
patterns can be employed in a music classification system [7] to improve performance. 
The following definitions are relevant to the extraction of such patterns. 

 
Definition 2.12 Count of ARP for a set of music works: For a set of compositions and 
an ARP P in a work of music, the count_ARP of P denotes the number of works in which 
all values of i, |Exti(P)| ≥ min_sup. 
 
Definition 2.13 Global ARP (G_ARP): An ARP P of a work of music is a G_ARP if 
count_ARP of P is not less than set_min_sup. 
 
Definition 2.14 Problem of G_ARP Extraction: Extract all G_ARPs for a given set of 
music strings where min_len, max_len, λ, ρ, min_sup and set_min_sup are defined. 

3. ARP EXTRACTION USING A PRUNING STRATEGY 

A naïve and time-consuming solution to the ARP extraction problem is to compute 
the distance between every two segments to find the extension for each segment. In this 
section, we introduce an approach based on distance approximation and segment index-
ing. Initially, we cut a string into a series of segments using sliding windows of various 
lengths. Each segment is subsequently transformed into a vector in multidimensional 
space and used to build a modified version of the R*-tree, in which all the segments are 
indexed. Furthermore, each vector is provisionally regarded as a pivot that triggers a 
range query on the index tree designed to retrieve any segments containing possible 
similarities. Finally, for each pivot with an adequate number of returned segments, we 
compute the relevant edit distances to determine whether it is an ARP. 

3.1 Lower-Bounding Distance 

Using dynamic-programming based approaches to compute edit distances between 
strings generally incurs substantial computational overhead. To ameliorate this problem, 
we define a distance measure that can be efficiently computed. The rationale behind the 
proposed measure is as follows. From Def. 2.4, the order of values in segments is seen to 
have a considerable influence on the edit distance and the computational costs associated 
with its calculation. We therefore ignore the order, and elect to count the number of oc-
currences for each distinct value in a segment instead. Given two segments, the differ-
ences between such counts can be combined to approximate the edit distance. Moreover, 
the distance estimated by our alternative measure is proven to be consistently lower than 
the actual edit distance. Consequently, we can build a lower-bounding mechanism on the 
index tree to prune all segment distances exceeding a stipulated parameter. Before intro-
ducing this measure, we define each segment as follows. 
 
Definition 3.1 Histogram Vector: Let D be a string with ΣD = {a1, a2, …, an}, S be a 
segment of D and hk

S be the count of ak in S. The histogram vector (abbreviated Hvector) 
is defined as follows,  
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HV(S) = <h1
S, h2

S, …, hn
S>. 

 
All segments are represented in terms of their Hvectors, which are scattered over a 

multidimensional space termed histogram space where each dimension refers to a dis-
tinct value in the string and the total number of dimensions is |∑D|.  

 
Definition 3.2 Histogram Distance: We define an insertion to a dimension in the Hvec-
tor as increasing that dimension by one unit. For two segments S1 and S2 of a string D, the 
minimum number of insertions on S1 required to make each dimension in HV(S1) larger 
or equal to the corresponding value in HV(S2) is calculated as follows.   
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The distance between the two Hvectors of segments S1 and S2, called the histogram 
distance (abbreviated Hdistance), is formulated as follows. 

 
HD(S1, S2) = max(ins(HV(S1), HV(S2)), ins(HV(S2), HV(S1)))    (2) 

The Hdistance is guaranteed to be lower than the edit distance, and this will now be 
proven. 

 
Lemma 1  Given two strings S1 and S2, HD(S1, S2) ≤ edit(S1, S2). 
 
Proof: Based on Def. 2.4, edit(S1, S2) is equal to the minimum number of edit operations 
required to transform S1 into S2. Let need(S1, S2) denote the minimum number of edit 
operations on S1 required to make each dimension in HV(S1) equal to the corresponding 
one in HV(S2). Obviously, the inequality need(S1, S2) ≤ edit(S1, S2) holds. 

Let the variables a and b denote ins(HV(S1), HV(S2)) and ins(HV(S2), HV(S1)), re-
spectively. For the three types of edit operations on S1, an insertion decreases a by 1, a 
deletion decreases b by 1, and a replacement decreases both a and b by 1. After need(S1, 
S2) operations, a and b should each be zero. To minimize the number of edit operations, a 
replacement that can decrease a and b simultaneously is first considered. 

Let the initial values of a and b be A and B, respectively. There are two cases: 
 
Case I: A ≥ B   

The maximum number of replacements is B, since b becomes zero earlier than a. 
After B replacements, a equals A − B, which is the minimum number of insertions re-
quired to let a = 0. ∴need(S1, S2) = B + (A − B) = A ⇒ ins(HV(S1), HV(S2)) = A = need(S1, 
S2) ≤ edit(S1, S2). 
 
Case II: A ≤ B 

Similarly, need(S1, S2) = A + (B − A) = B ⇒ ins(HV(S2), HV(S1)) = B = need(S1, S2) ≤ 
edit(S1, S2) ∴HD(S1, S2) = max(ins(HV(S1), HV(S2)), ins(HV(S2), HV(S1))) ≤ edit(S1, S2). 
 

The time complexity of edit distance computation is O(m * n), where m and n de-
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note the two segment lengths. In contrast, the time complexity of Hdistance computation 
is O(|∑D|), which is independent of the segment lengths. Even if the transformation cost 
is included, the time complexity is only O(max(|∑D|, m, n)). In most practical cases, m * n 
is larger than |∑D|. As a result, the Hdistance computation is more efficient than the edit 
distance computation. 

3.2 Index Tree 

To speed up the retrieval of similar segments for each pivot, we built an R*-tree in 
the same way as proposed by [1] to index all the Hvectors. An R*-tree uses a multidi-
mensional rectangle, called the minimum bounding rectangle (MBR), to represent the 
data objects in the neighborhood. It is a height-balanced tree composed of leaf nodes and 
intermediate nodes. A leaf node is associated with the data objects, while an intermediate 
node keeps the diagonal coordinates of the MBR that encloses its lower level nodes. Fig. 
4 shows an example set of data rectangles and the associated R*-tree index. A range 
query performed on an R*-tree serves to find the data objects located inside the specified 
region. For example, a range query in Fig. 4 (a) aims at the data located in the region q. 
All the data represented by MBR B would be pruned as MBR B does not overlap the re-
gion q. Therefore, the R*-tree technique speeds up the query processing and guarantees 
that the pruned data objects are outside the region. 

 

D

C

F

E

G

H

A
B

A B  

C D E F G H

Intermediate 
node

Intermediate 
node

leaf node

q

 
(a)                            (b) 

Fig. 4. (a) Rectangles of an R*-tree and a range query q; (b) R*-tree for the rectangles in (a). 

 
Note that other metric access methods [10] including those incorporating cover trees, 

k-d trees, m-trees, and vp-trees can also be used in our approach with the same modifica-
tion that is described below. 

An interval string is cut into segments by sliding windows according to the two con-
straints on segment length. After that, each segment is mapped to a Hvector and inserted 
into the R*-tree. Each Hvector is inserted into the R*-tree according to its position in 
histogram space.  

Each leaf node in the R*-tree is of the form (I, p-id), where I denotes a minimal 
bounding rectangle (MBR) and p-id refers to the set of Hvectors contained in I. More-
over, each non-leaf node in the R*-tree is of the form (I, child-p), where child-p elements 
are the pointers of all child nodes and I is the MBR that spans all MBRs of the child 
nodes. Furthermore, we add entries to each node of the R*-tree such that more nodes can 
be pruned during tree traversal during ARP extraction. The modified R*-tree is called the 
parametric R*-tree, where the entries added are as follows. 
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Definition 3.3 RM Pairs: A range in string D is denoted as a:b, where a and b are two 
positions in D and a < b. Two segments with ranges a:b and c:d are called non-over-lap-  
ping if b < c or d < a, and overlapping otherwise. A set of overlapping segments can then 
be represented as (R, M) and termed the RM pair, where R is the union of all their ranges 
and M is the minimum of their lengths. 
 

For example, S2(D[2, 3]), S5(D[1, 3]) and S6(D[2, 4]) in Fig. 5 are represented as an 
RM pairing (1:4, 2). In the parametric R*-tree, for each node the segments corresponding 
to Hvectors contained by its MBR are distributed into RM pairs such that the overlapping 
ones fall into the same RM pair. A parametric R* tree with two leaf nodes and only one 
non-leaf node is illustrated in Fig. 5. The number of dimensions in the histogram space 
|∑D| is 2. We construct the parametric R*-tree by sliding windows on D, where min_len 
and max_len are set to 2 and 3 respectively. As a result, only two leaf nodes are built to 
keep all the segments at the bottom level, designated the segment level. For instance, in 
node R2, the RM pairs are computed in the following manner. Since S7 overlaps S3 and S4, 
they form the RM pair (3:5, 2). Conversely, S1 does not overlap any other segment in R2 
and therefore the RM pair (1:2, 2) is generated. 

D: (1,2,2,1,1)
Segments with length 2: S1(1,2),S2(2,2),S3(2,1),S4(1,1)
Segments with length 3: S5(1,2,2),S6(2,2,1),S7(2,1,1)

Dimension 1

D
im

ension 2

R1

R3

R2S4

S1,S3

S7

S5 ,S6

I=(0,0),(2,2)

RM pair={(1:5,2)}

S1, S3

S7

S5,S6

S2

R1

child-p1 child-p2

I=(1,0),(2,1)

RM pairs={(1:2,2), (3:5,2)}

R2

I=(0,2),(1,2)

RM pairs={(1:4,2)}

R3

Segments

Level 1

Level 2

S2

S4

Segment
Level

 
Fig. 5. An example of the histogram space and a parametric R*-tree. 

 
3.3 ARP Extraction Procedure 

In this subsection, our approach to ARP extraction applied to a composition is in-
troduced. The algorithm employed entails three main stages. The first stage constructs 
the parametric R*-tree as an index tree for the next procedure in which we regard each 
Hvector in the index tree as a range query, which are executed to generate ARP candi-
dates. The candidates are recorded as a linked list named CandidateList, which is fed into 
the final stage. As a result, ARPs satisfying all the stipulated constraints are output. The 
last two stages are repeated until the ARPs are determined to the user’s satisfaction. 

3.3.1 Candidate generation 

After index construction, we regard each segment in it as a pivot and use its Hvector 
as a range query on the parametric R*-tree. Eligible segments of sufficient similarity to 
the pivot are then returned and designated as candidate segments. Each time a query is 
processed, the corresponding pivot is pruned if the maximum number of returned results 
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is less than min_sup. A pivot that survives this query processing is established as a can-
didate ARP. For each candidate, component segments are further analyzed to determine 
whether it is an ARP. 

Given the Hvector of pivot p (denoted Vp), we retrieve associated candidate seg-
ments from the index tree to decide whether Vp is an ARP candidate in five steps: 
 
Step 1: Range query formulation 

We need to construct a range query to prune the segments dissimilar to p, so the ra-
dius of a sphere in histogram space for Vp (at the center of the range query) must be de-
cided first. 

The radius δp is computed as follows. 
 

(1 )*| | ,p
pλδ

λ
−⎢ ⎥= ⎢ ⎥⎣ ⎦

 where λ is similarity threshold.  (3) 

This formula comes from the definition of similar segments. For the pivot p, the inequal-
ity sim(p, q) ≥ λ should hold true when q is a similar segment to p. There are two cases to 
be considered. 
 
Case I: |q| ≥ |p|   

From the definition of similarity measurement, the following is obtained.  
 
sim(p, q) = 1 − edit(p, q)/max(|q|, |q|) ≥ λ ⇒ edit(p, q)/|q| ≤ 1 − λ 
∵ |q| − |p| ≤ edit(p, q), ∴ (|q| − |p|)/|q| ≤ 1 − λ ⇒ |q| ≤ |p|/λ ⇒ |q| − |p| ≤ (1 − λ) * |p|/λ 

 
The inequality establishes an upper bound on the length of a similar segment that is pro-
portional to the length of a given pivot. Moreover, the difference between the lengths of 
p and q is lower than or equal to (1 − λ) * |p|/λ. 
 
Case II: |q| ≤ |p|   

In the same manner, the inequality |q| ≥ λ * |p| is established. This implies that the 
length of a similar segment also has a lower bound. Moreover, the upper bound on the 
difference between the lengths of p and q is (1 − λ) * |p|. 

Since λ is not larger than 1, the value of (1 − λ)*|p|/λ is guaranteed to be larger than 
or equal to (1 − λ) * |p|. Hence, we use the upper bound as the radius of a range query 
because it ensures that segments with Hvectors outside the sphere are dissimilar. 

 
Step 2: MBR retrieval 

Given the range query with defined parameters (Vp, δp), when traversing a level of 
the index tree, all MBRs overlapping with the specified region are retrieved and denoted 
as overlapping MBRs. The overlapping MBRs of (<2, 1>, 1) presented in the histogram 
space of Fig. 5 as an example are R1 and R2, located respectively on levels 1 and 2. 
 
Step 3: Estimation for the maximal number of similar segments 

For each overlapping MBR, the maximum number of similar segments in it can be 
estimated in three steps. Firstly, for each RM pair (RX, MX) in the MBR, the minimum 
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length of segments covered by RX is MX. On the other hand, the length of a similar seg-
ment for p must be at least |p| − δp. Therefore, the minimum length of similar segments 
covered by the RM pair (MLX) must be not lower than the maximum of these two lower 
bounds, such that max(|p| − δp, MX). Secondly, for each RM pair in the MBR, the maxi-
mum number of similar segments covered by RX is estimated by considering that any two 
similar segments must satisfy their overlapping thresholds. Referring to the range from a 
to b on the axis in Fig. 6, we draw a line of length L starting at position a. Another line of 
the same length is drawn to the right of a such that the length of its overlap with the pre-
vious line is equal to m. This process is repeated until a line touches position b. The total 
number of lines drawn in this way is equal to ⎣(n − L)/(L − m)⎦ + 1, where n = b − a + 1, 
and is denoted seg_numX; this corresponds to the number of segments with the minimum 
length MLX covered by RX if L is set to MLX and m is set to ρ * MLX. Note that ρ is the 
overlapping threshold ratio, and thus m is equivalent to the overlapping threshold for any 
two similar segments in RX. At last, the values estimated for all RM pairs in an MBR are 
summed to give the maximum number of similar segments that can be retrieved from the 
MBR (denoted seg_numMBR). 

m

1
2

numx

numx-1

L

numx-2

m

Axis
a bn  

Fig. 6. Maximum number of segments fitted into a range. 

For illustration purposes, we will continue to use the example presented in Fig. 5. 
Suppose that the pivot is S7, ρ is set to 0.5 and the range query (<2, 1>, 1) is performed 
on R2. There are two RM pairs, (1:2, 2) and (3:5, 2), in R2. For the former, ML1 = max(3 
− 1, 2) = 2, m = ρ * ML1 = 0.5 * 2 = 1 and seg_num1 = ⎣(2 − 2)/(2 − 1)⎦ + 1 = 1. Using 
the same formula, the seg_num2 value of the latter is 1 and the seg_numR2 value com-
puted is therefore 2. 
 
Step 4: Candidate pruning before Hdistance computations 

When a range query is processed at a level above the segment level, the seg_numR 
of each overlapping MBR R is computed and their sum is denoted max_seg_num. To the 
pivot corresponding to the Hvector Vp, when max_seg_num for the range query (Vp, δp) is 
less than min_sup, the pivot cannot be an ARP according to Def. 2.10. In this case, we 
terminate the processing of this query and return to execute the next range query. If 
max_seg_num is not less than min_sup, the given query is recursively propagated 
through the lower levels. For example, if we assume that min_sup is set to 3, segment S7 
can be pruned because according to the result generated in step 3, the max_seg_num 
value at level 2 is only 2. 

 
Step 5: Candidate pruning after Hdistance computations 

When a range query Vp is processed at the segment level, we compute the Hdis-
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tances between the pivot p and the segments whose lengths are not less than min_len and 
not larger than max_len in the overlapping MBRs. All the segments whose Hdistances 
satisfy δp are extracted to compute max_seg_num. If max_seg_num is less than min_sup, 
the pivot will be pruned. Otherwise, the pivot is regarded as an ARP candidate and the 
extracted segments are its candidate segments. 

After all range queries have been performed, a set of ARP candidates are obtained 
and their candidate segments are stored in CandidateList, which will be processed further 
in the final stage. 
 
3.3.2 ARP extraction 
 

The output of our approach includes each ARP and its extensions, which can be 
used by musicians to verify whether the ARP is a prototypical melody. Given an ARP 
candidate and its associated segments, the relevant edit distance is computed and candi-
date segments violating the distance threshold are removed to isolate a set of similar 
segments. Subsequently, we generate all the extensions of the ARP candidate by consid-
ering the overlapping threshold. If the support of an extension is less than the min_sup, 
the extension is not a valid solution. Consequently, by Def. 2.10, an ARP candidate is 
only viable if one of its extensions satisfies the min_sup threshold. 
 
3.4 G_ARP Extraction Procedure 

 
A naïve method for the extraction of G_ARPs from a set of compositions is pre-

sented in the following subsection. Parametric R*-trees are built for each composition, 
and all the pivots that are identified as ARPs are extracted by employing the method pre-
viously delineated. For each of the extracted ARPs, we examine its extensions (the sets 
of similar segments) in other works of music in the set. The number of musical works 
satisfying the condition provided by Def. 2.12 is computed, and compared against the 
set_min_sup value to determine whether the pivot is a G_ARP. Repeating the procedure 
until each pivot is characterized will extract all the G_ARPs. 

This naïve method is space-consuming because each musical work needs its own 
tree for indexing. Moreover, individually traversing these trees is time-consuming and 
computationally exhaustive. We reduce the associated costs by modifying our approach 
for ARP extraction to enable the G_ARP extraction using only one parametric R*-tree. 
Let D = {D1, D2, …, Dn} be a set of compositions. For all Di in D, we build a parametric 
R*-tree with |∪∑Di| dimensions which is the number of distinct intervals in D required to 
index all the segments of Di; the previous subsection describes the procedure for building 
this index tree. 

We subsequently attach a number (ID) to the R field (the union of all ranges for the 
overlapping segments) of the RM pair to identify the works to which these segments be-
long. As a result, the RM pair takes the form (ID: position1: position2, length). For ex-
ample, two segments, S2

2(2, 2) and S2
3(1, 2, 2), of composition D2 are represented as the 

RM pair (2:1:3, 2). 
For G_ARP extraction, we modify and enhance the candidate generation procedure 

of subsection 3.3.1 to facilitate more efficacious exclusion of pivots constituting impos-
sible candidates. Originally, step 2 of this candidate generation stipulated retrieval of all 
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the overlapping MBRs of (Vp, δp). In this enhanced version, an additional step is invoked 
to compute the number of distinct IDs in all the overlapping MBRs (denoted ID_nums). 
Use of the ID_nums value restricts the maximum number of compositions that may con-
tain an extension of Vp; a pivot cannot be a G_ARP candidate if ID_nums < set_min_sup, 
and is skipped if this fail-condition is satisfied. After step 3, the maximum number of 
similar segments (seg_numR) is estimated for each overlapping MBR R. 

In steps 4 and 5 of candidate generation, we also incorporate several pruning tech-
niques. If a pivot is regarded as an ARP after the scrutiny prescribed in subsection 3.3.1, 
seg_numR values corresponding to similar segments with the same ID among the over-
lapping MBRs are summed and denoted max_seg_numID. The number of distinct IDs 
satisfying max_seg_numID ≥ min_sup is then computed and used as an upper bound on 
the count_ARP. The ARP is pruned if this upper bound is less than the set_min_sup value. 
To circumvent unnecessary computations in step 3, RM pairs with IDs whose associated 
max_seg_numID is less than min_sup are ignored during subsequent query processing at 
the lower levels. 

4. PERFORMANCE EVALUATION 

Performance was analyzed in terms of both efficiency and effectiveness. The dataset 
comprises 2000 MIDI files of classical music from a range of composers, downloaded 
from various web sites. On average, there are 2953 intervals and 18.7 distinct intervals in 
a musical work. 

 
4.1 Efficiency Experiment Settings 

Many algorithms exist to solve the problem of approximate string matching with 
good efficiency [9]. However, our method emphasizes a pruning strategy which mini-
mizes unnecessary edit distance computations by imposing constraints on key musical 
properties such as length and count. Calculation of edit distance is the final stage in our 
method, and is not the main focus of our research; any strategy that improves edit dis-
tance computation may be incorporated into our approach. We therefore restrict com-
parisons of our method to a modified version of the dynamic-programming approach 
named FIExPat [13], widely recognized in the field of prototypical melodies extraction. 
The experimental settings were established as follows. The user defines an initial set of 
constraints, and the system executes one complete process of ARP extraction (a single 
iteration). In each experiment, a single constraint is varied to determine its influence on 
the time elapsed during a distinct computational iteration.  

4.2 Efficiency Experiment Results 

In Fig. 7, the time elapsed is divided into two parts for a single computational itera-
tion utilizing our approach. The hashed portion of the illustration represents the comput-
ing time for parametric R*-tree construction and pruning steps, and the solid portion the 
computing time for edit distance. With the exception of the first iteration, it is clear that 
the former is a more rapid computation. 
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(a) Elapsed time vs. max_len.             (b) Elapsed time vs. min_len. 
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(c) Elapsed time vs. similarity threshold.   (d) Elapsed time vs. min_sup. 

Fig. 7. Experiment results. 

Fig. 7 (a) illustrates the results for various values of max_len, where the parameters 
min_len, min_sup, and λ are set respectively to 4, 5, and 75%. At the first iteration, both 
approaches require substantially more time than for all subsequent iterations since our 
approach must build the relevant parametric R*-tree, and FIExPat must construct the 
graph structure upon which it relies. Under the implemented constraint variations, our 
approach performs better than FIExPat over all iterations, and the observed elapsed time 
decreases as the max_len increases. The reason is that segments with larger lengths are 
less likely to constitute a similar segment, and can therefore be pruned by our approach. 
The results for various values of min_len are shown in Fig. 7 (b), where the parameters 
max_len, min_sup, and λ are set respectively to 30, 5, and 75%. Here our approach again 
consistently performs better than FIExPat, except for the first iteration. The elapsed times 
for both approaches increase as the min_len decreases, because a smaller min_len means 
more segments need be considered. If we accumulate the elapsed times over the first and 
the second iterations for each approach, our approach outperforms FIExPat. This sug-
gests that our approach is more suitable than FIExPat in an interactive environment. 

In Fig. 7 (c), the results for various values of λ, where the parameters max_len, 
min_len and min_sup are set respectively to 30, 4 and 5 are presented. Under this ar-
rangement, the user may loosen the similarity threshold in order to resolve more ARPs. 
Once again our approach requires more time for the first iteration, but significantly less 
time for the subsequent iterations. The reason is that our approach builds the parametric 
R*-tree only at the first iteration, and does not update the index tree at subsequent itera-
tions since the max_len and min_len remain unchanged. 

Fig. 7 (d) indicates the results generated for various values of min_sup, where the 
parameters max_len, min_len, and λ are set respectively to 30, 10, and 75%. Our ap-
proach is clearly demonstrated to outperform FIExPat over all iterations. 

In summary, although our method only outperforms FIExPat by a constant factor in 
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Figs. 7 (b) and (c), the results in Figs. 7 (a) and (d) show that the time consumed or the 
linear increase of computation time can be reduced. The reduction of our method is more 
significant when the parameter max_len is enlarged or the parameter min_sup is de-
creased. Therefore, our method is preferable for ARP extraction. 
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Fig. 8. Elapsed time vs. number of compositions. 

In the experiment regarding G_ARP extraction, the defined constraints include set_ 
min_sup. The test data pool was compiled by randomly selecting works of music from 
our database. Fig. 8 shows the elapsed time for computations involving various numbers 
of compositions, where the parameters max_len, min_len, and min_sup are set respec-
tively to 30, 15, and 5. The parameter set_min_sup is set to 30% of the compositions in 
the test data, and the elapsed time is defined as the average of three execution times un-
der the different values of λ (90%, 80%, and 70%). As the number of musical works in 
the database increases, the elapsed time of FIExPat grows rapidly, but the elapsed time of 
our approach does not. The reason for this is that the time complexity of FIExPat is up-
per-bounded by the square of the number of musical works in a database, while our ap-
proach avoids superfluous computation of edit distances by imposing the set_min_sup 
constraint. 

 
4.3 Effectiveness Experiment Results 

 
Due to the absence of standard testing procedures for prototypical melodies and the 

subjective nature of approximate repeating pattern characterization, only the average 
ratios of interesting patterns relative to extracted ARPs and G_ARPs are tested for the 
consideration of a user. Five music professionals were invited to join the study, and each 
subject selected a unique volume of familiar compositions for testing. After gaining an 
understanding of the thresholds settings, subjects were asked to indicate whether a given 
extracted pattern is interesting and the results are shown in Table 1. The ratio of interest-
ing patterns extracted from the single work of music is higher than for a set of composi-
tions, likely because the style of music across compositions can vary dramatically and 
reduce the chance of harmonic patterns. However, all users agree that the tool is useful in 
the analysis of music. 



NING-HAN LIU, YI-HUNG WU AND ARBEE L. P. CHEN 

 

1196 

 

Table 1. Experimental results for effectiveness. 
 Average ratio of interesting patterns 

ARP extraction from single composition 83.2% 
G_ARP extraction from set of compositions 67.4% 

The results of the previous experiments are shown as the precision/recall curve per-
taining to the extraction of prototypical melodies. In particular, thirty edit-distance based 
prototypical melodies of classic musical works are annotated by five music professionals. 
It can be noted that, in general, when thresholds are adequately assigned (e.g., decreasing 
the similarity threshold or increasing max_len), we can obtain a high percentage of the 
predefined prototypical melodies (i.e., high recall). However, the percentage of the pre-
defined prototypical melodies among the extracted ones decreases (i.e., low precision). 
The curve is shown in Fig. 9, implying that if a huge amount of prototypical melodies are 
sought, a significant number of useless patterns will be produced. It will be interesting to 
look into this problem for further improvement of our method. 
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Fig. 9. The precision/recall curve for the extraction of prototypical melodies. 

5. CONCLUSION 

Since the approximate repeating pattern can be found in both classical and pop mu-
sic, it plays an important role in the description of music and analysis of musical styles. 
In this paper, we develop a novel approach for extracting approximate repeating patterns 
from musical compositions. This approach adopts the techniques of range query proc-
essing for multidimensional data and a special mechanism for reducing the query proc-
essing time. In the performance study, the execution time of our approach is significantly 
reduced relative to the FIExPat approach. Our approach may also be applied in other 
fields including pattern extraction on web click strings, or DNA strings. 

Several potential avenues for further research may be identified. Improving the 
Hdistance measure to facilitate more efficacious pruning of impossible candidates prior 
to computation of edit distances will result in substantially more efficient extraction of 
ARPs and G_ARPs. A sophisticated dimension reduction strategy might be employed to 
reduce query processing time, and would have a particularly large impact on G_ARP 
extraction for large databases. Other applications of approximate repeating pattern isola-
tion will be investigated as they pertain to music classification, analysis, and retrieval. 
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